Formulaire de statistiques

Dimension: px
Commencer à balayer dès la page:

Download "Formulaire de statistiques"

Transcription

1 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i =1 x i Somme des carrés des écarts : SCE= x i i =1 Excel FR =MOYENNE(série) Excel NL =GEMIDDELDE(série) Excel EN =AVERAGE(série) Variace carré moye des écarts d'u échatillo : S x ; = 1 x i = SCE Estimatio de la variace d'ue populatio : S 1 = 1 x 1 i = SCE i =1 1 Écart-type de l'échatillo : Excel FR =SOMME.CARRES.ECARTS(série) Excel NL =DEV.KWAD (série) Excel EN =DEVSQ(série) Excel FR =VAR.P(série) Excel NL, EN =VARP(série) Excel FR =VAR(série) Excel NL, EN =VAR(série) Excel FR =ECARTYPEP(série) S x ; =S x ; Excel NL, EN =STDEVP(série) Écart-type de la populatio : Excel FR =ECARTYPE(série) S x ; 1 =S x ; 1 Excel NL, EN =STDEV(série) Coefficiet de variatio : CV = S x M x Somme des produits des écarts : SPE= [ x i y i M y ] Covariace produit moye des écarts : S x, y = SPE Excel FR =SOMME((zoe des X-M X)*(zoe des Y M y)) Excel NL =SOM((zoe des X-M X)*(zoe des Y M y)) Excel EN =SUM((zoe des X-M X)*(zoe des Y M y)) Calcul matriciel : Mac: pomme+eter ; PC: ctrl+shift+eter Excel FR =COVARIANCE(série) Excel NL =COVARIANTIE(série) Excel EN =COVAR(série) Coefficiet de détermiatio : Note: formule Excel valable uiquemet pr u modèle liéaire Y i = B 0 + B 1 X i R = SCE régressio SCE totale Excel FR =COEFFICIENT.DETERMINATION(série) Excel NL =R.KWADRAAT(série) Excel EN =SRQ(série) Coefficiet de corrélatio : cas particulier du modèle liéaire : r= R r= S x, y = SPE S x S y S x S y Excel FR =COEFFICIENT.CORRELATION(série) Excel NL =CORRELATIE(série) Excel EN =CORREL(série) Droite des moidres carrés : Y i =B 0 B 1 X i B 1 = SPE SCE x Excel FR =PENTE(série) Excel NL =RICHTING(série) Excel EN =SLOPE(série) B 0 =M y B 1 M x Excel FR =ORDONNEE.ORIGINE(série) Excel NL =SNIJPUNT(série) Excel EN =INTERCEPT(série) Page 1/7

2 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 II. Probabilités : Loi des probabilités totales Loi des probabilités composées Recompositio de P(A) Évéemets icompatibles P A B=P AP B P A B P A B=P A P B/ A=P B P A/B P A=P A BP A B P A B=0 Évéemets idépedats P A/ B=P A P B / A=P B III. Les variables aléatoires discotiues : Variable aléatoire Biomiale X va Bi ( ; π) Espérace de X Variace de X Nombre de combiaisos Probabilité E X = var X = 1 C x! = x! x! Excel FR, EN Excel NL =FACT()/(FACT(x)*FACT(-x)) =FACULTEIT()/(FACULTEIT(x)*FACULTEIT(-x)) P X =x i =C x x 1 x Excel FR =LOI.BINOMIALE(x;;π;cumulatif) Excel NL =BINOMIALE.VERD(x;;π;cumulatif) Excel EN =BINOMDIST(x;;π;coditio) Pr P(X=xi) cumulatif= FR :FAUX; NL: VERVALSING; EN: FALSE. Pr P(X xi) cumulatif= FR :VRAI; NL:WARE; EN: TRUE. Variable aléatoire de Poisso X va Po (µ) Probabilité P X =x= e x x! Excel FR =LOI.POISSON(x;µ;cumulatif) Excel NL, EN =POISSON(x;µ;cumulatif) Pr P(X=xi) cumulatif= FR :FAUX; NL: VERVALSING; EN: FALSE. Pr P(X xi) cumulatif= FR :VRAI; NL:WARE; EN: TRUE. Espéraces E X = x = Page /7

3 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 IV. Les variables aléatoires cotiues : Variable aléatoire Normale Réductio d'ue variable lorsqu'elle représete u idividu pr X v.a. N (µ;σ ) e Z v.a. N (0;1) Réductio d'ue variable lorsqu'elle représete la valeur moyee d'u échatillo de idividus pr X va N(µ;σ /) e Z v.a. N (0;1) Z = X Z = X V. Iférece statistique : Test α-ß Estimatio de Z 1 Z A: comparaiso d'ue moyee à u stadard - test de coformité ce ice O pred doc S comme estimateur Z obs = M x obs H 0 t obs = M x obs H 0 S Obteir le Z théorique : Table de Studet, pr = Excel FR =LOI.NORMALE.STANDARD.INVERSE(probabilité) Excel NL =STAND.NORM.INV(probabilité) Excel EN =NORMSINV(probabilité) avec probabilité = P(Z Z théorique) Obteir le t théorique : Table de Studet, pr k = 1 degrés de libertés (dl) Excel FR =LOI.STUDENT.INVERSE(probabilité;k) Excel NL =T.INV(probabilité;k) Excel EN =TINV(probabilité;k) avec probabilité = P(t t théorique) et k = degrés de libertés = -1 B: comparaiso de variaces issues d'échatillos idépedats Pr deux variaces : F obs = S max S mi Calculer le Fobs : Excel FR, NL, EN =MAX(série des variaces)/min(série des variaces) Obteir le F théorique : Table de Fisher, pr k = ( 1) degrés de libertés (dl) de S max et r = (-1) dl de S mi Excel FR =INVERSE.LOI.F(alpha;k;r) Excel NL =F.INVERSE(alpha;k;r) Excel EN =FINV(alpha;k;r) avec alpha = 1 cofiace, e valeur décimale (ex: alpha = 0,05 si cofiace à 95%) Pr deux variaces plus, issues d échatillos de même taille : H obs = S max S mi Calculer le Hobs : Excel FR, NL, EN =MAX(série des variaces)/min(série des variaces) Obteir le H théorique : Table de Hartley, pr variaces comparées et dl = ( i-1) Pas de formule e Excel. Page 3/7

4 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 C : comparaiso de proportios = obs k f iobs f ithéo f ithéo Obteir le χ théorique : théorique = k 1 r 1 Table de χ, pr (k-1).(r-1) dl et ue probabilité 1-α Excel FR =KHIDEUX.INVERSE(alpha;dl) Excel NL =CHI.KWADRAAT.INV(alpha;dl) Excel EN =CHIINV(alpha;dl) Attetio das la formule Excel c'est alpha qu'il faut sigaler! VI. ANOVA I : Srce de variablité SCE dl CM F obs F table Totale Excel FR =SOMME.CARRES.ECARTS(ts les idividus) Excel NL =DEV.KWAD(ts les idividus) Excel EN =DEVSQ(ts les idividus) N - 1 Factorielle Excel FR = i* SOMME.CARRES.ECARTS(ttes les M) Excel NL = i*dev.kwad(ttes les M) Excel EN = i*devsq(ttes les M) Résiduelle Excel FR = ( i-1) * SOMME(ttes les S ) Excel NL = ( i-1) * SOM(ttes les S ) Excel FR = ( i-1) * SUM(ttes les S ) - 1 N = SCE F dl F = SCE R dl R avec i = ombre d'idividus par échatillo = ombre d'échatillos N = ombre total d'idividus Note: le F théorique peut aussi être trvé avec l'istructio Excel suivate: Excel FR =INVERSE.LOI.F(alpha;dl F;dl R) Excel NL =F.INVERSE(alpha;dl F;dl R) Excel EN =FINV(alpha;dl F;dl R) avec alpha = 1 cofiace, e valeur décimale (ex: alpha = 0,05 si cofiace à 95%) CM F F dlf ;dl R avec k = dl F r = dl R Complémets ANOVA I aléatoire : Variace etre échatillos Variace etre réplicatios a = E CM F E i =E Itervalle de cofiace formule simplifiée M x ±t a 1 / CM F N formule complète M x ±t a 1 / a i Nombre de réplicas optimum i= c a c a Nombre d échatillos optimum = 16 a i Page 4/7

5 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 VII. ANOVA I et Régressio liéaire : Srce de variabilité Totale Résiduelle Factorielle Liéaire voir ANOVA 1 SCE dl CM F observé F table = SPE SCE x 1 = SCE li dl li CM li F dlli ; dl R No liéaire =SCE F SCE li F li = SCE NL dl NL Avec SPE Excel FR =SOMME((zoe des X-MX)*(zoe des Y My)) Excel NL =SOM((zoe des X-M X)*(zoe des Y M y)) Excel EN =SUM((zoe des X-M X)*(zoe des Y M y)) Calcul matriciel : Mac: pomme+eter ; PC: ctrl+shift+eter SCE x Excel FR = i * SOMME.CARRES.ECARTS(série de x) Excel NL = i * DEV.KWAD(série de x) Excel EN = i * DEVSQ(série de x) CM NL F dlnl ;dl R VIII. ANOVA II croisée fixe : Où B et C sot les deux critères fixes Srce de variabilité Totale Résiduelle Factorielle B voir ANOVA 1 SCE dl CM F observé F table Excel FR = i.echb * SOMME.CARRES.ECARTS(moyees de B) Excel NL = i.echb * DEV.KWAD(moyees de B) Excel EN = i.echb * DEVSQ(moyees de B) catéb -1 SCE B dl B CM B F dlb ; dl R C Excel FR = i.echc * SOMME.CARRES.ECARTS(moyees de C) Excel NL = i.echc * DEV.KWAD(moyees de C) Excel EN = i.echc * DEVSQ(moyees de C) catéc -1 SCE C dl C CM C F dlc ;dl R Iteractio BC =SCE F SCE B -SCE C dl F -dl B -dl C SCE BC dl BC CM BC F dlbc ; dl R Page 5/7

6 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 IX. Cotrastes de Scheffé : Cotraste Différece Observée L= c i M xi Excel FR =ABS(SOMMEPROD(série des c ; série des moyees)) Excel NL =ABS(SOMPRODUKT(série des c ; série des moyees)) Excel EN =ABS(SUMPRODUCT(série des c ; série des moyees)) Plus petite différece sigificative: PPDS : PPDS=[ F 1; N 1 i c i ] où c i se calcule avec Excel FR =SOMME.CARRES(série des c) Excel NL =KWADRATENSOM(série des c) Excel EN =SUMSQ(série des c) PPDS = Excel FR =RACINE(INVERSE.LOI.F(alpha,dlF,dlR)*(a-1)*(CMR/i)*SOMME.CARRES(série des c)) Excel NL =WORTEL(F.INVERSE(alpha,dl F,dl R)*(a-1)*(CMR/i)*KWADRATENSOM(série des c)) Excel EN =SQRT(FINV(alpha,dl F,dl R)*(a-1)*(CMR/i)*SUMSQ(série des c)) avec dl F= a-1 et dl R =N-a Page 6/7

7 Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 X. ANOVA : cotrastes et modèles Écrire le modèle e otat ttes les srces de variabilité. Critères fixes e miuscules, critères aléatoires e majuscules et hiérarchisatio etre parethèses. X (ijk)l = µ+ a i + B (i)j + c k + ac ik + Bc (i)jk + E (ijk)l Règle 1 : Costructio d ue table avec autat de liges qu il y a de srces de variabilité. Adjoctio d ue coloe à gauche des srces de variabilité. delta : pr les critères fixes sigma : pr les critères aléatoires Adjoctio d autat de coloes à droite des srces de variabilité qu il y a d idices (de facteurs) das le modèle (i, j, k ). Si l'idice : - 'est pas repris das le membre e tête de lige : mettre la valeur de l'idice e questio - est repris das le membre e tête de lige, se rapporte à u critère fixe (miuscule) et 'est pas etre parethèses : mettre la valeur 0. - e répod pas aux coditios précédetes : mettre la valeur 1. Règle : Adjoctio d autat de coloes à droite des idices qu il y a de srces de variabilité das le modèle. Cosidérer uiquemet les srces de variabilité qui ot au mois ts les idices repris e tête de lige. Règle 3 : Podératio des srces de variabilité itroduites das la table à l étape précédete. Masquer les coloes correspodat aux idices qui e sot pas etre parethèses Podérer chaque terme par le produit des idices o masqués. Règle 4 : Détermiatio des degrés de liberté de chaque v.a. de Fisher Effectuer le produit de la valeur maximale de ts les idices représetés e tête de lige, après avoir retiré 1 à ceux qui e sot pas etre parethèses. Coclusios Page 7/7

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Mathématiques. Statistiques. Stéphane Perret. Version 3.001

Mathématiques. Statistiques. Stéphane Perret. Version 3.001 Mathématiques Statistiques Stéphae Perret Versio 3.001 Table des matières Itroductio 1 1 Variables aléatoires 3 1.1 Variables aléatoires discrètes......................... 3 1.1.1 Jets d ue pièce bie

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée gééral et techologique Ressources pour la classe termiale géérale et techologique Probabilités et statistique Ces documets peuvet être utilisés et modifiés libremet das

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Introduction to Econometrics

Introduction to Econometrics MPRA Muich Persoal RePEc Archive Itroductio to Ecoometrics Moussa Keita September 015 Olie at https://mpra.ub.ui-mueche.de/66840/ MPRA Paper No. 66840, posted. September 015 04:1 UTC INTRODUCTION A L ECONOMETRIE

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Probabilités et Statistique Jea-Michel JOLION Départemet Géie Idustriel 3ème Aée Versio électroique : http://rfv.isa-lyo.fr/ jolio/stat/poly.html May 26, 2006 INSA Lyo - Bât. J. Vere - 69621 Villeurbae

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Probabilités et Statistiques MATH-F-315. Simone GUTT

Probabilités et Statistiques MATH-F-315. Simone GUTT Probabilités et Statistiques MATH-F-315 Simoe GUTT 2012 Das la vie, ous sommes cotiuellemet cofrotés à des collectios de faits ou doées. Les statistiques formet ue brache scietifique qui fourit des méthodes

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

Exercice 1 Zé doux, thé 2 points. Exercice 2 T es où, Zed? 2 points

Exercice 1 Zé doux, thé 2 points. Exercice 2 T es où, Zed? 2 points INSA Méthodes Statistiques M8 Exame Fial 03-3 h Sauf idicatio cotraire, o cosidérera das les exercices u risque de première espèce de 5%. Exercice Zé doux, thé poits Au iveau atioal, le score moye sur

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

LSM 3.053 Informatique - Statistique : TP n 1 et 2

LSM 3.053 Informatique - Statistique : TP n 1 et 2 LSM.05 Iformatique - Statistique : TP et Ce TP couple les otios de statistiques descriptives abordées e cours avec l'utilisatio avatageuse du tableur Excel. Le tableur est utilisé pour effectué les calculs

Plus en détail

03/02/2014 STATISTIQUE DESCRIPTIVE. Chap2. STATISTIQUE DESCRIPTIVE. cas univarié cas bivarié VARIABLE CONTINUE. Cas univarié : Graphiques

03/02/2014 STATISTIQUE DESCRIPTIVE. Chap2. STATISTIQUE DESCRIPTIVE. cas univarié cas bivarié VARIABLE CONTINUE. Cas univarié : Graphiques 03/0/014 STATISTIQUE DESCRIPTIVE Sthèse de l iformatio coteue das les doées Chap STATISTIQUE DESCRIPTIVE cas uivarié cas bivarié Tableau Graphiques Résumés umériques qualité des doées recueillies repérer

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

Méthodes basiques en statistiques sous R

Méthodes basiques en statistiques sous R Méthodes basiques e statistiques sous R Master II Modélisatio Aléatoire - Paris VII Eseigat : Mme Picard Sébastie Le Berre 12 mai 2011 R est u logiciel de calcul largemet utilisé par la commuauté scietifique

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Probabilités & Statistiques L1: Cours. December 20, 2008

Probabilités & Statistiques L1: Cours. December 20, 2008 Probabilités & Statistiques L1: Cours December 20, 2008 Chapter 1 Déombremets I 1.1 Pricipes gééraux Règle du produit O fait deux expérieces, successives ou simultaées. Si la première doe 1 résultats possibles

Plus en détail

Utilisation en modélisation. Régression linéaire

Utilisation en modélisation. Régression linéaire Utilisatio e modélisatio Régressio liéaire La régressio est l ue des otios basiques de la statistique et de l aalyse des doées. Gééralemet, le problème cosiste à décrire la dépedace etre deux variables

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

Chapitre 2 : Statistique descriptive bivariée

Chapitre 2 : Statistique descriptive bivariée Biostatistiques Licece Chapitre 2 : Statistique descriptive bivariée Itroductio Deux variables X et Y mesurées sur u même échatillo : commet mesurer leur relatio? Taille de l échatillo : Doées : (x, y

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Variables aléatoires, Estimation ponctuelle, Principes généraux sur les tests

Variables aléatoires, Estimation ponctuelle, Principes généraux sur les tests Variables aléatoires, Estimatio poctuelle, Pricipes gééraux sur les tests Mémo 215-216 1 Rappels sur les variables aléatoires Défiitio 1.1 (Loi de Beroulli B(π)) C est ue ue variable aléatoire discrète

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail