Détection Multi-Utilisateurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Détection Multi-Utilisateurs"

Transcription

1 Détection Multi-Utilisateurs 3 ème année Télécom-Réseaux année Martial COULON INP-ENSEEIHT

2 Position du Problème Obectif : concevoir et analyser la démodulation numérique en présence d interférences dues au multi-accès (CDM, FDM, TDM, CDM orthogonal : signatures des utilisateurs orthogonales Intérêt : détecteur optimal = corrélateur, simple à mettre en œuvre Pb : nb d utilisateurs K limité à K=BT (modulations antipodales où B = bande disponible, T = durée du signal CDM non-orthogonal : signatures des utilisateurs non-orthogonales Intérêts : utilisateurs asynchrones (en utilisant la quasi-orthogonalité nb d utilisateurs K non limité BT partage dynamique des ressources (Nb potentiel d utilisateurs >> Nb simultanés d utilisateurs Pb : détecteur optimal plus complexe détecteurs sous-optimaux

3 Modèle de Canal CDM Synchrone Modèle «one-shot» : y( t K = = b s ( t n( t, t [0, T ] K T s (t nombre d utilisateurs période symbole signature (ou code, ou forme d onde du ème utilisateur, normalisée : s = T s 0 ( t dt = s (t nulle en dehors de [0,T] pas d interférence inter-symbole : amplitude du ème utilisateur = énergie du ème utilisateur b bit émis par le ème = ± utilisateur n(t : bruit blanc gaussien de moyenne nulle et variance σ. Intercorrélations entre signatures : ρi = si, s = si ( t s ( t dt, ρi T 0 Ex : K= utilisateurs : y( t = b s( t b s( t n( t, ρ = s( t s( t dt T 0

4 Modèle Synchrone Discret 3 types de discrétisation : classique : y =y(t e par proections sur une famille orthonormée définie sur [0,T] par corrélation y(t T s 0 y. y n = ~ y, s = N (0, σ T 0 y( t s ( t dt = b b ρ n Sous forme matricielle : T T y = Rb n y = [ y y ], b = [ b,..., b ], diag(,..., R =,..., K K = ( ρ, n ~ N(0, σ R i i, y contient toute l information contenue dans y(t nécessaire à la détection K

5 Modèle de Canal CDM synchrone Util. Util. Util. 3 τ τ τ 3 T T T Utilisateur bits [ b ( M,..., b (0,... b ( M ] y( t K M = = i= M b ( i s ( t it τ n( t, t [0, T ] (rq : τ... = τ = K modèle synchrone Intercorrélations entre signatures pour i< : Pour τ... τ, ρ ( τ = i ρ ( τ = i ρ τ T s ( t s τ T i s ( t s K i i i i = ρ ( τ τ ( t τ dt ( t T τ dt

6 Modèle synchrone Discret 3 types de discrétisation : classique : y =y(t e par proections sur une famille orthonormée définie sur [0,T] par corrélation y(t ( i T τ (i it τ Sous forme matricielle : y y y ( i = ( i = ( i T τ it τ b > ( i b y( t s < ( i ρ ( t it b τ dt ( i ρ > b < ( i ρ b n ( i ρ ( i y( i = R 0 et R R T b( i R0 b( i R b( i matrices dépendant des y = Rb n ρ n( i

7 Détection par Filtre dapté ( Détecteur Optimal (minimise le BER dans cas : Pour K= : y( t = bs( t n( t, t [0, T ] y = b n b ˆ = sgn, ( y s BER ( σ = Q σ Pour Canal Synchrone Orthogonal : Pas d interférences : ρ = 0, i i y = b n b ˆ = sgn = ( y, s sgn( y BER ( σ = Q σ Détecteur simple idée de généraliser à K quelconque

8 Détection par Filtre dapté ( Canal Synchrone Non-Orthogonal Pour K= : y = b b ρ n : (existence d interférences T 0 y ˆb y(t s ( t T 0 y ˆb s ( t BER ( σ = Q σ ρ Q σ ρ cas : / < / ρ BER ( σ σ 0 0 / > / ρ BER ( σ / σ 0 : effet Near-Far (éblouissement

9 Détection par Filtre dapté (3 Canal Synchrone Non-Orthogonal Pour K quelconque : Décision : b ˆ = sgn = y = b ( y, s sgn( y b ρ n BER BER ( σ Q / σ ρ les interférences agissent comme un bruit supplémentaire Condition «d œil ouvert»: ( σ σ 0 Bilan : détection simple à mettre en œuvre détection non-optimale 0 ssi > ρ

10 Détection par Filtre dapté (4 Canal synchrone b ˆ = sgn = ( y, s sgn( y Condition «d œil ouvert»: BER ( σ σ 0 0 ssi > ( ρ ρ Rq: quelles que soient les signatures, il existe un ensemble d offsets et d énergies tels que l œil soit fermé. Les interférences dominent sur le bruit il existe des erreurs même sans bruit le filtre adapté élimine le bruit mais pas les interférences

11

12

13

14

15 Détection par Filtre dapté (4 Canal de Rayleigh Coefficients de Fading aléatoires : y( t K M = = i= M b ( i s ( t = R où R ~ it n( t, t [0, T ] Rayleigh Détection cohérente : coefficients de Fading connus Pour K= : ˆ ( ( * b = sgn Re y BER F ( σ = σ Pour K quelconque : ( ( * b F ˆ = sgn Re y BER ( σ = σ ρ les interférences agissent comme un bruit supplémentaire

16 Détection Optimale ( Canal Synchrone ( ( ( ( t n t s b t b s t y = Pour K= : types de détection optimale : [ ] T t t y b 0, ( maximise P b ˆ ( ( [ ] T t t y b b b 0, (, b maximise P ˆ, ˆ = cosh cosh log ˆ σ ρ σ ρ σ y y y sgn b = ρ ρ ˆ y y y sgn b détection individuelle : détection conointe : σ ρ σ σ σ ρ σ (, max Q Q BER Q Q

17 Pour K quelconque : détection individuelle : Détection Optimale ( Canal Synchrone bˆ y( t K = = b minimise L (b = s b,b = b ( t n( t, exp t [0, T ] ( Ω( b/ σ détection conointe : b ˆ maximise Ω( b avec Ω( b = b T y b T Rb vantage : détection optimale Inconvénients : détection (très complexe (pour canal asynchrone, optimisation par algorithme de programmation dynamique - cf algorithme de Viterbi besoin de beaucoup d information a priori

18

19

20 Détection par Décorrélation ( Canal Synchrone Décision : ( R y ˆ = sgn b ˆb y(t Corrélateur s Corrélateur s R bˆ Corrélateur s K bˆ K bˆ solution de : T K min min { } y( t b s ( t ; K > 0 0 b =,..., K = dt vantages : pas de connaissance a priori des amplitudes possibilité de décentraliser la détection, çàd : chaque peut être calculé indépendamment des autres bˆ

21 Détection par Décorrélation ( Canal Synchrone Corrélateur ~ s ˆb y (t Corrélateur ~ s ˆb Corrélateur s~k ( ~ s combinaison linéaire des s en fonction des ρ bˆk BER ( σ = Q σ ( R, indépendant des ( Suivant les valeurs des, la décorrélation peut donner de meilleures ou de moins bonnes performances que le filtre adapté (car le décorrélateur élimine les interférences mais pas le bruit.

22 y(t ( ˆ i b Corrélateur s ( z S ( ˆ i b Corrélateur s ( ˆ i b K Corrélateur s K ( 0 ( : avec = z R R z R z S T ( Q BER = des indépendant ( η σ σ (, 0 : avec = π π ω ω ω π η d R e R e R Détection par Décorrélation (3 Canal synchrone

23

24

25

26 Détection MMSE linéaire ( Principe : trouver une forme d onde c pour l utilisateur qui minimise E {( } b c, y où c combinaison linéaire des (s on cherche la matrice M solution de min M R K K E { } b M y ( ( [ ] R y ˆ = sgn σ b

27 Détection MMSE linéaire ( Corrélateur s ˆb y(t Corrélateur s [ ] R σ ˆb Corrélateur s K bˆk vantages : maximise le rapport signal-sur-interférences matrice R éventuellement singulière bruit additif éventuellement non-gaussien «bits» b éventuellement non-binaires MMSE : compromis entre le filtre adapté et le décorrélateur σ 0 σ : : MMSE ~ décorrélateur MMSE ~ filtre adapté

28 BER filtre adapté décorrélateur MMSE SNR

29 BER filtre adapté décorrélateur MMSE SNR

30 BER filtre adapté décorrélateur MMSE SNR

31

32 Détecteurs «Decision-Driven» I. Détection par nnulations Successives ( Principe : éliminer dans le signal reçu l interférence d un utilisateur dont le bit a déà été détecté ˆ Exemple pour K= : b = sgn( y, s = sgn( bˆ y = sgn ( y bˆ s, s = sgn( y bˆ ρ T 0 y ˆb y(t s ( t s ( t T 0 y ˆb

33 Détecteurs «Decision-Driven» I. Détection par nnulations Successives ( Pour K quelconque : Détection des bits pour les utilisateurs à K bˆ K = sgn y = bˆ ρ vantages : détection simple coût calculatoire par bit linéaire par rapport à K applicable à toute technique d accès multiple Inconvénients : nécessite la connaissance des amplitudes : erreur sur leur estimation erreur sur la décision retard de démodulation linéaire par rapport à K performances asymétriques

34 Performances des nnulations Successives Canal synchrone (

35 Performances des nnulations Successives Canal synchrone (

36 Détecteurs «Decision-Driven» II. Détection «Multi-Stage» ( Obectif : faire une détection en plusieurs étapes afin d obtenir une version symétrisée du détecteur par annulations successives Première étape par Filtre dapté Exemple pour K= : bˆ bˆ = sgn = sgn ( y b ρ ( ~ y b ρ ~ avec ~ b = sgn( y y(t s ( t s ( t T 0 T 0 T 0 y ρ y ˆb ˆb

37 Détecteurs «Decision-Driven» II. Détection «Multi-Stage» ( Première étape par Décorrélateur y(t bˆ K = sgn y = s ( t s ( t T 0 T 0 T 0 y ρ y ~ b ρ ~ b ~ b ~ avec b ρ = sgn ( R y ˆb ˆb Pour SNRs proches : détecteur décorrélateur Pour SNRs très différents : détecteur détecteur optimal

38 Performances du Détecteur «Multi-Stage» Canal synchrone (

39 Performances du Détecteur «Multi-Stage» Canal synchrone (

40 Détecteurs «Decision-Driven» III. Détection «Decision-Feedbac» ( Principe : détection séquentielle, bit à la fois utilisation de méthodes linéaires et non-linéaires afin de combattre l interférence inter-utilisateur «decision feedbac» : d après techniques single-user pour combattre l interférence inter-symbole Decision-Feedbac par décorrélation synchrone Soit y = F T y avec R = F T F ( F triangulaire inférieure y = y = L y = F F = b b F n b F b F n b n

41 Détecteurs «decision-driven» III. Détection «Decision-Feedbac» ( bˆ = sgn y = F bˆ Sous forme matricielle : bˆ = sgn ( F y ( F diag F b T ( ˆ vantages : si décision correcte pour l utilisateur, pour de à -, contribution totalement éliminée dans l utilisateur en absence de bruit, décision parfaite (contrairement à la technique par annulations successives

42 Détecteurs «decision-driven» III. Détection «Decision-Feedbac» (3 Decision-Feedbac MMSE principe : chercher un détecteur de la forme bˆ = sgn ( G y Bbˆ Pour la méthode MMSE, on prend : G B = = F F T σ T σ diag ( F σ avec F σ telle que F T σ F σ = σ R vantage par rapport au détecteur MMSE «classique» : pour BER faibles, la région d acceptation en fonction des SNRs contient touours la région correspondante dans le cas du MMSE «classique»

43 Conclusion Existence d un détecteur optimal complexe (synchrone ou asynchrone mise en œuvre difficile Mise au point d algorithmes sous-optimaux - filtre adapté : réduction du bruit mais pas des interférences - décorrélateur : réduction des interférences mais pas du bruit - MMSE : compromis réduction bruit/interférences - détecteurs non-linéaires «decision-driven», çàd : décisions sur les bits interférants décision sur le bit considéré ex : successive cancellation, multi-stage detection, decision-feedbac detector, Grand nombre d autres détecteurs : - MMSE adaptatif - modèles asynchrones - Etudes de plus en plus nombreuses de détecteurs en présence de fading, de multi-traet, de diversité, codage espace-temps (systèmes MIMO,...

44 Références - S. Verdu, Multiuser Detection, Cambridge University Press, Cambridge, IEEE Journal on Selected reas in Communications: Multiuser Detection Techniques with pplication to Wired and Wireless Communications Systems I, ugust IEEE Journal on Selected reas in Communications: Multiuser Detection Techniques with pplication to Wired and Wireless Communications Systems II, February 00.

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Partie 0: Rappel de communications numériques

Partie 0: Rappel de communications numériques Partie 0: Rappel de communications numériques Philippe Ciblat Télécom ParisTech, France Introduction (I) Sauf la radio, communications actuelles en numérique - GSM, 3G, TNT, Wifi - ADSL, - MP3, DVD Types

Plus en détail

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés I Introduction On cherche à moduler des données binaires dans le but de les transmettre sur des canaux vocodés. Afin de transmettre

Plus en détail

Ch. 2 : Emetteur en Bande de Base

Ch. 2 : Emetteur en Bande de Base Ch. 2 : Emetteur en Bande de Base 1 1) Les codes en ligne 1-1) Principe des codes en ligne Codes en ligne binaire On suppose que le message numérique est constitué d une suite d éléments binaires α k,

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

DS-SS CDMA W-CDMA. Multiplexage par codes : CDMA

DS-SS CDMA W-CDMA. Multiplexage par codes : CDMA DS-SS CDMA W-CDMA Jean-Marie Gorce CITI, INSA Lyon Multiplexage par codes : CDMA Le CDMA (Code Division Multiples Access) Principe utilisation simultanée de plusieurs codes Système synchronisé : les codes

Plus en détail

Théorie de l information et codage pour les canaux de Rayleigh MIMO

Théorie de l information et codage pour les canaux de Rayleigh MIMO Théorie de l information et codage pour les canaux de Rayleigh MIMO Philippe Ciblat École Nationale Supérieure des Télécommunications, Paris, France Plan 1 Canal de Rayleigh Modèle Diversité Système MIMO

Plus en détail

Introduction générale au codage de canal

Introduction générale au codage de canal Codage de canal et turbo-codes 15/9/2 1/7 Introduction générale au codage de canal Table des matières Table des matières... 1 Table des figures... 1 1. Introduction... 2 2. Notion de message numérique...

Plus en détail

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice.

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice. Plan Codes Correcteurs d Erreurs Les codes cycliques November 12, 2008 1 2 Définition Division Euclidienne Un polynôme à coefficients dans F 2 est une fonction de la forme P(X ) = a 0 + a 1 X + a 2 X 2

Plus en détail

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Codes Correcteurs d Erreurs Les codes binaires linéaires parfaits + Code de Hamming, + Code de Golay

Codes Correcteurs d Erreurs Les codes binaires linéaires parfaits + Code de Hamming, + Code de Golay Codes Correcteurs d Erreurs Les codes binaires linéaires parfaits + Code de Hamming, + Code de Golay November 12, 2008 Plan 1 2 Rappel : la borne de Hamming pour un code linéaire est t i=0 ( n i ) 2 n

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Les codes Pseudo-Aléatoires et leurs applications

Les codes Pseudo-Aléatoires et leurs applications Les codes Pseudo-Aléatoires et leurs applications A) Les codes Pseudo-Aléaoires B) Les Applications : I. Etalement de spectre, II. Cryptage et chiffrement III. Brouillage numérique A) Les codes Pseudo-aléatoires

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Interception des signaux issus de communications MIMO

Interception des signaux issus de communications MIMO Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

Phase Locked Loop (boucle à verrouillage de phase) f ref Φ. f out

Phase Locked Loop (boucle à verrouillage de phase) f ref Φ. f out Phase Locked Loop (boucle à verrouillage de phase) f ref Φ f out N - Principe 2 - Principaux comparateurs de phase 3 - Différents types 3-: PLL du 2 nd ordre - type 3-2: PLL avec pompe de charge - 3 ème

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα WORKSHOP RUGOSITE Université de Poitiers 11 Octobre 27 La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα François HENNEBELLE 1,3, Maxence BIGERELLE 2 et Thierry COOREVITS

Plus en détail

Laboratoire Codage de Canal

Laboratoire Codage de Canal 1 BUT D U LAB OR ATO IRE Le but de ce laboratoire est d étudier la notion de codage de canal. Le codage de canal consiste en une signature que l on ajoute sur tout paquet d information à transmettre. Cela

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Transmission de données. A) Principaux éléments intervenant dans la transmission

Transmission de données. A) Principaux éléments intervenant dans la transmission Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Modulation et démodulation d amplitude.

Modulation et démodulation d amplitude. Modulation et démodulation d amplitude. P. Ribiere Collège Stannislas Année Scolaire 2014/2015 P. Ribiere (Collège Stannislas) Modulation et démodulation d amplitude. Année Scolaire 2014/2015 1 / 42 1

Plus en détail

Techniques de synchronisatio. communications numériques

Techniques de synchronisatio. communications numériques n pour les communications numériques ENST-Bretagne Département Signal et Communication 1/13 Sommaire La synchronisation dans les communications numériques Présentation du contexte Hypothèses sur les perturbations

Plus en détail

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00 Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 4 juin - 13h30 à 15h00 Système de télérelevage par satellite On se propose d étudier le fonctionnement

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO 04/11/08 Sommaire Présentation du standard IEEE802.16 Option MIMO Présentation du code OSTBCB Modulations : OFDM SC Détection

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin Plan de la séance Traitement d images Partie 4: Restauration Thomas Oberlin Signaux et Communications, RT/ENSEEHT thomasoberlin@enseeihtfr 1 ntroduction 2 Modélisation des dégradations Modèles de bruit

Plus en détail

Le contrôle d erreur. Applications. Détections et corrections d erreurs. La détection d erreur

Le contrôle d erreur. Applications. Détections et corrections d erreurs. La détection d erreur Le contrôle d erreur Les données peuvent être modifiées (ou perdues) pendant le transport Un service primordial pour de nombreuses applications Exemple : le transfert de fichier Modification au niveau

Plus en détail

Université de La Rochelle. Réseaux TD n 6

Université de La Rochelle. Réseaux TD n 6 Réseaux TD n 6 Rappels : Théorème de Nyquist (ligne non bruitée) : Dmax = 2H log 2 V Théorème de Shannon (ligne bruitée) : C = H log 2 (1+ S/B) Relation entre débit binaire et rapidité de modulation :

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Filtre de Wiener. Analyse en Composantes Principales

Filtre de Wiener. Analyse en Composantes Principales Filtre de Wiener Analyse en Composantes Principales Guillaume Obozinski LIGM/Ecole des Ponts - ParisTech Traitement de l information et vision artificielle Ecole des Ponts Filtre de Wiener Norbert Wiener

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

ENSIL Troisième Année ELT

ENSIL Troisième Année ELT IFORMATIQUE APPLIQUEE TD1 Dans le cadre de ces TD, nous procédons à la simulation d'un système de télécommunication numérique. Cette opération va nous permettre d'étudier la performance du système sous

Plus en détail

D.I.I.C. 3 - INC Module COMV - Contrôle 1

D.I.I.C. 3 - INC Module COMV - Contrôle 1 Université de Rennes 1 année 2009-2010 I.F.S.I.C. 11 Décembre 2009 D.I.I.C. 3 - INC Module COMV - Contrôle 1 cours d Olivier LE MEUR Durée : 2 heures Documents autorisés : documents des cours, TD et TP,

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Optimisation de la performance. d un processus d usinage à commande numérique

Optimisation de la performance. d un processus d usinage à commande numérique Jacques ALEXIS 20 Novembre 2001 Optimisation de la performance d un processus d usinage à commande numérique 1 Exposé du problème à résoudre L exemple utilisé pour cette présentation a été présenté par

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Modélisation stochastique et analyse de données

Modélisation stochastique et analyse de données Modélisation stochastique et analyse de données Formation FIL - Année 1 Régression par la méthode des moindres carrés 2011/2012 Tony Bourdier Modélisation stochastique et analyse de données 1 / 25 Plan

Plus en détail

Arbres de décisions et forêts aléatoires.

Arbres de décisions et forêts aléatoires. Arbres de décisions et forêts aléatoires. Pierre Gaillard 7 janvier 2014 1 Plan 1 Arbre de décision 2 Les méthodes d ensembles et les forêts aléatoires 2 Introduction 3 Introduction Jeu de données (ex

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Les techniques de multiplexage

Les techniques de multiplexage Les techniques de multiplexage 1 Le multiplexage et démultiplexage En effet, à partir du moment où plusieurs utilisateurs se partagent un seul support de transmission, il est nécessaire de définir le principe

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Département de physique

Département de physique Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

Plus en détail

Synchronisation trame et estimation de phase aveugles pour les systèmes codés

Synchronisation trame et estimation de phase aveugles pour les systèmes codés Synchronisation trame et estimation de phase aveugles pour les systèmes codés Département Signal et Communications Encadrants: Sébastien Houcke Catherine Douillard Directeur de thèse: Ramesh Pyndiah Introduction

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Gestion des configurations

Gestion des configurations Gestion des configurations Objectifs et plan du cours Introduire les concepts de base de la gestion des configurations Introduction à l utilisation (très basique) de l outil cvs 2 A propos de changements

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

T.P. n 8: MULTIPLIEUR

T.P. n 8: MULTIPLIEUR T.P. n 8: MULTIPLIEUR 1) MODULATION D AMPLITUDE On veut transmettre sur de grandes distances des informations, par exemple sonores, de fréquences comprises entre 0 Hz et 0 khz. La transmission ne peut

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Méthodes de prévision des ventes

Méthodes de prévision des ventes Méthodes de prévision des ventes Il est important pour toute organisation qui souhaite survivre dans un environnement concurrentiel d adopter des démarches de prévision des ventes pour anticiper et agir

Plus en détail

Codage Compression d images

Codage Compression d images Codage Compression d images E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CodageCompression d images 1/1 Une image Une image est un tableau de w h pixels, chaque pixel étant représenté

Plus en détail

1 Introductions. 3. Propriétés et Répartition spectrale. 1 Energie moyenne, distance. 2 Densité Spectrale de Puissance (DSP)

1 Introductions. 3. Propriétés et Répartition spectrale. 1 Energie moyenne, distance. 2 Densité Spectrale de Puissance (DSP) C o m m u n i c a t i o n s N u m é r i q u e s C N 2 1 1 Introductions. 2. Représentation des signaux Numériques. 1 Signal binaire. Modulation en BdB et sur fréquence porteuse, MAQ. 2 Représentation vectorielle,

Plus en détail

Les systèmes RAID Architecture des ordinateurs

Les systèmes RAID Architecture des ordinateurs METAIS Cédric 2 ème année Informatique et réseaux Les systèmes RAID Architecture des ordinateurs Cédric METAIS ISMRa - 1 - LES DIFFERENTS SYSTEMES RAID SOMMAIRE INTRODUCTION I LES DIFFERENTS RAID I.1 Le

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

Modulations numériques 1

Modulations numériques 1 ENSA ECOLE NATIONALE DES SCIENCES APPLIQUEES D EL JADIDA DEPARTEMENT DE TELECOMMUNICATIONS Cours: T5 Communications numériques Présenté par Prof. Dr. A. Berraissoul Cycle Ingénieur 2012/2013 2 Cours: T

Plus en détail

MODULATION D AMPLITUDE

MODULATION D AMPLITUDE Misuriello Maxime 17/03/08 Arondel Olivier MODULATION D AMPLITUDE 1 Modulation... 1 1.1 Porteuse... 1 1.2 Modulation AM... 1 1.3 Modulation DSB... 3 2 Démodulations... 5 2.1 Détection d enveloppe (AM)...

Plus en détail

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse...

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse... Comment choisir sa pizza? Test A/B Introduction à l apprentissage par renforcement Guillaume Wisniewski guillaume.wisniewski@limsi.fr Université Paris Sud LIMSI J aime beaucoup les «4 Est-ce que je dois

Plus en détail

Processeurs et Architectures Numériques. Introduction et logique combinatoire

Processeurs et Architectures Numériques. Introduction et logique combinatoire Processeurs et Architectures Numériques Introduction et logique combinatoire Objectifs du cours Connaitre les fonctions de base de l électronique numérique Comprendre la logique combinatoire et synchrone

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail