ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

Dimension: px
Commencer à balayer dès la page:

Download "ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS"

Transcription

1 Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, Paris Cedex 16 Tel. 33.(0) Fax. 33.(0) ASSOCIATION DECLAREE (LOI DU 1ER JUILLET 1901) ORGANISME CERTIFICATEUR AGREE N 19 (LOI 7823 DU 10 JANVIER 1978) CSTB - LNE

2 Table des matières TABLE DES MATIERES PRINCIPE DE LA MESURE PRODUITS RELEVANT D UNE NORME EUROPEENNE HARMONISEE PRODUITS A BASE DE FIBRE VEGETALE OU ANIMALE PRODUITS EN VRAC MESURE DE LA CONDUCTIVITE THERMIQUE A L ETAT SEC MESURE DE LA CONDUCTIVITE THERMIQUE A L ETAT HUMIDE CALCUL DU FRACTILE 90/ VALEURS UTILES POUR LE CALCUL CALCUL DIRECT SUR LA CONDUCTIVITE THERMIQUE CALCUL A PARTIR DE LA MASSE VOLUMIQUE FACTEURS DE CONVERSION EN HUMIDITE FACTEUR F U, DETERMINATION DE LA CONDUCTIVITE THERMIQUE DECLAREE PRODUITS RELEVANT D UNE NORME EUROPEENNE HARMONISEE PRODUITS NE RELEVANT PAS D UNE NORME EUROPEENNE HARMONISEE REGLE D ARRONDI /6

3 1 Pricipe de la mesure La mesure de la coductivité thermique est effectuée selo la orme NF EN ou NF EN L'épaisseur des éprouvettes aisi que les coditios de l essai sot détermiées coformémet au référetiel techique du produit coceré. La coductivité thermique utilisée pour le calcul de la résistace thermique est exprimée à 10 C, pour u isolat stabilisé à l'équilibre hygrométrique 23 C, 50% HR. 1.1 Produits relevat d ue orme européee harmoisée La coductivité thermique est détermiée, le cas échéat après vieillissemet des éprouvettes, coformémet aux méthodologies défiies das les ormes européees harmoisées e vigueur et au référetiel produit correspodat. La mesure à ue température différete de 10 C implique l établissemet d ue courbe de variatio de la coductivité thermique e foctio de la température. La mesure à u état autre que l état stabilisé à 23 C, 50% HR écessite la détermiatio du facteur de coversio e humidité. 1.2 Produits à base de fibre végétale ou aimale La détermiatio de la coductivité thermique est réalisée de la faço suivate : 1. mesure de la coductivité thermique des éprouvettes à l'état à la température de 10 C. 2. mesure de la coductivité thermique des éprouvettes stabilisées à 23 C/50 HR. Expressio du résultat à la température moyee de 10 C. 3. détermiatio du facteur de coversio e humidité à partir de mesures de coductivité thermique réalisées. 1.3 Produits e vrac Les éprouvettes sot préparées selo les modalités du Cahier Techique 8. 2 Mesure de la coductivité thermique à l état Sauf spécificatio das le référetiel produit, l état est défii comme l état stabilisé suivat : les éprouvettes sot iitialemet séchées das ue étuve vetilée régulée à 70 C±3 C jusqu à obteir mois de 0,1 % d écart de masse etre 3 mesures espacées de 24 h (suivat les ormes NF EN ISO et 12571), l air état pris das ue chambre coditioée à 23 ± 6 C. 2/6

4 Les mesures de coductivité thermique sot réalisées à l état à la température de 10 C (λ 10, ) et à la température de 23 C (λ 23, ). La mesure de coductivité thermique à 23 C est effectuée e vue de la détermiatio du facteur de coversio e température. Ue seule éprouvette de chaque échatillo est mesurée à 23 C. A la sortie de l étuve de séchage, des précautios de laboratoire sot prises afi de limiter l ifluece de l humidité ambiate sur la mesure, comme esacher les éprouvettes das des eveloppes étaches à la vapeur d eau par exemple, à l aide d u matériau e plastique suffisammet étache (polyae de 150 µm d épaisseur, par exemple). Les éprouvettes sot esuite refroidies, pesées et itroduites das les appareils de mesure. 3 Mesure de la coductivité thermique à l état humide La mesure de la coductivité thermique à l état humide est réalisée e vue de la détermiatio du facteur de coversio e humidité selo le 5. Sauf spécificatio das le référetiel produit, l état humide est défii comme l état stabilisé suivat : les éprouvettes sot coditioées das ue ambiace à (23±2) C et (50±5) % d humidité relative pedat ue semaie miimum jusqu à obteir mois de 0,05 % d écart de masse etre 2 mesures espacées de 24 h (suivat orme NF EN 12429). Les mesures de coductivité thermique sot réalisées à l état humide à la température de 23 C (λ 23,(23/50) ) puis rameées par calcul à 10 C, ou effectuées directemet à 10 C (λ 10,(23/50) ). Des précautios de laboratoire idetiques à celles metioées au 2 sot prises pour limiter l ifluece de l humidité ambiate sur la coductivité thermique. 4 Calcul du fractile 90/ Valeurs utiles pour le calcul Das le cadre de l applicatio de la orme NF EN ISO 10456, quelques valeurs de k pour u itervalle de tolérace uilatéral de 90 % avec u iveau de cofiace de 90 % sot doées ci-dessous : Nombre d échatillos mesurés k 10 2, , , , , ,77 3/6

5 25 1, , , , , , , , , ,32 Pour d autres ombres d échatillos, la valeur de k est obteue par iterpolatio liéaire, ou issue de la orme ISO Calcul direct sur la coductivité thermique La coaissace de la coductivité thermique moyee et de l écart type permet l établissemet d ue valeur correspodat au fractile 90% avec ue cofiace de 90% selo les pricipes de la orme ISO rappelés ci-après : 90/ 90 moye k. s s i1 i moye 1 2 avec : 90/90 : coductivité thermique au fractile 90/90 moy s k : coductivité thermique moyee sur la plage cosidérée : estimateur de l écart type de la coductivité thermique : facteur dépedat du ombre d échatillos mesurés : ombre d échatillos mesurés U effectif de 10 échatillos (1 échatillo par lot) est u strict miimum. Si le produit est fabriqué das plusieurs usies, la coductivité thermique moyee et l écart type devrot être détermiés pour chacue d elle. 4.3 Calcul à partir de la masse volumique Cette méthode de calcul repose sur la relatio etre la coductivité thermique et la masse volumique établie par ue courbe. 4/6

6 4.3.1 Fractile sur la masse volumique A partir des résultats de masse volumique fouris par le producteur, la valeur de la masse volumique correspodat au fractile 90 % avec u iveau de cofiace de 90 % est calculée selo la formule suivate, puis arrodie à 0,1 kg/m 3 près : 90/90 moy ( i i1 s 1 ks moy )² avec : 90/90 : masse volumique au fractile 90/90 moy s k : masse volumique moyee sur la plage cosidérée : estimateur de l écart type de la masse volumique : facteur dépedat du ombre d échatillos mesurés : ombre d échatillos mesurés U effectif de 10 échatillos costitue u strict miimum Coductivité thermique de référece A partir de la valeur de cette masse volumique ( 90/90 ) et de la courbe de modélisatio mod = f ( mod ), o détermie la valeur de la coductivité thermique de référece réf. Cette valeur réf est défiie par la valeur de coductivité thermique qui correspod, sur la courbe mod = f ( mod ), à la valeur de masse volumique ( 90/90 ), puis arrodie au 1 mw/(m.k) supérieur. 5 Facteurs de coversio e humidité Pour la déclaratio de la valeur thermique, les facteurs de coversio e humidité f u,1 et f u,2 sot détermiés e deux étapes décrites ci-après. 5.1 Facteur f u,1 Le facteur d humidité est calculé sur N éprouvettes. Sauf précisio das u référetiel produit, le ombre d éprouvettes N est égal à 2. Etape 1 : coditioemet à l état des N éprouvettes selo le 2 puis mesure de la masse et de la coductivité thermique. Les valeurs moyees sot otées comme suit : m : valeur moyee de la masse e kg, 10, : valeur moyee de la coductivité thermique à l état à 10 C, e W/(m.K). Etape 2 : coditioemet des N éprouvettes à (23 ± 2) C et (50 ± 5)% HR selo le 3 puis mesure de la masse et de la coductivité thermique. Les valeurs moyees sot otées comme suit: 5/6

7 m 23,50 : valeur moyee de la masse e kg, 10, (23,50) : valeur moyee de la coductivité thermique à l état humide Calcul du coefficiet adimesioé u 23,50 selo la formule : u 23,50 m 23,50 m m Calcul du facteur de coversio humidité f u,1 (selo ISO 10456) : f u,1 l u 23,50 10,(23,50) 10, u 6 déclarée 6.1 Produits relevat d ue orme européee harmoisée La coductivité thermique est déclarée selo les modalités des ormes européees harmoisées e vigueur. 6.2 Produits e relevat pas d ue orme européee harmoisée Cas des produits hygroscopiques La coductivité thermique déclarée D selo la formule : D 10,,90/ 90 e fu, 1( u23,50u ) Autres produits La coductivité thermique déclarée D selo la formule : D 10,,90/ Règle d arrodi La valeur de la coductivité thermique déclarée, λd, doit être arrodie à 0,001 W/(m K) par excès. 6/6

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Association régie par la loi du 1er juillet 1901

COMITE DE NORMALISATION OBLIGATAIRE C.N.O. Association régie par la loi du 1er juillet 1901 COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Associatio régie par la loi du 1er juillet 1901 Le 17 Mars 2005 Règles de calcul des coupos des empruts d Etat sur le marché de gros Après décisio de so A.G.

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

TECHNIQUE: Distillation

TECHNIQUE: Distillation TECHNIQUE: Distillatio 1 Utilité La distillatio est u procédé permettat la séparatio de différetes substaces liquides à partir d u mélage. Les applicatios usuelles de la distillatio sot : l élimiatio d

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Travaux dirigés de transports et transferts thermiques

Travaux dirigés de transports et transferts thermiques Travaux dirigés de trasports et trasferts thermiques Aée 015-016 Araud LE PADELLEC alepadellec@irap.omp.eu page page 3 P r é s e t a t i o Tous les exercices de trasports et de trasferts thermiques qui

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Indice de Révision Date de mise en application B 30/06/2013 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, avenue du Recteur-Poincarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97 Fax. 33.(0)1.64.68.83.45

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Indice de Révision Date de mise en application A 15/03/2013 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, avenue du Recteur-Poincarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97 Fax. 33.(0)1.64.68.83.45

Plus en détail

relatif à la transmission d ordres par fax et téléphone

relatif à la transmission d ordres par fax et téléphone Règlemet Télé-Equity relatif à la trasmissio d ordres par fax et téléphoe (Cliets de détail) 02541 Pour des raisos d efficacité et de rapidité, le Cliet peut trasmettre ses ordres par fax et/ou téléphoe

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

ACRYLIC SHEET. Altuglas EI. Plaques extrudées choc

ACRYLIC SHEET. Altuglas EI. Plaques extrudées choc ACRYLIC SHEET Altuglas EI Plaques extrudées choc Altuglas EI est la gamme de plaques acryliques extrudées (PMMA) développée par Altuglas Iteratioal pour répodre à des applicatios exigeat ue importate résistate

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Panneaux Isolants Bardage & Couverture. Fiche Technique. Trapézoïdal de Couverture KS1000 RW

Panneaux Isolants Bardage & Couverture. Fiche Technique. Trapézoïdal de Couverture KS1000 RW Paeaux Isolats Bardage & Couverture Fiche Techique Trapézoïdal de Couverture KS1000 RW Doées Techiques Descriptio Trapézoïdal de Couverture KS1000 RW est u paeau sadwich isolat de couverture e mousse polyisocyaurate

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Détermination du Ves 40 : Quantité d eau chaude à 40 C fournie par l appoint électrique intégré d un chauffe-eau électrosolaire.

Détermination du Ves 40 : Quantité d eau chaude à 40 C fournie par l appoint électrique intégré d un chauffe-eau électrosolaire. Protocole d essai et méthode de calcul Détermiatio du Ves 40 : Quatité d eau chaude à 40 C fourie par l appoit électrique itégré d u chauffe-eau électrosolaire. Documet associé : Cahier des charges des

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

TRANSFORMATION DES DONNÉES ET COMPARAISON DE

TRANSFORMATION DES DONNÉES ET COMPARAISON DE TRANSFORMATION DES DONNÉES ET COMPARAISON DE MODÈLES POUR LA CLASSIFICATION DES DONNÉES RNA-SEQ Mélia Gallopi 1,2,3 & Adrea Rau 2,3 & Gilles Celeux 4 & Florece Jaffrézic 2,3 1 Laboratoire de Mathématiques

Plus en détail

RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 18/04/2008 1

RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 18/04/2008 1 RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 1804008 1 SOMMAIRE 5 Calcul des capabilités machie selo les ormes... 3 5.1 FOR (1989)...3 5.1.1 Loi ormale 3 5.1. Loi de RAYLEIGH 4 5.1. Loi de RAYLEIGH 4 5.1.3

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE CETAMA ANALYSE DE L 1 EAU- DOS AGE D'ELEMENTS PAR ABSORPTION ATOMIQUE N 47 OCTOBRE 1 97 OBJET ET DOMAINE D'APPLICATION Le préset documet a pour objet la descriptio schématique d'ue méthode de dosage des

Plus en détail

ETE HIVER. Très forte réflexion 95 % Chauffage. Isolant par réflexion pare vapeur REFLEXTHERM. Sortie d'air et de vapeur d'eau

ETE HIVER. Très forte réflexion 95 % Chauffage. Isolant par réflexion pare vapeur REFLEXTHERM. Sortie d'air et de vapeur d'eau U isolat 2 e 1 Isolatio par réfexio et très faible émissivité E hiver SKYTECH Pro réfléchit la chaleur émise par le chauffage vers l'itérieur grâce à so fort pouvoir de réflexio. Sa très faible émissivité

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Cours de méthodes de simulation

Cours de méthodes de simulation ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION ( ESSAIT) Cours de méthodes de simulatio Préparé par Hasse MATHLOUTHI Aée uiversitaire 2014-2015 AVANT PROPOS Ce documet propose u cours sur

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Université Paris VII - Agrégation de Mathématiques (François Delarue) MÉTHODE DE MONTE-CARLO

Université Paris VII - Agrégation de Mathématiques (François Delarue) MÉTHODE DE MONTE-CARLO Uiversité Paris VII - Agrégatio de Mathématiques Fraçois Delarue) MÉTHODE DE MONTE-CARLO Ce texte vise à préseter l utilisatio de la méthode de Mote-Carlo das le calcul du prix d ue optio. 1. Positio du

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

eduscol Ressources pour le lycée général et technologique

eduscol Ressources pour le lycée général et technologique eduscol Ressources pour le lycée gééral et techologique Ressources pour la classe de secode géérale et techologique Méthodes et pratiques scietifiques Thème sciece et prévetio des risques d'origie humaie

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Questions Chapitre 2 L approche statistique de la réalité 1

Questions Chapitre 2 L approche statistique de la réalité 1 Questios Chapitre 2 L approche statistique de la réalité 1 Expliquer la otio de variable et défiir les différets types de variables Décrire les échelles de classificatio et trasformer les doées pour passer

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Centre d expertise en analyse environnementale du Québec PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE

Centre d expertise en analyse environnementale du Québec PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE Cetre d expertise e aalyse eviroemetale du Québec Programme d accréditatio des laboratoires d aalyse PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE DR-12-VMM Éditio

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Panneaux Isolants Bardage & Couverture. Fiche Technique. Gamme Architecturale de Bardage

Panneaux Isolants Bardage & Couverture. Fiche Technique. Gamme Architecturale de Bardage Paeaux Isolats Bardage & Couverture Fiche Techique Gamme Architecturale de Bardage Doées Micro-Rib KS600-000 MR Euro-box KS600-000 EB Tramlie KS000 TL Plak KS600-000 PL Mii-Micro KS600-000 MM Covex KS600-000

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Panneaux Isolants Bardage & Couverture. Fiche Technique. Trapézoïdal de Couverture KS1000 RW

Panneaux Isolants Bardage & Couverture. Fiche Technique. Trapézoïdal de Couverture KS1000 RW Paeaux Isolats Bardage & Couverture Fiche Techique Trapézoïdal de Couverture KS1000 RW Doées Techiques Descriptio Trapézoïdal de Couverture KS1000 RW est u paeau sadwich isolat de couverture e mousse polyisocyaurate

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

5 Transformée de Fourier Discrète

5 Transformée de Fourier Discrète Traitemet umérique du sigal Cours ELE-FOD 5. Séries réelles 5 Trasformée de Fourier Discrète Das so ouvrage «Théorie aalytique de la chaleur (8» Joseph FOURIER itroduit la décompositio des foctios périodiques

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres B A S E Biotechol Agro Soc Eviro 00 6 (3) 43 53 Utilisatio du bootstrap pour les problèmes statistiques liés à l estimatio des paramètres Rudy Palm Uité de Statistique et Iformatique Faculté uiversitaire

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n :

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n : Suites A) Suites géométriues Défiitio et formules Défiitio : forme récursive Ue suite est géométriue lorsue, à partir du terme iitial, l o passe d'u terme de la suite au terme suivat e multipliat toujours

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail