Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr"

Transcription

1 Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exercice ** Rang et signature des formes quadratiques suivantes :. Qx,y,z = x y z + xy xz + yz.. Qx,y,z = x + y + z xy xz yz. Qx,y,z,t = xy + yz + zt +tx.. Qx,y,z,t = x + + λy + + λz + λt + xy + xz + λyz + λyt + λzt.. Qx,...,x = i< j n x i x j.. Qx,...,x n = i, j n i jx i x j.. Qx,...,x n = i i, j n x ix j. 8. Qx,...,x n = i, j n Infi, jx i x j. [0080] Exercice ** Soit E = L R. Soit λ,µ R. On pose. Vérifier que Q est une forme quadratique sur E. f L R, Q f = λtr f + µdet f.. Déterminer en fonction de λ et µ le rang et la signature de Q. Analyser en particulier les cas λ,µ =,0 et λ,µ = 0,. [0080] Exercice ** Soit Q une forme quadratique sur un R-espace vectoriel E. On note ϕ sa forme polaire. On suppose que ϕ est non dégénérée mais non définie. Montrer que Q n est pas de signe constant. [00808] Exercice *** I Soient f, f,..., f n n fonctions continues sur [a,b] à valeurs dans R. Pour i, j [[,n]], on pose b i, j = b a f it f j t dt puis pour x,...x n R n, Qx,...,x n = i, j n b i, j x i x j.. Montrer que Q est une forme quadratique positive.. Montrer que Q est définie positive si et seulement si la famille f,..., f n est libre.. Ecrire la matrice de Q dans la base canonique de R n dans le cas particulier : i [[,n]], t [a,b], f i t = t i.

2 [00809] Exercice *** Soit S une matrice symétrique réelle, définie positive. Pour x,...,x n R n, on pose Qx,...,x n = det 0 x... x n x. S x n. Montrer que Q est une forme quadratique définie positive. [0080] Exercice ** Sur E = R ou R muni de sa structure euclidienne usuelle, réduire en base orthonormée les formes quadratiques suivantes :. Qx,y = x + 0xy + y.. Qx,y = x + xy + 9y.. Qx,y,z = x + 9y z + xy + 0 xz + yz. [008] Exercice *** Soit E = R n [X]. Pour P E, on pose QP = + k=0 PkP ke k.. Montrer que Q est une forme quadratique sur E.. Déterminer sa signature. [008] Exercice 8 ** I Soit A une matrice carrée réelle symétrique définie positive. Montrer qu il existe une matrice triangulaire inversible T telle que A = t T T. [008] Exercice 9 *** I Soit A une matrice carrée réelle symétrique définie positive. Montrer que le déterminant de A est inférieur ou égal au produit de ses coefficients diagonaux utiliser l exercice 8. [008] Retrouver cette fiche et d autres exercices de maths sur exo.emath.fr

3 Correction de l exercice. ère solution. La matrice de la forme quadratique Q dans la base canonique de R est A = Le polynôme caractéristique de A est. X χ A = X X = X X + X = X = X X + 8X X X + X + X. Puisque A est symétrique réelle, on sait que les valeurs propres de A sont réelles. χ A admet pour racines 0 et deux réels non nuls de signes contraires puisque leur produit vaut. Par suite, le rang et la signature de Q sont r = et s =,. ème solution. On effectue une réduction de GAUSS. Qx,y,z = x y z + xy xz + yz = x + xy z y + yz z = x + y z y z y + yz z = x + y z 8 y + 0yz 8z = x + y z y 8 8 z. Les formes linéaires x,y,z x + y z et x,y,z y 8 z étant linéairement indépendantes, on retrouve le fait que Q est de rang r = et de signature s =,. La forme quadratique Q est dégénérée et n est ni positive ni négative.. La matrice de Q dans la base canonique i, j,k est A =. Le nombre est valeur propre de A et puisque A est diagonalisable, est valeur propre d ordre dimkera I = rga I =. La dernière valeur propre λ est fournie par + + λ = TrA = 9 et? =. Ainsi, SpA =,,. Les trois valeurs propres de A sont strictement positives et donc la forme quadratique Q est de rang et de signature,0.. Effectuons une réduction de GAUSS. Q est définie positive. Qx,y,z,t = xy + yz + zt +tx = x + zy +t = x + y + z +t x y + z t. Puisque les deux formes linéaires x,y,z,t x + y + z +t et x,y,z,t x y + z t sont linéairement indépendantes, la forme quadratique Q est de rang r = et de signature s =,.. Effectuons une réduction de GAUSS. Qx,y,z,t = x + + λy + + λz + λt + xy + xz + λyz + λyt + λzt = x + y + z + λy + λz + λt λyz + λyt + λzt = x + y + z + λy z +t + zt = x + y + z + λy z +t + z +t z t.

4 Si λ < 0, la forme quadratique Q est de rang et de signature,. Si λ = 0, la forme quadratique Q est de rang et de signature,. Si λ > 0, la forme quadratique Q est de rang et de signature,.. ère solution. La matrice de la forme quadratique Q dans la base canonique est A = Les valeurs propres de A sont qui est d ordre et qui est valeur propre simple.donc, la signature de la forme quadratique Q est s =,.. ème solution.effectuons une réduction de GAUSS. Qx,...,x = x x + x x + x + x + x x + x + x + x x + x x + x x et on retrouve s =,. = x + x + x + x x + x + x + x x + x + x + x x + x x + x x = x + x + x + x + x x x x x x x x x x x x = x + x + x + x + x x x x + x + x x x x x = x + x + x + x + x x x x + x + x x x x,. Qx,...,x n = x x n et donc r = et s =,0.. Pour n, Qx,...,x n = n i= ix i n j= x j = n i= i + x i n i= i x i. Donc r = et s =, car les deux formes linéaires x,...,x n n i= i+x i et x,...,x n n i= i x i sont indépendantes pour n Puisque la matrice de Q dans la base canonique est n n... n n Qx,...,xn = i, j n x i x j + i, j n x i x j n i, j n x i x j + x n = x x n + x x n x n + x n + x n. Q est donc définie positive. Correction de l exercice

5 a c. Si la matrice de f dans la base canonique de R est A = b d, Q f = λa + bc + d + µad bc. Q est un polynôme homogène de degré en les coordonnées de f dans la base canonique de L R et donc Q est une forme quadratique sur L R.. Si λ = µ = 0, r = 0 et s = 0,0. Si λ = 0 et µ 0, et donc r = et s =,. Si λ 0, Q f = µ a + d µ a d mu b + c + µ b c, Q f = λa + µad + λ µbc + λd = λ = λ a + µ λ d + λ µ λ d + λ µ a + µ λ d + λ µbc + λ µ d λ b + c λ µ b c. Maintenant, les quatre formes linéaires a,b,c,d a + µ λ d, a,b,c,d d, a,b,c,d b + c et a, b, c, d b c sont linéairement indépendantes. Donc - si µ = λ 0, r =, - si µ = λ λ, r =, - si µ = λ 0, r =. En particulier, si λ = et µ = 0, alors r = et s =, et si λ = 0 et µ =, r = et s =,. Correction de l exercice Dans le cas où E est de dimension finie, la signature de Q permet de conclure immédiatement. Supposons donc que E n est pas de dimension fine. Par hypothèse, il existe un vecteur non nul x 0 tel que Qx 0 = 0. Supposons Q de signe constant. Ouite à remplacer Q par Q, on supposera que Q est positive. D?après l inégalité de CAUCHY-SCHWARZ valable pour les formes quadratiques positives y E, ϕx 0,y Qx 0 Qy = 0. Donc y E, ϕx 0,y = 0 et x 0 est dans le noyau de ϕ. Puisque x 0 0, on en déduit que ϕ est dégénérée. En résumé, si Q est de signe constant, ϕ est dégénérée ou encore si ϕ est non dégénérée, Q n est pas de signe constant. Correction de l exercice. Pour tout x,...,x n R n, Qx,...,x n = b i, j n a f it f j t dt x i x j = b a i, j n x i x j f i t f j t dt = b a n i= x i f i t dt 0. Donc Q est une forme quadratique positive.. De plus, pour tout x,...,x n R n, Qx,...,x n = 0 n i= x i f i = 0 fonction continue positive d intégrale nulle. Donc Q définie x,...,x n R n, [Qx,...,x n = 0 x,...,x n = 0] x,...,x n R n, [ f,..., f n libre. n i= x i f i = 0 x,...,x n = 0]

6 . Dans le cas particulier envisagé, la matrice de Q dans la base canonique de R n est la matrice de HILBERT H n = i+ j i, j n. Correction de l exercice x Posons X =. et A =. S x n x n 0 Un calcul par blocs fournit t X X S 0 t X X S 0 0 S 0 x... x n x 0 X 0 0 S I n 0 = t X X S. 0 = t XS X I n 0 = t XS X I n puis 0 X I n t XS = X t XS 0 I n On en déduit que deta dets = t XS X puis que QX = deta = t XdetSS X = t XS X où S = detss. Maintenant, la matrice S est définie positive et donc ses valeurs propres sont des réels strictement positifs. Les valeurs propres de la matrice S sont les dets λ où λ décrit le spectre de S et donc la matrice S est aussi une matrice symétrique définie positive. Q est donc une forme quadratique définie positive.. Correction de l exercice. Quand x et y ont les mêmes coefficients, penser à faire une rotation d angle π En posant x = X + Y et y = X Y, on obtient x + 0xy + y = X +Y + X +Y X Y + X Y = X Y. Ainsi, si on note i, j la base canonique de R puis e = i + j et e = i j, on a x + 0xy + y = Qxi + y j = QXe +Ye = X Y.. La matrice de Q dans la base canonique i, j de R est A =. Les deux nombres et 0 ont 9 une somme égale à = TrA et un produit égal à 0 = deta et sont donc les valeurs propres de A. On sait alors que dans une base orthonormée e,e de vecteurs propres de A associée à la famille de valeurs propres,0, on a QXe +Ye = X + 0Y. Déterminons une telle base. x 0 A I = y 0 0I = KerA I = Vecte où e =,. x+y = 0 et donc KerA I = Vecte où e =, puis KerA Donc, si e =,, e =, et u = xi + y j = Xe + Ye, alors qu = x + xy + 9y = X + 0Y. De plus, x = X +Y et y = X + Y.. La matrice de Q dans la base canonique est A = 9. X χ A = 9 X X = XX 8X X + X = X + X + X = X X + X. Ensuite,

7 x y z KerA I x + y + z = 0 x + y + z = 0 x + y z = 0 z = x y x y = 0 x + 8 y = 0 et KerA I = Vecte où e =,,. De même, x y z KerA + I 0x + y + z = 0 x + y + z = 0 x + y + z = 0 { z = x y y = 0 et KerA + I = Vecte où e =,0,. Enfin KerA I = Vecte où e = e e = Ainsi, si on pose P = 0 z = x y x + y + x y = 0 x + y x y = 0 y = x z = x { y = 0 z = x 0 x { y = z = x x z = x y 0x + y + x y = 0 x + y + x y = 0 =. alors PA t P = diag,, ou encore QXe +Ye + Ze = X Y + Z où Mat i, j,k e,e,e = 0. { x = y = Correction de l exercice. Soit P un élément de E. D après un théorème de croissances comparées, PkP ke k = o k + k et donc QP existe. Pour tout élément P de E, QP = BP,P où B est la forme bilinéaire symétrique définie sur E par P,P E, BP,P = + k=0 P kp k + P kp ke k et donc Q est une forme quadratique sur E.. Soit F le sous-espace vectoriel de E dont les éléments sont les polynômes pairs et G le sous-espace vectoriel de E dont les éléments sont les polynômes impairs. F et G sont supplémentaires dans E. Soit P est un polynôme pair et non nul. Tout d abord, QP + k=0 Pk e k 0. De plus, comme P ne peut admettre tout entier naturel pour racine, on a plus précisément QP > 0. De même, si P est impair et non nul, QP < 0. Ainsi, la restriction de Q à F resp. G est définie positive resp.négative. Enfin, si P est pair et P est impair, on a BP,P = + k=0 P kp ke k = + k=0 P kp ke k = + k=0 P kp ke k = BP,P = BP,P,

8 et donc BP,P = 0 F et G sont orthogonaux pour B. Il existe un base de F dans laquelle Q /F est combinaison linéaire à coefficients strictement positifs de carrés de formes linéaires linéairement indépendantes en nombre égal à dimf et de même il existe un base de G dans laquelle Q /G est combinaison linéaire à coefficients strictement négatifs de carrés de formes linéaires linéairement indépendantes en nombre égal à dimg. Maintenant, si P est un polynôme quelconque de parties paire et impaire P et P respectivement, QP = QP + P = QP + BP,P + QP = Q /F P + Q /G P. Donc la réunion des deux bases ci-dessus est une base de E dans laquelle Q est combinaison linéaire de carrés de formes linéaires linéairement indépendantes dans laquelle dimf = E n + coefficients sont strictement positifs et dimg = E n+ sont strictement négatifs. Finalement, Q est donc non dégénérée de signature s = E n +,E n+. Correction de l exercice 8 A est la matrice d un produit scalaire ϕ dans une certaine base B fixée de R n. Soit B l orthonormalisée de SCHMIDT de la base B pour le produit scalaire ϕ et T la matrice de passage de la base B à la base B. La matrice T est triangulaire de même que la matrice t T. Puisque la base B est orthonormée pour le produit scalaire ϕ, la matrice de ϕ dans la base B est I n. D après les formules de changement de base, A = t T Mat B ϕt = t T T. Correction de l exercice 9 Puisque la matrice A est définie positive, il existe d après le l exercice 8 une matrice triangulaire supèrieure inversible T telle que A = t T T. Posons alors T = t i, j i, j n. deta = dett = t,...t n,n Mais pour i [[,n]], a i,i = n k= t k,i t i,i et donc deta n i= a i,i. Remarque. On a montré au passage que les coefficients diagonaux a i,i de A étaient des réels strictement positifs. 8

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

Feuilles de TD du cours d Algèbre S4

Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Algèbre Linéaire. Victor Lambert. 24 septembre 2014

Algèbre Linéaire. Victor Lambert. 24 septembre 2014 Algèbre Linéaire Victor Lambert 24 septembre 2014 Table des matières 1 Généralités 2 1.1 Espaces vectoriels............................ 2 1.2 Applications linéaires.......................... 4 1.3 Familles

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE. - Notes de cours et de travaux dirigés - PHILIPPE MALBOS UNIVERSITÉ CLAUDE BERNARD LYON Licence Sciences, Technologies, Santé Enseignement de mathématiques des parcours Informatique ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE - Notes de cours et de travaux

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

1 Espaces vectoriels, compléments

1 Espaces vectoriels, compléments CHAPITRE 1 Espaces vectoriels, compléments Sommaire 1 Somme directe... 3 1.1 Somme... 3 1.2 Somme directe... 3 1.3 Supplémentaire... 4 1.4 Cas de la dimension finie... 4 2 Décomposition de E en somme directe...

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie Annette Paugam Diagonalisation des auto-adjoints Applications aux formes quadratiques : Directions principales Applications en Géométrie, en Statistique et en Mécanique Les paragraphes, 2, 3 donnent un

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Introduction générale

Introduction générale Chapitre 1 Introduction générale Ce chapitre est consacré à une présentation rapide des méthodes numériques qui sont étudiées en détail dans ce cours Nous y donnons une approche très simplifiée des quatre

Plus en détail

0 0 0 0 1 0 0 1 0 0 0 A = B =

0 0 0 0 1 0 0 1 0 0 0 A = B = 2 ALGÈBRE Exercice 2.1. Soit n un entier supérieur ou égal à 2 et A, B les deux matrices de M n (R) définies par : 0 0 0 0 1 0 0 0 0... 0 1 0 0 0 A =.......... B = 0 0... 0 0 0...... 0 0 0 1. Déterminer

Plus en détail

Préparation à l Agrégation de Mathématiques

Préparation à l Agrégation de Mathématiques UNIVERSITÉ DE POITIERS Mathématiques Agrégation 2008/2009 Paul Broussous Préparation à l Agrégation de Mathématiques Algèbre linéaire Réduction des endomorphismes 1 Avant Propos Nous supposerons connues

Plus en détail

Groupe orthogonal en petite dimension

Groupe orthogonal en petite dimension Maths PCSI Cours Groupe orthogonal en petite dimension Table des matières 1 Généralités 1.1 Rappels et définitions........................................ 1. Premières propriétés.........................................

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Cours de Math IV Algèbre. (R. Bahloul, 2 e semestre 2009/2010)

Cours de Math IV Algèbre. (R. Bahloul, 2 e semestre 2009/2010) Cours de Math IV Algèbre (R. Bahloul, 2 e semestre 2009/2010) 1 2 Les livres utilisés lors de la préparation de ce cours furent les suivants. Références [1] Joseph Grifone, Algèbre linéaire, 2 e édition,

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Algèbre linéaire et géométrie pour le CAPES 1. Olivier DEBARRE. 1 Version très préliminaire

Algèbre linéaire et géométrie pour le CAPES 1. Olivier DEBARRE. 1 Version très préliminaire Algèbre linéaire et géométrie pour le CAPES 1 Olivier DEBARRE 1 Version très préliminaire Table des matières Chapitre 1. Espaces vectoriels et applications linéaires 5 1. Définitions 5 2. Applications

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Travaux dirigés avec SAGE (partie III)

Travaux dirigés avec SAGE (partie III) Math 3 Année 2010-2011 Sommaire 1 Vecteurs et matrices 2 1.1 Construction, opérations élémentaires............................. 2 1.1.1 Vecteurs.......................................... 2 1.1.2 Matrices..........................................

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Cours d algèbre linéaire. Khaoula Ben Abdeljelil

Cours d algèbre linéaire. Khaoula Ben Abdeljelil Cours d algèbre linéaire Khaoula Ben Abdeljelil 2 Table des matières Table des matières............................... i 1 POLYNOMES 1 1.1 Algèbre des polynômes.......................... 1 1.1.1 Définition.............................

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Feuille d exercices n 14 : corrigé

Feuille d exercices n 14 : corrigé Feuille d exercices n 4 : corrigé PTSI B Lycée Eiffel avril 3 Exercice (*) Commençons déjà par constater que la fonction nulle vérifie toutes les conditions de l exercice, il nous restera donc à regarder

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail