MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences

Dimension: px
Commencer à balayer dès la page:

Download "MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences"

Transcription

1 REPUBLIQUE LERIEN DEMOCRTIQUE ET POPULIRE Mnstère de l ensegnement supéreur et de la recherche scentfque Unversté El-Hadj Lakhdar-BTN- MEMOIRE Présenté au département des scences de la matère Faculté des scences Pour obtenr le dplôme de magstère en phsque Opton : phsque des matéraux Par ZEMMOURI SLIM THEME Etude d une varété de solutons soldes bnares tratées par la méthode des sous réseaux de Hllert. Soutenue le : 3/05/202 Devant le jur : Présdent :. BLCEM-BOUZID Pr U. Batna Rapporteur : Y. DJBLLH M.C. U. Batna Examnateur : F. BOUHRKT Pr U. Batna E. BELBCH Pr U. Batna S. BENLI M.C. U.Tssmslt PDF created wth pdffactor Pro tral verson

2 Dédcace «Les oeuvres de l esprt, de la scence et du savor dovent être au servce de l humanté pour rendre la ve plus smple et plus belle, et non à l enrchssement de quelques ndvdus» Nkola Tesla ( ) N mes parents mes sœurs mes frères Y toute ma famlle PDF created wth pdffactor Pro tral verson

3 REMERCIMENT Tous d abord je remerce le bon DIEU le tout pussant. Je tens à remerce très vvement Monseur Djaballah Yassne matre de conférence à l unversté de Batna, je lu sus gré de m avor orentée, suve et drgée dans mon traval, tout mon profond respect pour son ade ses préceuses orentatons et ses remarques pertnentes. Je remerce également Monseur Belgacem Bouzda ssa, professeur à l unversté de Batna, qu ma fat l honneur de s ntéresser à ce traval proposé, et de présder le jur. Je n ouble surtout pas monseur Belbacha El-Djema, professeur à l unversté de Batna, pour ses encouragements, son ntérêt pour mon sujet et de fare parte du jur. Ma profonde reconnassance va ensute envers, Madame Bouharkat Fouza, Professeur à l unversté de Batna, qu m a adé et qu m'a souvent encouragé et consellé avec beaucoup d'effcacté. Je la remerce encore une fos pour sa dsponblté, sa gentllesse et sa bonne humeur quotdenne. Qu l trouve c l expresson de ma haute grattude et mon profond respect. Je lu adresse également mes vfs remercements pour m avor fat l honneur d examner ce traval. Mes remercements vont également à monseur Salah Benala, maître de conférence au centre unverstare de Tssemslt, d avor accepté de juger ce traval et de fare parte du jur. Je tens cependant à remercer tout partculèrement mel Naceur professeur à l unversté de Bskra pour son ade nestmable. La bonne maîtrse des dagrammes de phases n a été possble que grâce à son souten, ses remarques et consels préceux. Je la remerce également de m avor redonné du courage à chaque fos que j en avas beson. Bonne contnuaton mel. Enfn un grand merc à ma famlle et à tous mes ams qu, de près ou de lon, ont contrbué au bon déroulement de ce mémore PDF created wth pdffactor Pro tral verson

4 Introducton énérale. Chaptre I LLIE ET DIRMME DE PHSES I--llage.3 I--- llage homogène...3 I--2- llage hétérogène.4 I-2- La phase...4 I-2-- Homogénété de la composton...4 I-2-2- Structure d une phase...5 I-2-3- spect densté ou masse volumque d une phase....5 I-3-Les Solutons Soldes I-3--Les Solutons Soldes Prmares...6 I-3-2-Les Solutons Soldes d'inserton (ou Intersttelles)....7 I-3-3-Les Solutons Soldes de Substtuton.7 I-3-4-Les Solutons soldes ntermédares...8 I solutons ordonnées et désordonnées..9 I composés ntermétallques ordonnés (Composés Défns) I-4- Structures et dénomnatons des phases métallques 0 I-4--roupe d espace... I-4-2-Notaton Pearson..2 I-5- Les Dagrammes de Phases bnare...2 I-5--Règle de phase de bbs... 3 I-5-2- sstèmes bnares somorphes. 4 I-5-3-Sstèmes bnares eutectques...5 I-5-4-Sstèmes bnares pértectque..6 I -5-5-Sstèmes bnares présentant des phases ntermédares...7 I Formaton de composés ntermédares défns m B n I Dagramme bnare avec soluton solde secondare... 9 I -5-6-Sstèmes bnares présentant une mscblté partelle à l état lqude...9 I Ensemble des équlbres trphasés PDF created wth pdffactor Pro tral verson

5 Chaptre II LES BSES THERMODYNMIQUES DES DIRMMES DE PHSES II-- Introducton II-2- Premer prncpe de la thermodnamque..22 II-3-Deuxème prncpe de la thermodnamque.23 II-4-Trosème prncpe de la thermodnamque 23 II-5-Potentelle chmque...24 II-6-L actvté. 25 II-7-Théorème d Euler. 26 II-8-Relaton bbs- Duhem.26 II-9- Relaton de bbs- Helmholtz...27 II-0-L énerge de bbs molare et le potentel chmque.27 II--Crtères d équlbres...28 II-2-Stablté d une phase...28 II-3- Constructon de la tangente commune et le potentel chmque...30 II-4- Détermnaton des courbes de soldus, lqudus et solvus..30 II-4--La mscblté totale de et B....3 II-4-2- ap de mscblté dans l état solde.3 II-4-3-Le pont eutectque sans somorphes...32 II-4-4-Le pont eutectque dans le cas somorphe.32 II-5- Présentaton de la méthode CLPHD...35 II-6- Descrpton thermodnamque de phases d un dagramme d équlbre...37 II-6--Les éléments purs...37 II-6-2- phases stœchométrques (Composés défns)...38 II-6-3-phase étendu (Modèle polnomal) II-6-4-Phases ntermédares PDF created wth pdffactor Pro tral verson

6 Chaptre III LE MODELE DES SOUS-RESEUX III--Introducton 42 III-2- modèle à pluseur sous-réseau...43 III-2--Défnton de fracton de ste...43 III-2-2- L entrope déal de mélange 45 III-3- Modèle à deux sous-résau..46 III-3-- L enthalpe lbre molare.. 46 III-3--- L enthalpe lbre de référence de bbs...47 III L enthalpe lbre déal de mélange de bbs...48 III L enthalpe lbre d excès de mélange de bbs 48 III La relaton entre l enthalpe atomque et celle de ste..49 III-3-2-Cas partculers.49 III-3-2--Cas d une soluton..49 III Cas d un composé défn III Modèle à deux sous-réseaux dentques pour un sstème bnare III modèle à deux sous-réseau non- dentque pour un sstème ternare III modèle à deux sous-réseau non- dentque pour un sstème bnare..53 III modèle à deux sous-réseaux présentant du lacune pour un sstème bnare...54 III-4-généralsaton du modèle CEF..55 III-5-La transformaton ordre désordre..56 III-6- Modélsaton de la réacton ordre-désordre..57 III-7-Modélsaton de l ordre à courte dstance...58 III-8-pplcaton du modèle aux dfférentes phases..59 III-8-- Modélsaton des phases de structure B2.59 III-8-2- Modélsaton de la phase σ et χ.6 III-8-3- Modélsaton de la phase B 2 (phases de laves)..62 III-8-4 -modélsaton de la phase CFC ( L2,, L0) III-9 concluson PDF created wth pdffactor Pro tral verson

7 Chaptre IV ETUDE DES SYSTEME BINIRE PR L METHODE DES SOUS-RESEUX IV-- ntroducton 74 IV-2-Présentaton du programme BTNBIN..74 IV -3- Méthode de calcul...75 IV-4-Présentaton du programme PNDT IV-5-Etude du sstème Cobalt-ntmone IV-5--Les données expérmentales IV-5-2-Resultats et dscusson...78 IV-6-Etude du sstème Cadmum-ntmone:.85 IV-6--Les données expermentales..85 IV-6-2- Resultats et dscusson...84 Concluson générale..90 Bblographe..92 nnexe PDF created wth pdffactor Pro tral verson

8 INTRODUCTION ENERLE PDF created wth pdffactor Pro tral verson

9 Chaptre I llages et dagrammes de phases Introducton générale Les métaux purs sont très rarement utlsés dans les constructons ndustrelles car ls présentent souvent des caractérstques mécanques très lmtées, et la plupart des matéraux de constructon sont consttués de dfférents éléments. Lorsque ces éléments ne sont que partellement mscbles, le matérau est consttué de pluseurs phase de structures crstallnes et de compostons dfférentes. Il en résulte une nfluence très mportante sur les caractérstques mécanques du matérau et son comportement. L étude de la mcrostructure du matérau consste à détermner la nature des dfférentes phases en présence, leurs proportons et leurs consttutons. Cette analse se fat à partr des dagrammes d équlbres de phases qu tradusent les états d équlbre entre les dfférentes phases. Le dagramme de phases d un mélange est llustraton graphque des condtons de température, de presson et de composton aux quelles les dfférentes phases de ce mélange sont thermodnamquement stables. Il se caractérse par : le nombre de phase, le nombre de consttuants et le degré de lberté. Les dagrammes de phases présentent souvent des phases lqudes, soldes prmares, des composés défns et des phases ntermédares non-stoechométrques. Pour calculer un dagramme de phase l est ndspensable de modélser ces dfférents tpes de phases par dfférents modèles exstant dans la lttérature. Notamment, les polnômes de Redlch-Kster sont souvent utlsés pour la modélsaton de l enthalpe d excès des solutons soldes désordonnées prmare. Mas les phases ntermédares ordonnées consdérées pendant longtemps comme stoechométrques dans un but de smplfer leurs tratements sont aujourd hu modélsés par la méthode des sous-réseaus régulères de Hllert et Staffanson (997) ntalement développé pour les solutons salnes par Temekn. Son formalsme très général permet de prendre également en compte les solutons ntersttelles et lacunes et s applque pratquement à tous les tpes de solutons ntermédares non-stoechométrques [,2] L dée générale du modèle est venue de la représentaton des solutons de sels pour les quels les consttuants sont sot des anons, sot des catons qu ne se permutent qu entre on de même sgnes, c est le modèle de Temekn. Il a été supposé que dans un crstal onque ls exstent deux sous réseaux. L entrope confguratonnelle à été décrte séparément pour les - - PDF created wth pdffactor Pro tral verson

10 Chaptre I llages et dagrammes de phases catons et anons. Plus tard le modèle à été utlsé pour les sstèmes métallques par Hllert et l a été adapté pour les sous réseaux multples par Sundman et gren [3,4]. Dans le cadre des sstèmes métallques, l hpothèse de pluseurs sous réseaux n a aucun sens phsque. Les termes plus corrects et utlsés actuellement sont Sublattce Formalsm ou Compound Energ Formalsm (CEF). Ce derner a été applqué à la modélsaton d une grande varété de phases et des méthodes ont été développées pour trater dfférentes stuatons. [5] Notre traval comporte les partes suvantes : Dans le premer chaptre on présente un rappel bblographque sur les allages et dfférents tpes de dagrammes de phases. Le deuxème chaptre est consacré à l étude des bases thermodnamque des dagrammes de phases ans que la méthode d optmsaton et d établssement des dagrammes de phases connue sous le nom CLPHD qu se base sur la mnmsaton des enthalpes lbre. Les dfférents modèles utlsés dans le calcul ont été également présentés. Le trosème chaptre est une étude détallée sur le modèle des sous-réseaux. près une présentaton générale de ce modèle avec les cas partculers, on donne les formules des enthalpes lbres d excès pour chaque structure possble des phases ntermédares. Dans le derner chaptre on a optmsé deux sstèmes bnares (Co-Sb) (Cd-Sb) en utlsant deux code de calcul BTNBIN et PNDT [6] PDF created wth pdffactor Pro tral verson

11 Chaptre I llages et dagrammes de phases I--llage Un allage est une combnason d'un métal avec un ou pluseurs autres éléments chmques. Un métal pur a des caractérstques mécanques relatvement fables. Le fat d'ajouter d'autres éléments permet de «durcr» (augmenter les caractérstques mécanques). Également, ces ajouts permettent de modfer les caractérstques chmques des métaux (en partculer leur comportement à la corroson) ou d'amélorer d'autres caractérstques (faclté de mse en œuvre : coulablté par exemple). Le métal prncpal, la plus mportante parte du mélange, est appelé «métal de base» ou «base». Les éléments ajoutés volontarement sont appelés «éléments d'allage» (ou d'addton) et les éléments non désrés sont appelés «mpuretés». Les éléments d'allages sont le plus souvent des métaux, mas peuvent également être d'autres éléments chmques : le carbone dans l'acer ou la fonte, le slcum dans l'alumnum, etc. I--- llage homogène Un allage homogène peut être ordonné (les atomes de dfférentes natures suvent une alternance strcte) ou désordonné (les dfférents atomes occupent des places aléatore (Fg- I-)). a (a) allage désordonné Fgure-I- : b (b) allage ordonné I--2- llage hétérogène Lorsque la teneur en élément d'allage augmente, on peut avor formaton de deux phases : une phase contenant peu d'éléments d'allage, et une phase à forte teneur en éléments d'allage (Fg-I-2). Les crstalltes à forte teneur sont appelées «précptés». Les précptés sont souvent des allages ordonnés, que l'on appelle «ntermétallques». Les ntermétallques ans formés PDF created wth pdffactor Pro tral verson

12 Chaptre I llages et dagrammes de phases sont parfos par la sute étudés en tant qu'allages propres, comme un nouveau matérau, et on essae d'en produre en tant que tel et non plus en tant que précptés [7]. Fgure- I-2 : llage hétérogène I-2- La phase Pour défnr l dée actuelle attachée au concept de phases, tros crtères dovent être prs en compte pour défnr et dentfer une phase à l ntéreur d un sstème : I-2-- Homogénété de la composton : Pour mesurer la concentraton locale d une phase, l faut procéder à la l analse chmque d un certan prélèvement volumque de la substance. Il est certan qu l faut précser la valeur de ce volume de prélèvement s la défnton d homogénété dot avor un sens. En effet un volume de l ordre de quelque ngstrom au cube solerat l atome, ce qu est une entté trop pette pour apprécer l homogénété d un mélange. Un volume mportant permettrat, au contrare, des erreurs d nterprétaton dans le cas de phases dspersées lées entre elles on peut donc, penser que le mcron cube est une échelle ntéressante de prélèvement. Pour les phases soldes, l exste précsément un nstrument d analse chmque qu analse les dverses substances à l ntéreur du (μm) 3, c est la mcrosonde de castng. Le prncpe de cet nstrument consste à excter, par l mpact d un fasceau électronque pontu, les atomes de la matère d une cble (Fg. I-3). Envron μm 3 de matère excté partcpe alors à l émsson d un spectre de raon X, qu est analsé dans un spectrographe. Les longueurs d ondes émses sont caractérstques de la nature chmque des atomes et les ntenstés sont proportonnelles aux fractons massques (atomques). Cet nstrument convent donc relatvement ben pour vérfer l homogénété des concentratons chmques dans les phases soldes PDF created wth pdffactor Pro tral verson

13 Chaptre I llages et dagrammes de phases D autre part, la thermodnamque phénoménologque est toujours globalsante par rapport à la réalté du matérau. Il exste dans le volume même d une phase réputé homogène, des fluctuatons locales de concentratons lées à la dffuson de la matère. Ces fluctuatons peuvent être aléatore ou ben s organser en ondulatons de longueur d onde défne, par exemple, dans le mécansme de décomposton spnodale. En général, on ne dot pas consdérer une fluctuaton locale de concentraton comme un changement de phase. De la même façon un gran fraîchement crstallsé à partr d un lqude complexe présente toujours une hétérogénété de composton entre le cœur et la surface de ces dendrtes. On ne dot pas pour autant le consdérer comme sstème polphasé, mas comme une seule phase n aant pas encore totalement attent son état d équlbre [8]. Fgure - I-3 : Prncpe de l analse par mcrosonde électronque de Castang. I-2-2- Structure d une phase Le crtère d analse n est pas suffsant pour s assurer de l uncté d une phase dans un volume donné de matère, même très pett. Or une même phase ne peut posséder qu une organsaton structurale. On peut donc reler la noton de phase à celle de structure crstallne. La matère peut avor une structure de tpe amorphe ou crstallsé. On dot consdérer comme un changement de phase tout passage amorphe crstal ou tout changement de groupe de smétre crstallne [8]. I-2-3- spect densté ou masse volumque d une phase l ntéreur d une même phase, on ne dot pas non plus observer une dscontnuté de densté local. Ce crtère de densté pourrat être rattaché à la noton d homogénété de concentraton volumque à la place des fractons molares ou massques. Sot ρ la masse volumque local d un élément ΔV de matéraux PDF created wth pdffactor Pro tral verson

14 Chaptre I llages et dagrammes de phases l ntéreur d une même phase ρ ne dot pas subr aucune dscontnuté. Les fluctuatons de matère par dffuson et les fluctuatons locales de volume nterdsent de poser de façon absolue ρ= cte. Mas en pratque, on se rapproche de cette condton lorsque la phase est dans son état d équlbre [8]. I-3-Les solutons soldes Les solutons soldes sont des agrégats, chmquement homogènes, résultant de l'addton d'un ou de pluseurs éléments étrangers (éléments d'allage) dans un métal pur lorsque ce derner est présent en fable teneur dans un allage. Il s agt de mélanges ntmes à l échelle atomque dont les atomes du métalloïde ou du métal B peuvent entrer en soluton dans le métal (souvent appelé matrce) [9]. Dans certans cas, les métaux en présence sont mscbles en toute proporton. C'est le cas par exemple de l'or (u) et de l'argent (g) qu forment une soluton solde contnue. La plupart du temps, l exste une concentraton lmte (lmte de solublté) en atomes de soluté au delà de laquelle la structure crstallne est modfée. Dans l'ntervalle de concentraton borné par cette concentraton lmte, la soluton solde est dte prmare ou termnale (exemple le laton α ). u delà de cette concentraton, les deux consttuants peuvent former une soluton solde aant une structure crstallne dfférente de celle du métal de base : l s'agt d'une soluton solde ntermédare (exemple le laton β ). On observe également des solutons dont l'exstence n'est possble que dans un domane de concentraton lmté : on dt alors que les consttuants forment un composé défn. Les atomes étrangers peuvent entrer en soluton avec le métal de base sot en se substtuant à ses atomes, on parle alors de soluton solde de substtuton ; Sot en se plaçant aux nterstces de son réseau, on parle alors de soluton solde d'nserton. On peut dstnguer ces deux tpes de solutons soldes par des mesures combnées de densté et de paramètre crstalln (par dffracton de raons X) [0]. I-3--Les solutons soldes prmares Sont des solutons soldes formées à partr du solvant pur ou du soluté pur. Elles ont évdemment la structure crstallographque du métal pur dont elles dérvent. S les deux métaux purs ont même structure crstallographque, la soluton peut être contnue. Les PDF created wth pdffactor Pro tral verson

15 Chaptre I llages et dagrammes de phases solutons soldes prmares sont défnes par la lmte de solublté du ou des éléments d'allages (B) dans le métal de base (). Un certan nombre de règles emprques, appelées règles de Hume-Rother, permet d'évaluer qualtatvement cette grandeur [0]: Effet de talle Effet de l'électronégatvté (polarsaton) Effet de valence : Effet de concentraton électronque : En résumé, l est sans doute llusore de voulor trouver des concentratons magques qu régraent la stablté de dverses phases. Mas l n en est pas mons vra que la concentraton électronque est un paramètre utle pour classer les phases métallques. I-3-2-Les solutons soldes d'nserton (ou ntersttelles) Lorsque le raon atomque de l'élément B est suffsamment fable, cet élément peut occuper les stes ntersttels de la structure. Seuls les atomes de fable damètre pourront condure à des solutons soldes de ce tpe, par exemple C, N, O, H, B []. Il faut que le raon de l atome ntersttel ne dépasse pas 59 % de celu de la matrce. Les solutons soldes ntersttelles sont surtout rencontrées dans les métaux de transton (ou de terres rares, ou d actndes). Cela est sans doute dû à la faclté de créer une lason covalente de forte énerge entre les orbtales de valence d d un métal de transton et les orbtales s et p des atomes légers préctés. Dans les métaux alcalns, beaucoup plus électropostfs, l a tout de sute tendance à former un composé onque tel que L+ H. Les solutons soldes ntersttelles ont toujours un caractère métallque marqué. Les solutons soldes ntersttelles peuvent présenter des phénomènes d ordre: par exemple, le carbone dssous dans le tantale peut s ordonner pour donner une phase Ta 64 C [0]. I-3-3-Les Solutons Soldes de Substtuton La plupart des solutons soldes sont des solutons soldes de substtuton : les atomes étrangers occupent une fracton des stes rétculares à la place des atomes de base. La structure crstallne est en général nchangée mas le paramètre de malle vare avec la concentraton en atomes étrangers. Les atomes de base et de l'élément d'allage peuvent être réparts complètement au hasard sur les dvers stes du réseau et la soluton est dte PDF created wth pdffactor Pro tral verson

16 Chaptre I llages et dagrammes de phases désordonnée, c'est le cas quand les deux éléments consttuants sont parfatement équvalents (même structure crstallne et dmensons atomques vosnes). Dans d'autres cas, l a une tendance plus ou mons marquée à l'acquston d'un ordre (soluton ordonnée) ou à un rassemblement d'atomes du même tpe comme cela est ndqué sur la fgure-i-4. Soluton désordonnées Soluton parfatement ordonnées Rassemblement Fgure- I-4 : Tpe de solutons soldes de substtuton. I-3-4-Les Solutons soldes ntermédares Quand les deux tpe d atomes métallques et B sont de talles très dfférentes, ls ont tendance à former des composés ordonnés dont le domane de composton est souvent très étrot. Le domane d'exstence de ces phases ntermédares évoquées précédemment est comprs entre deux valeurs lmtes de la concentraton en élément d'addton. Lorsque la phase ntermédare n'exste qu'à l'état ordonné, on parle de composé ntermétallque ou composé défn. Ces composés ne sont généralement stables que sur des domanes de concentraton beaucoup plus étrots que les solutons soldes ntermédares désordonnées. uss, peut-on les qualfer de composés stœchométrques ben que l'écart à la stœchométre sot parfos très mportant. Suvant les cas, ces composés ont un caractère métallque plus ou mons marqué. Ce caractère décroît quand on passe des solutons soldes ntermédares aux composés ntermétallques à caractère plus ou mons covalent (ou onque). pproxmatvement, on peut classer les phases ntermédares en pluseurs ensembles : solutons soldes ordonnées, désordonnées (ou à fable énerge de mse en ordre), composé ntermétallques ordonnés PDF created wth pdffactor Pro tral verson

17 Chaptre I llages et dagrammes de phases I Solutons ordonnées et désordonnées Les phases ntermédares peuvent être désordonnées ou ordonnées suvant q un ste du réseau crstalln est occupé ndfféremment par un tpe ou B, ou au contrare préférentellement par un atome de ces atomes []. Une soluton solde est désordonnée s la probablté de trouver un atome en un ste donné ne dépend pas de la nature des atomes occupant les stes vosns. Dans ce cas, les deux éléments en présence dovent être équvalents. Les solutons sont rarement déalement désordonnées. Une soluton solde est complètement ordonnée s chaque tpe d atome correspond un tpe de ste donné. Dans ce cas, les lasons entre les atomes des deux éléments sont énergétquement favorsées par rapport aux lasons entre atomes de même tpe. haute température, l'ordre sera détrut par l'agtaton thermque qu provoque un brassage permanent des atomes sur les dvers stes. La structure ordonnée dsparaît à partr d'une température crtque Tc (température de transformaton ordre-désordre). Les phénomènes d ordre se rencontrent auss ben dans les solutons de substtuton que d nserton [2]. La fgure I-5 donne quelques exemples de structures ordonnées. a b C Fgure- I-5 : Exemple de structures ordonnées a- malle CFC(L 0 ) -b- malle CFC(L 2 ) -c- malle CC(L 2 ) La structure L 0 (tpe ucu) C'est une structure CFC formée par l'alternance de plans (00) d'atomes de (Cu) et de plans (00) d'atomes de (u). Le cube perd ans certans de ses éléments de smétre. La structure ordonnée devent quadratque avec c/a = 0,93 correspondant à un effet stérque de tassement de la structure. La structure L 2 (tpe ucu3) C'est également une structure CFC dans laquelle les atomes d'une espèce se trouvent aux sommets du cube et les atomes de l'autre espèce se trouvent aux centres des faces du PDF created wth pdffactor Pro tral verson

18 Chaptre I llages et dagrammes de phases cube, ce qu correspond dans le cas de u et Cu à la composton stœchométrque ucu 3. La smétre de la malle n'est plus cubque à faces centrées mas cubque smple. La structure L 2 (tpe CsCl ou laton beta) Le laton β a une structure CC. Pour la composton équatomque, la structure ordonnée présente une alternance de plans de Cu et de Zn du tpe (00) ; une espèce d'atomes occupe le centre du cube et l'autre les sommets du cube. La smétre cubque centrée est perdue, elle devent cubque smple. I Composés ntermétallques ordonnés (Composés défns) On dstngue généralement pour les composés ntermétallques : Les composés électronques (phases de Hume-Rothr) tels que : CuZnβ, Cu 3 l ou Cu 5 Sn. Les phases de Laves : du tpe B2 ordonné ou le rapport des raons atomques Ra /rb est souvent vosn de.2 et qu peuvent se présenter sous tros formes: MgZn 2 (hexagonal), MgCu 2 (cubque), Cul 2. ou MgN 2 (hexagonal) [0]. les phases σ qu apparassent dans de nombreux allages de métaux de transton par exemple autour de la composton équatomque dans le dagramme (Fe-Cr) sont souvent consdérées comme appartenant à cette catégore. Elles ont pourtant un domane d exstence assez étendu. Leurs structures sont complexes []. I-4- Structures et dénomnatons des phases métallques Les métallurgstes ont toujours utlsé des dénomnatons partculères pour désgner les structures crstallnes des phases soldes. Pour les métaux purs, la structure peut être décrte par un emplement de sphères dures au contact les unes des autres et qu représentent les atomes onsés. Ces emplements de sphères se dvsent en deux grandes famlles, les emplements compacts ou chaque sphère possède 2 premers vosns et les emplements non compacts dont le prncpal représentant possède 8 premers vosns autour d une sphère centrale. Et pour plus de smplcté des structures métallques, Ewald et Hermann avaent magné une classfcaton appelée «Strukturbercht» qu a état abandonnée parce qu elle présentat des contradctons nternes et qu elle n état pas exhaustve. Mas pratquement l utlsaton de ces notatons est encore contnue, souvent sans en connaître la sgnfcaton. C est pourquo nous donnons quelques clefs pour en comprendre la logque [3] PDF created wth pdffactor Pro tral verson

19 Chaptre I llages et dagrammes de phases Les corps purs et les solutons soldes prmares sont notés n, n représente le numéro dans la lste des structures des métaux purs et comprend ou 2 chffres. Les deux prncpaux emplements compacts sont ans, structure cubque à faces centrées et 3, structure hexagonale compacte. La structure non compacte la plus souvent rencontrée est cubque, centrée et s appelle 2. Il est remarquable de constater que 90 % des métaux purs crstallsent dans l une des structures, 2, ou 3. Les solutons soldes ntermédares et les composés défns sont notés B n, C n et DI n, selon que leur stoechométre est respectvement / comme lfe, /2 comme ul 2 ou plus complexe. Le chffre I dans DI n désgne la stoechométre partculère, par exemple D0 n désgne la stoechométre /3 comme lfe 3 ; dans tous les cas n est un numéro dans la sére consdérée et qu comporte ou 2 chffres. Les phases ordonnées qu se rattachent à la structure désordonnée n sont auss appelées L nm le numéro n est dentque dans les deux structures ordonnée et désordonnée tands que l ndce m est le numéro dans la sére engendrée. Par exemple, la structure cubque à faces centrées engendre fréquemment deux varétés ordonnées : L 0 comme ucu ou lt et L 2 comme ucu 3 ou ln 3. C est ce jeu de double entrée qu provoque l ncohérence de cette classfcaton, par exemple les phases ordonnées non compactes CuZn ou lfe se rattachent à la structure désordonnée 2 et à ce ttre s appellent L 20 mas elles possèdent la stoechométre / et pour cela s appellent auss B 2 [4]. I-4--roupe d espace Il est van de voulor construre une classfcaton crstallographque smplfée pour les seules solutons soldes métallques car les varétés crstallnes des solutons ntermédares aujourd hu connues couvrent un très large évental des groupes d espace. On sat que la crstallographe dstngue 7 groupes crstallns, selon la forme extéreure de la malle, 4 modes de Bravas qu permettent par un jeu de malle multple de ne pas masquer la plus haute smétre d une structure, 32 groupes d espace appelés groupes fns, basés sur la combnason autour d un pont, les éléments de smétre ne comportant pas de translaton et 230 groupes nfns en ncluant la translaton dans les éléments de smétre. On a trouvé des solutons soldes ntermédares appartenant pratquement à tous ces groupes d espace. lors que la notaton smplfé devent mpossble [4]. - - PDF created wth pdffactor Pro tral verson

20 Chaptre I llages et dagrammes de phases I-4-2-Notaton Pearson ujourd hu envron cas. Les notatons Pearson sont extrêmement smples : une lettre mnuscule désgne la premère lettre du sstème crstalln de la phase consdérée, suve d une lettre majuscule qu est le mode de Bravas, suve enfn du nombre d atomes par malle. ns les structures, 2 et 3 sont notées respectvement cf 4, ci 2, et hp 2, (F comme Faces centrées, I comme Intéreur centré, P comme Prmtf). Dans les ancens recuels de dagrammes de phases le texte descrptf des structures des phases soldes se réfère essentellement aux notatons du Strukturbercht et s nécessare aux groupes d espace des crstallographes. ctuellement les tros désgnatons de structure sont données comme sut : Pearson, groupe d espace et Strukturbercht ans que la phase prototpe. Par alleurs, Hume- Rother a ntrodut ces phases sur le tracé du dagramme qu sont souvent désgnées par des lettres grecques. Ces phases sont des analoges structurales (phases appelées composés électronques) observées dans les allages de cuvre, d argent et d or pour une même valence moenne, pus elle s est étendue à de très nombreux dagrammes ; pour cette notaton on prend souvent les lettres grecques dans leur ordre alphabétque en composton crossante de l élément B. Exemple : dans les latons (Cu,Zn), on rencontre successvement les solutons soldes a (cf4, Fm m,, Cu), β (ci2, Im m, 2, W), β (cp2, Pm m, B2, CsCl), γ (ci52, I 3 m, D82, Cu5Zn8), δ = β, ε (hp2, P63/mmc, 3, Mg) et η = ε. Les phases β et β sont en relaton ordre «désordre : l utlsaton de l apostrophe pour désgner la varante ordonnée est fréquente. Parfos auss l apostrophe désgne une phase martenstque qu n est pas une phase d équlbre thermodnamque. [4]. I-5- Les Dagrammes de phases bnare Le dagramme d'équlbre d'un sstème est une représentaton graphque des domanes d'exstence, en foncton des varables d'état (c, T) des dfférents états sous lesquels ce sstème exste à l'équlbre thermodnamque. Un dagramme d'équlbre répond à la queston : la réacton chmque est elle thermodnamquement possble? utrement dt, pour un sstème bnare (2 composants), un dagramme d'équlbre permet de représenter les domanes de stablté des phases et les condtons d'équlbre entre pluseurs phases en foncton de la température et de la composton PDF created wth pdffactor Pro tral verson

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta hermodynamque statstque Master Chme Unversté d Ax-Marselle Bogdan Kuchta Plan: Rappel: thermodynamque phénoménologque (dscuter l entrope, l évoluton de gaz parfat,) Premer prncpe Deuxème prncpe (transformaton

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation Integral T 3 Compact raccordé aux nstallatons Integral 5 Notce d utlsaton Remarques mportantes Remarques mportantes A quelle nstallaton pouvez-vous connecter votre téléphone Ce téléphone est conçu unquement

Plus en détail

Interfaces Windows 8 et Bureau

Interfaces Windows 8 et Bureau Interfaces Wndows 8 et Bureau Interfaces Wndows 8 et Bureau Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître sur son écran la toute

Plus en détail

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels 9 Nature & Technology Applcaton du système mmuntare artfcel ordnare et améloré pour la reconnassance des caractères artfcels Hba Khell a, Abdelkader Benyettou a a Laboratore Sgnal Image Parole SIMPA-,

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS AVERTISSEMENT Ce document est le frut d un long traval approuvé par le jury de soutenance et ms à dsposton de l ensemble de la communauté unverstare élarge. Il est soums à la proprété ntellectuelle de

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr Modélsatons du rsque en assurance automoble Mchel Grun-Rehomme Unversté Pars 2 et Ensae Emal: grun@ensae.fr 1 Modélsatons du rsque en assurance automoble La snstralté est mesurée en terme de fréquence

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

MODÈLE D ISING À UNE ET DEUX DIMENSIONS.

MODÈLE D ISING À UNE ET DEUX DIMENSIONS. Chapter MODÈLE DISIG À UE ET DEUX DIMESIOS.. ITRODUCTIO. ous commençons, dans ce chaptre, létude dun problème de mécanque statstque de la matère condensée où leffet des nteractons est mportant. Le modèle

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG)

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG) UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE L INFORMATION ET DES MATÉRIAUX Année 2006 N attrbué par la bblothèque Méthodes d Extracton de Connassances à partr

Plus en détail

T3 Comfort raccordé a IP Office

T3 Comfort raccordé a IP Office IP Telephony Contact Centers Moblty Servces T3 Comfort raccordé a IP Offce Benutzerhandbuch User's gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Sommare Sommare Se famlarser

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4 GEMINI-E3 XL France Un outl destné à l étude des mpacts ndustrels de poltques énergétques et envronnementales VIELLE Marc CEA-IDEI Janver 1998 I LA STRUCTURE DU MODELE GEMINI-E3 XL FRANCE 3 1 La nomenclature

Plus en détail

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD Conservatore atonal des Arts et Méters Chare de BAQUE Document de recherche n 9 Impôt sur la fortune et nvestssement dans les PME Professeur Dder MAILLARD Avertssement ovembre 2007 La chare de Banque du

Plus en détail

Be inspired. Numéro Vert. Via Caracciolo 20 20155 Milano tel. +39 02 365 22 990 fax +39 02 365 22 991

Be inspired. Numéro Vert. Via Caracciolo 20 20155 Milano tel. +39 02 365 22 990 fax +39 02 365 22 991 Ggaset SX353 / französsch / A31008-X353-P100-1-7719 / cover_0_hedelberg.fm / 03.12.2003 s Be nspred www.onedrect.fr www.onedrect.es www.onedrect.t www.onedrect.pt 0 800 72 4000 902 30 32 32 02 365 22 990

Plus en détail

Recherche universitaire et crédits d impôt pour R-D

Recherche universitaire et crédits d impôt pour R-D Fscalté Recherche unverstare et crédts d mpôt pour R-D Le 27 novembre 2001 Nancy Avone, CA Inctatfs fscaux à la R-D très généreux dsponbles Étude du Conference Board du Canada en 1998 Québec Jurdcton au

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008 THÈSE En vue de l'obtenton du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délvré par l'unversté Toulouse III - Paul Sabater Spécalté : Informatque Présentée et soutenue par Meva DODO Le 06 novembre 2008 Ttre

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

CHAPITRE DEUX : FORMALISME GEOMETRIQUE

CHAPITRE DEUX : FORMALISME GEOMETRIQUE CHPITRE DEUX FORMLISME GEOMETRIQUE. CHPITRE DEUX : FORMLISME GEOMETRIQUE verson.3, -8 I. GEOMETRIE DNS L ESPCE-TEMPS ) Prncpe de relatvté Le prncpe de relatvté peut s exprmer ans : toutes les los physques

Plus en détail

Mode d'emploi. Servomoteur radiofréquence 1187 00

Mode d'emploi. Servomoteur radiofréquence 1187 00 Mode d'emplo Servomoteur radofréquence 1187 00 Table des matères A propos de ce mode d'emplo... 2 Représentaton de l'apparel... 3 Montage... 3 Démontage... 3 Almentaton... 4 Mettre la ple en place... 4

Plus en détail

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette WINDOWS 10 Prse en man de votre ordnateur ou votre tablette Table des matères Wndows 10 L envronnement Wndows 10 sur un ordnateur Wndows 10 : les nouveautés................................ 7 Démarrer Wndows

Plus en détail

Série A Septembre 2008

Série A Septembre 2008 Sére A Septembre 2008 Sommare Notce avec encadré* 3 Annexe à la Notce 17 UFEP : extrat des statuts 27 *Cet encadré a pour objet d attrer l attenton de l adhérent sur certanes dspostons essentelles de la

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Elayeb Bilel Le 26 juin 2009

En vue de l'obtention du. Présentée et soutenue par Elayeb Bilel Le 26 juin 2009 THÈSE En vue de l'obtenton du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délvré par Insttut Natonal Polytechnque de Toulouse (INPT) Dscplne ou spécalté : Informatque Présentée et soutenue par Elayeb Blel Le

Plus en détail

Les méthodes numériques de la dynamique moléculaire

Les méthodes numériques de la dynamique moléculaire Les méthodes numérques de la dynamque moléculare Chrstophe Chpot Equpe de chme et & bochme théorques, Unté Mxte de Recherche CNRS/UHP 7565, Insttut Nancéen de Chme Moléculare, Unversté Henr Poncaré, B.P.

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune Marc Bourreau Abel Franços Jun 2006 Département Scences Economques et

Plus en détail

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL Bogdan HORBANIUC, Gheorghe DUMITRASCU, Andre DUMENCU UNIVERSITÉ TECHNIQUE GHEORGHE ASACHI, Iaș, Roumane

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune a, Marc Bourreau a,b et Abel Franços a,c a Télécom ParsTech, Département

Plus en détail

Prêts bilatéraux et réseaux sociaux

Prêts bilatéraux et réseaux sociaux Prêts blatéraux et réseaux socaux Quand la sous-optmalté condut au ben-être collectf Phlppe Callou, Frederc Dubut et Mchele Sebag LRI, Unverste Pars Sud F-91405 Orsay France {callou;dubut;sebag}@lr.fr

Plus en détail

THESE. Khalid LEKOUCH

THESE. Khalid LEKOUCH N d ordre : /2012 THESE Présentée à la FACULTE DES SCIENCES D AGADIR En vue de l obtenton du GRADE DE DOCTEUR EN PHYSIQUE (Spécalté : Energétque, Thermque et Métrologe) Par Khald LEKOUCH MODELISATION ET

Plus en détail

Le Prêt Efficience Fioul

Le Prêt Efficience Fioul Le Prêt Effcence Foul EMPRUNTEUR M. Mme CO-EMPRUNTEUR M. Mlle Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Départ. de nass. Nature de la pèce d dentté : Natonalté : CNI Passeport Ttre de séjour N : Salaré Stuaton

Plus en détail

Études & documents ÉCONOMIE ET ÉVALUATION. Consommation de carburant : effets des prix à court et à long termes par type de population.

Études & documents ÉCONOMIE ET ÉVALUATION. Consommation de carburant : effets des prix à court et à long termes par type de population. COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 40 Avrl 20 TRANSPORT Études & documents Consommaton de carburant : effets des prx à court et à long termes par type de populaton ÉCONOMIE ET ÉVALUATION Servce

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

La théorie classique de l information. 1 ère partie : le point de vue de Kolmogorov.

La théorie classique de l information. 1 ère partie : le point de vue de Kolmogorov. La théore classque de l nformaton. ère parte : le pont de vue de Kolmogorov. La sute de caractères comme outl de descrpton des systèmes. La scence peut être vue comme l art de compresser les données quelles

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

santé Les arrêts de travail des séniors en emploi

santé Les arrêts de travail des séniors en emploi soldarté et DOSSIERS Les arrêts de traval des sénors en emplo N 2 2007 Les sénors en emplo se dstnguent-ls de leurs cadets en termes de recours aux arrêts de traval? Les sénors ne déclarent pas plus d

Plus en détail

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE UNIVERSITE MONTPELLIER 2 Département de Physque TRAVAUX PRATIQUES DE SPECTRO- COLORIMETRIE F. GENIET 2 INTRODUCTION Cet ensegnement de travaux pratques de seconde année se propose de revor rapdement l'aspect

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Conception de l architecture d un système dirigée par un modèle d urbanisme fonctionnel

Conception de l architecture d un système dirigée par un modèle d urbanisme fonctionnel Concepton de l archtecture d un système drgée par un modèle d urbansme fonctonnel Jacques Smonn To cte ths verson: Jacques Smonn. Concepton de l archtecture d un système drgée par un modèle d urbansme

Plus en détail

Gigue temporelle et ordonnancement par échéance dans les applications temps réel

Gigue temporelle et ordonnancement par échéance dans les applications temps réel L. Davd, F. Cottet, E. Grolleau. Ggue temporelle et ordonnancement par échéance dans les applcatons temps réel. IEEE Conf. Inter. Francophone d Automatque (CIFA2000), Jullet 2000, Llle, France. Ggue temporelle

Plus en détail

Professionnel de santé équipé de Médiclick!

Professionnel de santé équipé de Médiclick! Professonnel de santé équpé de Médclck! Dosser Médcal Partagé en Aqutane Ce gude vous présente les prncpales fonctonnaltés réservées aux professonnels de santé membres du réseau AquDMP. Sommare Connexon

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

Dérivés actions: risques un (rapide) aperçu

Dérivés actions: risques un (rapide) aperçu Dérvés actons: rsques un (rapde) aperçu Lorenzo Bergom Equty Dervatves Quanttatve Research océté Générale lorenzo.bergom@sgcb.com 33 4 3 3 95 Introducton - le Dow Jones 9-6 () 4 Dow Jones Industral Average

Plus en détail

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par UNIVERSITE DE TUNIS EL MANAR FACULTE DES SCIENCES DE TUNIS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON FORMATION DOCTORALE EN INFORMATIQUE THESE présentée en vue de l obtenton du Doctorat en Informatque

Plus en détail

Paquets. Paquets nationaux 1. Paquets internationaux 11

Paquets. Paquets nationaux 1. Paquets internationaux 11 Paquets Paquets natonaux 1 Paquets nternatonaux 11 Paquets natonaux Servces & optons 1 Créaton 3 1. Dmensons, pods & épasseurs 3 2. Présentaton des paquets 4 2.1. Face avant du paquet 4 2.2. Comment obtenr

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P. 13734 Brazzavlle BAMSI REPRINT 04/2003 Introducton

Plus en détail

Bibliothèque de documents

Bibliothèque de documents Bblothèque de documents Bblothèque de documents SharePont 2010 Vue d ensemble Dans un ste SharePont, les bblothèques permettent de stocker des éléments de types dfférents : des documents, des mages, des

Plus en détail

L indice suisse des prix de la construction Octobre 2010=100

L indice suisse des prix de la construction Octobre 2010=100 Département fédéral de l ntéreur DFI Offce fédéral de la statstque OFS Actualtés OFS 5 Prx Neuchâtel, jullet 211 L ndce susse des prx de la constructon Octobre 21=1 Aperçu méthodologque Rensegnements:

Plus en détail

Analyse des Performances et Modélisation d un Serveur Web

Analyse des Performances et Modélisation d un Serveur Web SETIT 2009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March 22-26, 2009 TUNISIA Analyse des Performances et Modélsaton d un Serveur Web Fontane RAFAMANTANANTSOA*,

Plus en détail

Prêt de groupe et sanction sociale Group lending and social fine

Prêt de groupe et sanction sociale Group lending and social fine Prêt de roupe et sancton socale Group lendn and socal fne Davd Alary Résumé Dans cet artcle, nous présentons un modèle d antsélecton sur un marché concurrentel du crédt. Nous consdérons l ntroducton de

Plus en détail

Calculs des convertisseurs en l'electronique de Puissance

Calculs des convertisseurs en l'electronique de Puissance Calculs des conertsseurs en l'electronque de Pussance Projet : PROGRAMMAON ate : 14 arl Auteur : herry EQUEU. EQUEU 1, rue Jules Massenet 37 OURS el 47 5 93 64 herry EQUEU Jun [V37] Fcher : ESGN.OC Calculs

Plus en détail

INTERNET. Initiation à

INTERNET. Initiation à Intaton à INTERNET Surfez sur Internet Envoyez des messages Téléchargez Dscutez avec Skype Découvrez Facebook Regardez des vdéos Protégez votre ordnateur Myram GRIS Table des matères Internet Introducton

Plus en détail

La Quantification du Risque Opérationnel des Institutions Bancaires

La Quantification du Risque Opérationnel des Institutions Bancaires HEC Montréal Afflée à l Unversté de Montréal La Quantfcaton du Rsque Opératonnel des Insttutons Bancares par Hela Dahen Département Fnance Thèse présentée à la Faculté des études supéreures en vue d obtenton

Plus en détail

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ INTERET UN MOELE MATHEMATIQUE AN LA COMPARAION E L EFFICACITE E IFFERENTE TRATEGIE E PREVENTION UR LA REITANCE AU PORTAGE A ALMONELLA ENTERITII CHEZ LA POULE Prévost Kevn 1,, Magal Perre 1, Beaumont Catherne

Plus en détail