Département de physique

Dimension: px
Commencer à balayer dès la page:

Download "Département de physique"

Transcription

1 Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : Cette étude est destinée à mettre en évidence le principe de la détection synchrone. Pour cela, on réalise analogiquement les différentes opérations nécessaires (multiplication, filtrage, adaptation d impédance). Le système obtenu n a pas la prétention d avoir les qualités d un dispositif de métrologie, mais il permet de se poser de nombreuses questions importantes pour la mise en œuvre de ce type de système dans les meilleures conditions possibles. I. Présentation de l expérience : La détection synchrone permet de mesurer la valeur efficace d une sinusoïde noyée dans du bruit. Pour que l opération fonctionne, il est nécessaire de disposer d un signal exactement à la même fréquence que la sinusoïde à mesurer. I.1. Principe de la détection synchrone. On récupère un signal s u (t) noyé dans un bruit b(t) qui sera considéré blanc sur la plage de fréquence étudiée. Le signal en entrée du dispositif est donc s(t), somme des deux signaux précédents. On dispose par ailleurs d un signal sinusoïdal de même fréquence que s u (t) et déphasé de φ par rapport à ce dernier. Ce signal sera transformé en un signal de même fréquence et de même déphasage, mais dont l amplitude est connue appelé s ref (t) On note (t) s u = S.. cos( ω.t), s(t) = s u (t)+b(t), (t) = R.. cos( ω.t + ϕ) Mathématiquement, on va multiplier s(t) et s ref (t). On obtient alors une composante à la pulsation ω et une composante continue. Le produit n a pas d effet sur le bruit dans la plage de fréquence étudiée (il y a bien un effet de filtrage lié au composant qui réalise le produit, mais il est sans incidence). Le signal obtenu sera noté s i (t). On aura alors, si K est le gain du dispositif qui réalise la multiplication s i (t) = K..S.R. cos( ω.t).cos( ω.t + ϕ) = K.S.R. [ cos(. ω.t + ϕ) + cos( ϕ) ] On va alors réaliser un filtrage passe-bas afin d éliminer la composante en ω. Par ailleurs, on aura intérêt à limiter au maximum la bande passante du filtre afin de ne conserver le bruit blanc que sur une bande très étroite, ce qui conduit à une valeur efficace de bruit faible en sortie du dispositif. L inconvénient de cette limitation de la bande passante sera un temps de réponse important pour le dispositif En pratique, plus on veut augmenter la qualité du résultat, plus il faut attendre longtemps Finalement, on récupère une composante continue dont la valeur U out vaut U out = K.S.R. cos( ϕ) Si on s arrange pour faire en sorte que φ=, alors U out est directement liée à S recherchée par deux grandeurs K et R qui sont caractéristiques du système de mesure. s ref Ces opérations sont résumées sur la figure suivante sur laquelle on cherche à mesurer la valeur efficace d une sinusoïde de fréquence 1 khz noyée dans un bruit blanc jusqu à 1 MHz. On a choisi de représenter les densités spectrales de puissance de V /Hz. 1

2 Remarque : en pratique, avant de réaliser le produit et le filtrage, on va réaliser un premier filtrage passe bande autour de la fréquence du signal à mesurer, afin d éliminer une partie du bruit blanc dont nous avons parlé, ainsi que pour limiter le bruit en 1/f qui est important à basse fréquence et que nous n avons pas évoqué quand nous avons défini le bruit d entrée. Ce filtre doit s adapter à la fréquence sur laquelle on réalise la mesure. I.. Dispositif expérimental réalisé. En pratique, le produit est réalisé par un multiplieur AD633 qui présente un gain K = 1/1, une bande passante voisine de 1 MHz ce qui est largement suffisant pour travailler avec des signaux utiles dont la fréquence ne dépasse pas quelques khz. Le filtre passe-bas est de type RC du premier ordre. Il faut obtenir des fréquences de coupure assez faibles pour réduire notablement le bruit (inférieure au Hz). Du coup, pour ne pas augmenter démesurément les valeurs de capacités (on se limitera à 1µF grand maximum), la seule solution consiste à augmenter la valeur de la résistance du circuit. Pour des valeurs qui se rapprochent de la valeur de l impédance d entrée de l oscilloscope placé en sortie, on aura une atténuation introduite par l oscilloscope. Pour éviter ce problème, on place un suiveur en sortie du filtre. La valeur de R sera choisie égale à 1MΩ II. Résultats expérimentaux : Mise en place du signal à traiter : On génère un signal sinusoïdal de 1 khz et de mv efficace ainsi que le bruit gaussien de V efficace au moyen de générateurs 33A. On fait la somme de ces deux signaux au moyen d un sommateur à amplificateur opérationnel (composant TL81). - Observation du bruit avant sommation :

3 Pour étudier le bruit avant sommation, on va faire un histogramme des valeurs de ce dernier. Comme pas de l histogramme, on veillera à prendre une valeur qui est un multiple du pas de quantification en amplitude du dispositif de numérisation utilisé. C est important pour que chaque pas comporte le même nombre de valeurs autorisées. Si cette condition n est pas respectée, on va fausser la représentation de la distribution à travers l histogramme. La numérisation a été faite sur 8 bits avec V/carreau. Le pas de quantification est donc de 6.5mV (16/ 8 ). On a choisi un pas de 15 mv, c'est-à-dire qu il existe deux valeurs possibles par pas. nombre d'échantillons 8x V valeur de l'échantillon (V) La notice du générateur indique que la distribution des échantillons du bruit est gaussienne ce que semble confirmer un ajustement de l histogramme réalisé. Une analyse statistique indique que l écart-type est de.16v ce qui est très proche de la valeur efficace (,15V) comme attendu pour un bruit gaussien. - Observation du bruit après sommation et calcul du rapport signal sur bruit : La numérisation a été faite sur 8 bits avec une échelle de 5mV/carreau. Le pas de quantification vaut 15.65mV. En prenant deux valeurs possibles par intervalle, on choisit un pas d histogramme de 31,5 mv. nombre d'échantillons 8x V -1 1 Valeur de l'échantillon (V) Une analyse statistique indique que l écart-type est de,54v ce qui est très proche de la valeur efficace (,54V). En entrée de la détection synchrone, le rapport signal sur bruit vaut donc. R,37 ou en db, R 9dB S B = S B db.54 Remarque sur les densités spectrales de puissance et les valeurs efficaces de bruit : L amplificateur opérationnel qui réalise la sommation présente une bande passante et se comporte comme un filtre passe-bas dont la bande équivalent de bruit est de quelques centaines de khz. Sur la figure suivante, on a représenté les densités spectrales de puissance de bruit en entrée et en sortie du sommateur après un lissage sur 1 points. 3

4 DSP (V²/Hz) DSP en entrée du sommateur DSP en sortie du sommateur khz MHz MHz 3 4 fréquence (Hz) On constate que le sommateur est légèrement résonant. L acquisition est réalisée avec une fréquence d échantillonnage de 8 MHz afin d analyser jusqu à 4 MHz. La base de temps est de 5 ms/carreau et se fait avec 4 Mpts. Pour faire le lissage, on a réalisé une moyenne glissante sur une plage de fréquence qui reste assez étroite pour que la DSP n évolue pas notablement. Le lissage est calculé en échelle linéaire puis on repasse en échelle log pour afficher l amplitude de la DSP. On note B eqsom la bande équivalente du sommateur, D b la densité spectrale de puissance du bruit d entrée dans la zone où elle est constante et B b la bande équivalente du bruit d entrée. Si on appelle V effbin la valeur efficace du bruit en entrée et V effbsom la valeur efficace du bruit en sortie du sommateur, on a : effbin V = D.B et V effbsom = Din.B eqsom in b Sachant que la bande équivalente du bruit étudié (sortie du générateur 33A) est voisine de 1 MHz et que la bande équivalente d un TL81 en sommateur est voisine de 5 khz (56kHz avec le TL81 utilisé ici), on s attend à avoir V effbsom V effbin = B eqsom B b,4 Expérimentalement à l oscilloscope, on mesure une valeur efficace de bruit d entrée de.15v et une valeur efficace de bruit de sortie de,54v. On est proche de l ordre de grandeur prévu. Mesure de l offset du système : En l absence de signal d entrée (entrée correspondante du multiplieur mise à la masse pas en l air!), on conserve le niveau de la tension de référence utilisé sur l autre entrée et on regarde le niveau de sortie du dispositif en réalisant un moyennage pour nettoyer le signal. Quel que soit la valeur de la capacité C et quel que soit l amplitude du signal de référence, on trouve une tension continue en sortie qui représente une erreur systématique dont il faudra tenir compte. Pour notre système, cette erreur systématique vaut -7µV. Elle fluctue légèrement mais reste dans une plage de ± µv autour de la valeur donnée pendant la durée de l expérience. Evidemment, avec un autre composant de la même famille, cette valeur est susceptible de changer. Mesure de la composante noyée dans le bruit : On applique maintenant le signal bruité sur l entrée de signal du multiplieur. On ajuste le déphasage du signal de référence s ref par rapport au signal utile s u à mesurer. On fait en sorte d amener le niveau de sortie sur la valeur de l offset de sortie précédemment mesurée. On fait ensuite un saut de phase de 9 afin de récupérer le maximum de signal en sortie. Le résultat attendu est la différence algébrique entre le niveau de sortie atteint dans ces conditions et le niveau de l offset dont on est parti. Remarque : il est préférable de procéder de la sorte plutôt que de chercher à détecter directement le maximum. La réponse étant en cosφ, il y aura davantage d incertitude sur le repérage du maximum que sur le repérage du passage par (qui correspond au niveau d offset). On commence par travailler avec une capacité de 1 nf associée à la résistance de 1 kω. Sans moyennage, le signal de sortie présente la forme suivante : 4

5 4mV 3 temps de réponse du filtre =,1s tension (V) ms En détectant le maximum comme il vient d être dit, après avoir appliqué un moyennage pour faire disparaître le bruit, on détecte une différence de 13,5mV+.7 de différence sur la tension de sortie. Le gain K étant égal à 1/1, la tension R étant égale à 1V max soit 7.7V efficace, on trouve une valeur efficace du signal noyé dans le bruit de.1 mv, ce qui est bien conforme au résultat attendu. Avec une capacité de 1nF le bruit résiduel est plus important. Ceci est essentiellement dû à un meilleur filtrage de la composante à khz avec 1nF. 4mV 3 temps de réponse du filtre =,1s tension (V) ms Avec une capacité de 1µF, on n observe pas de différence notable avec 1nF pour ce qui concerne la valeur efficace de bruit, mais on élimine malgré tout des fluctuations sur quelques dizaines de ms. Le résultat est donc de meilleure qualité, même si ça n est pas dans le proportions attendues. Il semble donc que le bruit résiduel observé en sortie n est pas uniquement le reste du bruit d entrée qui sort du filtre. Il s agirait donc plutôt de bruits récupérés après le filtre et sur lesquels on ne peut pas trop jouer, étant donné les conditions de l expérience (le système est réalisé avec plusieurs blocs assemblés et non sur un circuit imprimé compact). 5

6 4mV 3 temps de réponse du filtre =,1s tension (V) ms Réponse dynamique de la boucle : On envoie en entrée un signal modulé en amplitude avec une profondeur de modulation de 5%. La porteuse est fixée à 1 khz comme le signal utile étudié précédemment, mais ou a augmenté l amplitude à quelques volts afin d'avoir davantage de signal. La modulante est de fréquence 1Hz. Sur la figure suivante, on présente le signal modulé, ainsi que la réponse de la boucle à un tel signal, pour deux temps caractéristiques du filtre de la détection (,1s pour 1kΩ et 1nF et,1s pour 1kΩ et 1µF). 3.V Signal d'entrée (V) temps de réponse du filtre,1s,1s réponse du système (V) -1V s Plus la bande passante du filtre est étroite, plus on limite la valeur résiduelle de bruit par rapport au signal, donc plus on améliore la qualité de la réponse, mais plus il faut attendre longtemps pour récupérer le résultat attendu. version de décembre 1 6

G.P. DNS Décembre 2008

G.P. DNS Décembre 2008 DNS Sujet Électronique...1 A.Principe de la détection synchrone...1 1)Étude du filtre RC...1 2)Étude du multiplieur...2 3)Conclusion...2 B.Un filtre universel à amplificateurs opérationnels...2 A. Principe

Plus en détail

Département de physique

Département de physique Département de physique Caractérisation d un diapason par TF de sa réponse impulsionnelle. Problème du paramétrage de la FFT Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.)

Plus en détail

TP PSI MODULATION-DÉMODULATION

TP PSI MODULATION-DÉMODULATION I-Objectifs du T.P I-Objectifs du T.P On se propose de réaliser une modulation d amplitude puis sa démodulation pour récupérer le message initial. Dans chaque cas, on observera la représentation temporelle

Plus en détail

TP2 Modulation d'amplitude Cycle S2 / Module M2107

TP2 Modulation d'amplitude Cycle S2 / Module M2107 RESEAUX & TELECOMMUNICATIONS TP2 Modulation d'amplitude Cycle S2 / Module M2107 RT1A 2014-15 1 Matériel 1 "double" générateur AFG 3022 avec 2 charges 50 Ω 1 Platine de fonctions enfichables 2 Fonctions

Plus en détail

T.P. n 8: MULTIPLIEUR

T.P. n 8: MULTIPLIEUR T.P. n 8: MULTIPLIEUR 1) MODULATION D AMPLITUDE On veut transmettre sur de grandes distances des informations, par exemple sonores, de fréquences comprises entre 0 Hz et 0 khz. La transmission ne peut

Plus en détail

TP d électrocinétique n 3 Multiplication de Signaux Analyse spectrale

TP d électrocinétique n 3 Multiplication de Signaux Analyse spectrale TP d électrocinétique n 3 Multiplication de Signaux Analyse spectrale La multiplication de deux signaux est une opération non-linéaire fréquemment rencontrée en électronique d instrumentation ou de traitement

Plus en détail

Echantillonnage MP* 14/15

Echantillonnage MP* 14/15 Echantillonnage MP* 14/15 1. Principe de l oscilloscope numérique L oscilloscope numérique est principalement constitué d un amplificateur analogique (sur chaque voie), d un convertisseur analogique-numérique

Plus en détail

Filtrage - Intégration - Redressement - Lissage

Filtrage - Intégration - Redressement - Lissage PCSI - Stanislas - Electrocinétique - TP N 3 - Filtrage - Intégration - Redressement - Lissage Filtrage - Intégration - Redressement - Lissage Prenez en note tout élément pouvant figurer dans un compte-rendu

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Phase Locked Loop (boucle à verrouillage de phase) f ref Φ. f out

Phase Locked Loop (boucle à verrouillage de phase) f ref Φ. f out Phase Locked Loop (boucle à verrouillage de phase) f ref Φ f out N - Principe 2 - Principaux comparateurs de phase 3 - Différents types 3-: PLL du 2 nd ordre - type 3-2: PLL avec pompe de charge - 3 ème

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

Département de physique

Département de physique Département de physique Présentation de la macro Scope/Igor en USB Rédaction du document: Jean-Baptiste Desmoulins (P.R.A.G.) ; mail : desmouli@physique.ens-cachan.fr Programmation : Colin Lopez, (I.R.)

Plus en détail

TP 2. Circuits réactifs

TP 2. Circuits réactifs TP 2. ircuits réactifs Par Dimitri galayko Unité d enseignement Élec-info pour master ASI à l UPM Octobre-décembre 2005 Lors de ce TP nous étudierons en pratique les phénomènes transitoires dans les circuits

Plus en détail

Acquisition et analyse FFT

Acquisition et analyse FFT Département de physique Acquisition et analyse FFT Rédaction du cours et travail expérimental associé : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr L objectif de ce cours

Plus en détail

Séance de TP n 3 : L amplificateur opérationnel (AOp)

Séance de TP n 3 : L amplificateur opérationnel (AOp) LSM 2 - Mesures physiques - Instrumentation Séance de TP n 3 : L amplificateur opérationnel (AOp) Les circuits étudiés jusqu'ici sont des circuits passifs constitués de résistances, condensateurs inductances

Plus en détail

TP 1: Circuits passifs

TP 1: Circuits passifs Travaux Pratiques Avancés (TPA) d Electronique Année 2015-16 TP 1: ircuits passifs Sergio Gonzalez Sevilla *, Antonio Miucci Département de Physique Nucléaire et orpusculaire (DPN), Université de Genève

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

Fiche technique expérimentale 5. Notions sur l acquisition numérique

Fiche technique expérimentale 5. Notions sur l acquisition numérique Fiche technique expérimentale 5 Notions sur l acquisition numérique D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Ce bref guide traite de quelques éléments important sur l acquisition numérique des signaux

Plus en détail

TP Modulation Démodulation BPSK

TP Modulation Démodulation BPSK I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Transmission de données. A) Principaux éléments intervenant dans la transmission

Transmission de données. A) Principaux éléments intervenant dans la transmission Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement

Plus en détail

II. Attaque harmonique : diagrammes de Bode, Nyquist et Black- Nichols.

II. Attaque harmonique : diagrammes de Bode, Nyquist et Black- Nichols. SYSAM SP5 et OSCILLO5 Fiches de montages Etude d un filtre actif passe-bande I. Généralités Ce document a pour but de montrer comment utiliser Oscillo5 pour étudier un filtre en régime harmonique (attaque

Plus en détail

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier)

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier) Lycée Clemenceau PCSI 1 (O.Granier) Présentation de l AOP Liens vers : TP-Cours AOP n 1 TP-Cours AOP n 2 TP-Cours AOP n 3 I Présentation et propriétés de l AOP : 1 Description de l AOP : Aspects historiques

Plus en détail

Amplificateur de sonorisation

Amplificateur de sonorisation Amplificateur de sonorisation On se propose de vérifier quelques spécifications d un amplificateur basse-fréquence de sonorisation dont les caractéristiques techniques sont données en Annexe. Remarques

Plus en détail

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure. Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre

Plus en détail

LP25. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications.

LP25. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications. LP5. Traitement analogique d un signal électrique. Étude spectrale. Exemples et applications. Antoine Bérut, David Lopes Cardozo Bibliographie Physique tout en 1 première année, M.-N. Sanz, DUNOD Électronique

Plus en détail

F5CNQ DU RECEPTEUR SUPERHETERODYNE A L ANALYSEUR DE SPECTRE A BALAYAGE SOLISTOR (1956) HP 8566 (1980) Jacques Collange Jean-pierre Lievre

F5CNQ DU RECEPTEUR SUPERHETERODYNE A L ANALYSEUR DE SPECTRE A BALAYAGE SOLISTOR (1956) HP 8566 (1980) Jacques Collange Jean-pierre Lievre DU RECEPTEUR SUPERHETERODYNE A L ANALYSEUR DE SPECTRE A BALAYAGE SOLISTOR (1956) HP 8566 (1980) ONDEXPO 2015 Espace Ecully Jacques Collange Jean-pierre Lievre UNE TRANSITION TECHNIQUE Amplification directe

Plus en détail

Département de physique

Département de physique Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Conception et réalisation des circuits électroniques : Travail expérimental et rédaction du document

Plus en détail

La Modulation d Amplitude (AM)

La Modulation d Amplitude (AM) La Modulation d Amplitude (AM) Le Signal AM (1) La porteuse sinusoïdale e 0 (t) = Ê.cos(2π t) est modulée en amplitude par une information BF s(t). Le signal AM qui en résulte peut s écrire u AM (t) =

Plus en détail

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT.

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT. TP n 8 : obtention des spectres de signaux usuels. But du TP : ce huitième TP de BTS SE a pour but l'étude de la manière d'obtenir le spectre d'un signal sinusoïdal et carré avec un rapport cyclique variable.

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 4 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Redressement d une tension I. Objectifs Redressement d une tension alternative par le moyen de diodes. Transformation

Plus en détail

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex 1 T P-i. oc i LAIVUTS 1 J-13 October SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG U. E. R de l'université Paris-Sud Institut National de

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

I.2 Comment passer d un signal analogique en un signal numérique sans perdre de l information?

I.2 Comment passer d un signal analogique en un signal numérique sans perdre de l information? I- Chaîne d information I.1 Généralités Dans un ballon-sonde, on trouve des capteurs (température, luminosité, pression ) plus ou moins sophistiqués. Nous allons voir que pour un problème technique identique

Plus en détail

Département de physique

Département de physique Département de physique Etude de l impédance d un diapason à quartz résonant à 5 Hz ; application. Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

Plus en détail

TP 1 : sources électriques

TP 1 : sources électriques Objectif : étudier différents dipôles actifs linéaires ou non linéaires. Les mots générateur et source seront considérés comme des synonymes 1 Source dipolaire linéaire 1.1 Méthode de mesure de la demie-tension

Plus en détail

Sonde détectrice HF.

Sonde détectrice HF. Sonde détectrice HF. Une sonde détectrice HF permet de convertir un multimètre classique en voltmètre HF. On l utilise essentiellement pour effectuer des mesures relatives de signaux haute fréquence mais

Plus en détail

Propriétés fréquentielles du signal

Propriétés fréquentielles du signal Fiche de référence Thème II : ANALYSE DU SIGNAL Propriétés fréquentielles du signal 1- Insuffisance de la représentation temporelle du signal Reprenons l exemple utilisé précédemment : Enregistrement du

Plus en détail

1. PRESENTATION DU PROJET

1. PRESENTATION DU PROJET Bac STI2D Formation des enseignants Jean-François LIEBAUT Denis PENARD SIN 63 : Prototypage d un traitement de l information analogique et numérique (PSoC) 1. PRESENTATION DU PROJET Les systèmes d éclairage

Plus en détail

Fiches Générateur Basses Fréquences

Fiches Générateur Basses Fréquences Fiches Générateur Basses Fréquences Note : Cet ensemble de fiches a été réalisé autour du Générateur de fonctions Centrad GF467AF. Il dispose d un grand nombre de fonctionnalités que l on peut retrouver

Plus en détail

1 Description de la maquette C 591 SUJET C 590 SIMULATION ÉLECTRONIQUE D UNE MESURE DE PUISSANCE. 1.1 Schéma général. Concours Centrale-Supélec

1 Description de la maquette C 591 SUJET C 590 SIMULATION ÉLECTRONIQUE D UNE MESURE DE PUISSANCE. 1.1 Schéma général. Concours Centrale-Supélec Exemple de sujet de travaux pratiques de physique proposé au concours Centrale- Supélec. La colonne de gauche donne le texte tel qu il est soumis au candidat. En regard, à droite, figurent les savoir-faire

Plus en détail

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

V e TP OSCILLATEUR A PONT DE WIEN. I Etude de la chaîne directe en régime sinusoïdal : 11 Pont de Wien : étude rapide d un filtre passe bande :

V e TP OSCILLATEUR A PONT DE WIEN. I Etude de la chaîne directe en régime sinusoïdal : 11 Pont de Wien : étude rapide d un filtre passe bande : TP OSILLATE A PONT DE WIEN I Etude de la chaîne directe en régime sinusoïdal : 11 Pont de Wien : étude rapide d un filtre passe bande : = 10 kω; = 22 nf éaliser le montage a] Mesure de la fréquence centrale

Plus en détail

Numérisation du Signal Conversion Analogique / Numérique (CAN)

Numérisation du Signal Conversion Analogique / Numérique (CAN) Audio-vidéo Numérisation du Signal Conversion Analogique / Numérique (CAN) Objectif Cette présentation reprend les notions de base : Signal analogique Caractéristiques des signaux analogiques Échantillonnage

Plus en détail

Audio Numérique Notes de cours année 2006/2007. 1 Complément sur la TFD, illustration sous Pure Data

Audio Numérique Notes de cours année 2006/2007. 1 Complément sur la TFD, illustration sous Pure Data Audio Numérique Notes de cours année 2006/2007 Marc Ferràs - Thomas Pellegrini LIMSI-CNRS Pour cette séance, vous devez rédiger un compte-rendu de TP à rendre à la fin de la séance. 1 Complément sur la

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

Module : filtrage analogique

Module : filtrage analogique BSEL - Physique appliquée Module : filtrage analogique Diaporama : aucun ésumé de cours - Les différents types de filtres - Transmittance en z d un filtre numérique 3- Algorithme de calcul de y n 4- Stabilité

Plus en détail

Expériences avec un oscilloscope numérique

Expériences avec un oscilloscope numérique Expériences avec un oscilloscope numérique Pratiques Expériences Certaines figures et textes sont tirés de l excellent DICTIONNAIRE de PHYSIQUE EXPERIMENTALE, tome4, L électricité, Jean-Marie Donnini,

Plus en détail

TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE

TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE PRE-REQUIS SAVOIR : AOP en régime linéaire et non linéaire OBJECTIFS SAVOIR : Valider par le calcul et la mesure, les performances des fonctions

Plus en détail

Activité expérimentale : Filtrage

Activité expérimentale : Filtrage Activité expérimentale : Filtrage Objectifs : - Étudier le filtrage linéaire d un signal non sinusoïdal à partir d une analyse spectrale. - Gérer, dans un circuit électronique, les contraintes liées à

Plus en détail

OSCILLOSCOPES Numériques

OSCILLOSCOPES Numériques OSCILLOSCOPES Numériques La partie pratique de ce TP, effectuée en salle de TP, sera divisée en trois parties. Les deux premières parties sont consacrées respectivement au couplage et à la synchronisation

Plus en détail

Notes de cours Philippe RAYMOND Novembre 2006

Notes de cours Philippe RAYMOND Novembre 2006 Notes de cours Philippe RAYMOND Novembre 2006 1 Traitement du signal la numérisation Numériser un signal analogique (donc continu), c est le discrétiser sur deux dimensions : le temps et l'amplitude. 2

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

RADIOASTRONOMIE RECEPTEUR. J-J. MAINTOUX F1EHN Dernière mise à jour : Novembre 2008

RADIOASTRONOMIE RECEPTEUR. J-J. MAINTOUX F1EHN Dernière mise à jour : Novembre 2008 RADIOASTRONOMIE RECEPTEUR J-J. MAINTOUX F1EHN Dernière mise à jour : Novembre 2008 RECEPTEUR - Sommaire Rôle d un récepteur Principales caractéristiques Architecture Principales fonctions Application à

Plus en détail

Guide d utilisation du Logiciel Electronics Workbench (EWB)

Guide d utilisation du Logiciel Electronics Workbench (EWB) Guide d utilisation du Logiciel Electronics Workbench (EWB) 1. Introduction Electronics WorkBench (EWB) est un logiciel de simulation des circuits électroniques qui permet de tester et d'analyser des circuits

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

Etude d un haut-parleur

Etude d un haut-parleur Etude d un haut-parleur Le haut-parleur électrodynamique, dont l invention remonte à plus de cent ans, n a pas évolué dans son principe. Il a été amélioré d année en année par l utilisation de nouvelles

Plus en détail

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR?

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? NOM: Coéquipier : COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? Soit une fonction G(t) périodique, de fréquence f. D'après Fourier, cette fonction peut se décomposer en

Plus en détail

TP filtres électriques

TP filtres électriques P filtres électriques Objectif : Étudier les caractéristiques de gain et de phase de quelques filtres classiques 1 Introduction oute cette partie est informative : la non compréhension de certains paragraphes

Plus en détail

SIMULATION EN ELECTRONIQUE

SIMULATION EN ELECTRONIQUE 1 sur 8 SIMULATION EN ELECTRONIQUE PLAN: OBJECTIF - PUBLIC - MATERIEL - LOGICIEL - METHODE - AVANTAGES - DIFFICULTES - AUTEUR DU DOCUMENT INTRODUCTION MANIPULATION 1 : Prise en main A) Montage inverseur

Plus en détail

Les Convertisseurs Analogique Numérique. Figure 1 : Symbole de la fonction Conversion Analogique / Numérique

Les Convertisseurs Analogique Numérique. Figure 1 : Symbole de la fonction Conversion Analogique / Numérique Site Internet : www.gecif.net Discipline : Génie Electrique Les Convertisseurs Analogique Numérique I Identification de la fonction C.A.N. On appelle Convertisseur Analogique Numérique (C.A.N.) tout dispositif

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Transmission FM sur fibre optique

Transmission FM sur fibre optique Transmission FM sur fibre optique L utilisation d une fibre optique permet de transporter un signal sur de grandes distances avec une très bonne immunité aux parasites. Le signal optique qui y transite

Plus en détail

= K 1+ jω ω 1 1+ jω ω 2 ω 2 = R 1 + R 2 = 6880 rad /s. avec : K =

= K 1+ jω ω 1 1+ jω ω 2 ω 2 = R 1 + R 2 = 6880 rad /s. avec : K = Exercice : réponse harmonique de circuits passifs d'ordre Déterminer la fonction de transfert H(j) U 2 /U et tracer les asymptotes des diagrammes de Bode des circuits ci-dessous.! 60 nf 0 kω 50 nf U U

Plus en détail

Multiplication des signaux

Multiplication des signaux TP Cours Multiplication des signaux I) Généralités A) Présentation du multiplieur analogique Les multiplieurs de signaux analogiques sont couramment employés en électronique. Un tel circuit comporte :

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

DS de Spécialité n o 6 Téléphone portable et ondes radio

DS de Spécialité n o 6 Téléphone portable et ondes radio DS de Spécialité n o 6 Téléphone portable et ondes radio. Les ondes électromagnétiques pour communiquer Le téléphone portable fonctionne comme une radio. Lors d une communication, la voix est convertie

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

Télécommunications - Traitement du signal

Télécommunications - Traitement du signal Préparation à l agrégation de Sciences-Physiques ENS Physique Télécommunications - Traitement du signal Max Méthodes et techniques de traitement du signal Duffait Expériences d électronique (chap.3 et

Plus en détail

TP N 1 MODULATION D AMPLITUDE DEMODULATION D AMPLITUDE

TP N 1 MODULATION D AMPLITUDE DEMODULATION D AMPLITUDE Polytech'Nice, Dép. Elec 4ème année T.P. d'electronique TP N 1 MODULATION D AMPLITUDE DEMODULATION D AMPLITUDE GENERALITES SUR LA MODULATION Les ondes électromagnétiques de fréquence élevée ont la propriété

Plus en détail

Filtre sélectif à 2f 0

Filtre sélectif à 2f 0 TD 5 Modulations et démodulations I - Modulation d'amplitude 1) Un signal est modulé en amplitude selon le schéma suivant. Le signal V e (t) est additionné à un signal continu d'amplitude 5 V. Après multiplication

Plus en détail

TD3 Caractéristiques dynamiques d un capteur

TD3 Caractéristiques dynamiques d un capteur TD3 Caractéristiques dynamiques d un capteur 3.1- Caractérisations temporelles 3.1.1- Introduction : réponse d une sonde de température Pt100 Un four est a une température θ F =100 C supérieure à la température

Plus en détail

Cours d Electronique analogique. Fabrice Sincère (version 2.0.1)

Cours d Electronique analogique. Fabrice Sincère (version 2.0.1) Cours d Electronique analogique Fabrice Sincère (version 2.0.) http://perso.orange.fr/fabrice.sincere Chapitre 3 Filtrage analogique Introduction Un filtre est un circuit dont le comportement dépend de

Plus en détail

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) 1/5 Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) Objectifs : Reconnaître des signaux de nature analogique et des signaux de nature numérique Mettre en

Plus en détail

Laboratoire 4: L analyse spectrale et le filtrage par transformée de Fourier

Laboratoire 4: L analyse spectrale et le filtrage par transformée de Fourier Université du Québec à Montréal Département d Informatique MIC4220 Traitement numérique des signaux Laboratoire 4: L analyse spectrale et le filtrage par transformée de Fourier But Familiarisation avec

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Plan. 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre

Plan. 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre LES MULTIMETRES ( VOLTMETRE, AMPEREMETRE,OHMMETRE,..) Plan 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre LES MULTIMETRES ( VOLTMETRE, AMPEREMETRE,OHMMETRE,..)

Plus en détail

CHAPITRE III. Amplificateur d instrumentation

CHAPITRE III. Amplificateur d instrumentation CHAPITRE III Amplificateur d instrumentation Olivier FRANÇAIS, 000 SOMMAIRE I NOTION DE TENSION DE MODE COMMUN ET D AMPLIFICATEUR DIFFÉRENTIEL... 3 I. DÉFINITION DE LA TENSION DE MODE COMMUN... 3 I.. Tension

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

MODULATION D AMPLITUDE

MODULATION D AMPLITUDE Misuriello Maxime 17/03/08 Arondel Olivier MODULATION D AMPLITUDE 1 Modulation... 1 1.1 Porteuse... 1 1.2 Modulation AM... 1 1.3 Modulation DSB... 3 2 Démodulations... 5 2.1 Détection d enveloppe (AM)...

Plus en détail

Module : modulation d amplitude

Module : modulation d amplitude BS2EL - Physique appliquée Module : modulation d amplitude Diaporama : la modulation d amplitude Résumé de cours 1- La modulation d amplitude 2- Spectre d un signal AM 3- Production d un signal AM avec

Plus en détail

Modulation et démodulation d amplitude.

Modulation et démodulation d amplitude. Modulation et démodulation d amplitude. P. Ribiere Collège Stannislas Année Scolaire 2014/2015 P. Ribiere (Collège Stannislas) Modulation et démodulation d amplitude. Année Scolaire 2014/2015 1 / 42 1

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

Module : modulation d amplitude

Module : modulation d amplitude BS2SE - Physique appliquée Module : modulation d amplitude Diaporama : la modulation d amplitude Itinéraire pédagogique Résumé de cours 1- La modulation d amplitude 2- Spectre d un signal AM 3- Production

Plus en détail

f m 280 Hz 0,30x1,0.10

f m 280 Hz 0,30x1,0.10 CORRECTION DU TP PHYSIQUE N 12 SPECIALITE TS 1/5 LA RECEPTION RADIO Correction du TP de physique N 12 La réception radio Activité préparatoire Les stations radios : nécessité d un dispositif récepteur

Plus en détail

Mines MP Epreuve Physique I Année 2000

Mines MP Epreuve Physique I Année 2000 1 Mines MP Epreuve Physique I Année 2000 1- Bande phonique(50 HZ-20 khz) et bande radio (100 khz à 100 MHz) disjointes : les basses fréquences électromagnétiques ne se propagent pratiquement pas MA : simplicité

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

1ère partie : AOP en régime de fonctionnement linéaire. On utilise un AOP à grande impédance d'entrée TL082 alimenté sous ± 12V.

1ère partie : AOP en régime de fonctionnement linéaire. On utilise un AOP à grande impédance d'entrée TL082 alimenté sous ± 12V. G. Pinson - Physique Appliquée Fonction amplification A1-TP / 1 A1 - Fonction amplification 1ère partie : AOP en régime de fonctionnement linéaire On utilise un AOP à grande impédance d'entrée TL08 alimenté

Plus en détail

Traitement du signal et Applications

Traitement du signal et Applications Traitement du signal et Applications Master Technologies et Handicaps 1 ère année Philippe Foucher 1 Plan Signal? Exemples Signaux analogiques/signaux numériques Propriétés Séance de TP 2 Plan Signal?

Plus en détail

TP 0: Initiation à l utilisation d un oscilloscope numérique

TP 0: Initiation à l utilisation d un oscilloscope numérique FOUGERAY P. ANNE J.F. TP 0: Initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique bi courbe,

Plus en détail

4.2 Instruments. 4.3 Théorie du transistor. Transistor à jonction 1 LE TRANSISTOR À JONCTION

4.2 Instruments. 4.3 Théorie du transistor. Transistor à jonction 1 LE TRANSISTOR À JONCTION Transistor à jonction 1 LE TRANSISTOR À JONCTION 4.1 But de l expérience 1. Tracer la courbe caractéristique d un transistor 2. Afficher la caractéristique à l écran d un oscilloscope 3. Utiliser le transistor

Plus en détail

Pinces ampèremétriques pour courant AC/DC

Pinces ampèremétriques pour courant AC/DC Pinces ampèremétriques pour courant AC/DC La série EN est destinée à mesurer des courants alternatifs et continus en utilisant la technologie à effet Hall. Les courants mesurés vont de quelques milliampères

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES «Génie Électronique» Session 2012 Épreuve : PHYSIQUE APPLIQUÉE Durée de l'épreuve : 4 heures Coefficient : 5 Dès que le sujet vous est

Plus en détail

1.1 Fonction de transfert (7 points)

1.1 Fonction de transfert (7 points) CNAM Saclay Electronique B1 - Traitement Analogique du Signal Examen du samedi 17 septembre 2005 : durée 2 heures + Correction Sans document sauf l'aide mémoire mathématique jaune de 8 pages, calculatrice

Plus en détail

Traitement du Signal

Traitement du Signal Traitement du Signal James L. Crowley Deuxième Année ENSIMAG première Bimestre 2001/2002 Séance 4 : 12 octobre 2001 Bruits d'echantillonage et de Quantification Formule du Jour :... 1 La Transformée de

Plus en détail

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)».

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)». BTS 2003 Le problème porte sur l impression de tickets de caisse du système de distribution de cartes d entrée de piscine. Dans la première partie, on étudiera l impression thermique de tickets de caisse,

Plus en détail

Comprendre le bruit et son effet sur les mesures d oscilloscope 2 ème partie : Mesurer en présence de bruit

Comprendre le bruit et son effet sur les mesures d oscilloscope 2 ème partie : Mesurer en présence de bruit Comprendre le bruit et son effet sur les mesures d oscilloscope 2 ème partie : Mesurer en présence de bruit Par : Johnnie Hancock, Agilent Technologies Introduction Aucun oscilloscope n échappe à cette

Plus en détail