DIOGENE. Un logiciel de Génétique & Amélioration des Plantes

Dimension: px
Commencer à balayer dès la page:

Download "DIOGENE. Un logiciel de Génétique & Amélioration des Plantes"

Transcription

1 DIOGENE Un logiciel de Génétique & Amélioration des Plantes Utilisateurs Etudiants (DEA, thèse) Chercheurs confirmés (INRA, CIRAD, Universités Laval et Lyon 1) Gestionnaires de programmes d Amélioration, techniciens & ingénieurs (INRA, CIRAD, CEMAGREF ) Etat actuel Intégration de Biométrie générale, Génétique Quantitative & Génétique des Populations. Structure modulaire. Modèles originaux (Interaction Génotype x Environnement, méthodes de sélection, statistiques spatiales : Papadakis++ ) Utilisable en mode «interactif» ou pour «chaînes de traitement» complexes (scripts de pilotage) Multivariable et non-orthogonal (Analyses de Variance, Index de sélection, Analyse des Données ) Traitement d observations quantitatives et qualitatives simultanément Rééchantillonnage par Jackknife et Bootstrap très rapide et standardisé Améliorations récentes (Ph. Baradat et Th. Perrier ) Portage sous Fortran 95 et Linux Sorties graphiques à haute définition (directement utilisables pour des publications) Paramétrage contextuel

2 Cahier des charges Logiciel intégré (plusieurs modules chaînés) Grand nombre de paramètres Doit traiter des expérimentations mal structurées Nécessité de rapidité optimale (rééchantillonnage) Solutions adoptées Menu déroulant Sélection des modules selon le traitement désiré Superviseur «intelligent» Création d un script de pilotage & génération automatique de paramètres Fichier de données binaire + fichier paramètre qui décrit son contenu Mise en place dans programmes & scripts de tests pour détecter des problèmes de calcul (par exemple, matrices non inversibles) messages explicites

3 Fichiers de données de DIOGENE (norme ANTAR étendue) Fichier binaire à accès direct: [Nomfich] + fichier paramètre [Nomfich].p ( ASCII) Le Fichier binaire comporte les données (cf. diapo 4) Le fichier paramètre donne les infos sur ces données : o Nombre d indicatifs o Nombre d individus/enregistement o Nombre d observations/individu o Libellés des indicatifs o Libellés des observations o Min-max des indicatifs o Libellés des modalités de facteurs (facultatif) L utilisateur et les programmes accèdent aux données par le fichier paramètre Avantages : Souplesse dans l accès aux données (si rééchantillonnage notamment) Très grande rapidité de traitement (important pour le rééchantillonnage) Importation/exportation des données : Utilitaires de transcodage inclus dans DIOGENE

4 Système de fichiers de données du logiciel original adapté au rééchantillonnage. Il est binaire et chaque donnée (indicatif ou observation) est représentée en simple précision sur 4 octets. Un fichier paramètre, suffixé par.p lui est associé. Il comporte toutes les informations utiles au traitement biométrique. Vecteur X Indicatif 1 Indic. k x(1,1).x (1,q) x(p,1) x(p,q) x(z,q) Vecteur Y Indicatif 1 Indic. k y(1,1) y(1,q ) y(p,1).y(p,q ) y(z,q ) Enregistrement (vecteur X), stocké en mémoire au moment de son traitement, est défini par trois paramètres : nombre d indicatifs (k), nombre maximum d individus (z) et nombre de variables observées par individu (q). Observations (x) repérées par leur position intra-individu. L analyseur syntaxique génère un enregistrement virtuel de même structure (vecteur Y) où les q observations sont remplacées par q fonctions d un nombre quelconque de variables x et/ou de y déjà définies (récursivité). Les y sont définis sous la forme : y(j)= F[x(1), x(2)...y(i), ctes]. Ainsi, le log de l accroissement en volume d un cône : r 2 2 = 2 h1 r1 h log( V ) log 2 π 3 s écrira, si r, 1 h 1 (rayon et hauteur initiaux) et r 2, h 2 (rayon et hauteur finaux) sont, dans l ordre, les quatre premiers variables : log((x3**2*x4-x1**2*x2)*pi/3). Données manquantes codées par -9 ou -5 selon que l individu est mort ou simplement non observable. Tout individu dont l une des variables x définissant au moins un y prend une de ces valeurs est exclu du traitement. Enfin, n étant le nombre d individus de l enregistrement, si n < z, un signal de fin logique est codé par Structure des enregistrements du fichier de données.

5 Tétrade 1 Tétrade 2 opérat. adresse stock. résultat opérande 1 opérande 2 ou «0» opérat. ou code fin pile adresse stock. résultat opérande 1 opérande 2 ou «0» numéro de colonne adressée = valeur de y caractère étudié Numéro de ligne y adressée = y numéro d ordre y du caractère y étudié y y Pile FIFO : séquence ordonnée d opérations ; les premiers éléments seront les premiers exécutés. Opérations élémentaires codées par quadruplet d entiers. Ordre des opérations donné par analyse des formules algébriques, au moment du lancement du script (parenthèses, priorités des opérateurs). Le code d opérateur renvoie directement à un sous-programme selon qu il y a un opérande (opérateurs de transformation) ou deux opérandes (opérateur de combinaison) puis à une adresse intra-sous-programme. Résultat stocké à l adresse indiquée par le deuxième élément. Le troisième élément donne la valeur (constante) ou l adresse (variable x ou y ) de l opérande 1). Cet opérande est le seul pour un opérateur de transformation. Pour un opérateur de combinaison, le quatrième élément de la tétrade définit le deuxième opérande. Un code de fin de pile (position 1) termine la séquence d opérations. On passe ensuite à la définition 2, etc. Ceci permet un traitement très rapide : les tétrades réalisent un adressage direct et l analyse syntaxique n est pas refaite au moment de la lecture des données. L analyseur syntaxique fonctionne comme un compilateur. Les variables binaires (présence-absence) sont générées en sélectionnant la valeur d une cellule d une matrice d incidence constituée de 0 et de 1. Le numéro de ligne est donné par le numéro d ordre de définition de la variable y. Le numéro de colonne est la valeur de cette variable. Le système permet de coder la présence ou l absence de plusieurs valeurs d un caractère discret. La génération de la matrice se fait par le langage de définition des variables y. Principe de l analyseur syntaxique & génération de binaires (caractères qualitatifs)

6 LENA1 LENA2 LENOR non non Contrôle oui parenté? 2 ancêtres? oui ORION A 1 A 2 A '1 A'2 Etat dispos. Plan dispos. Fichier dispositif D1 Σ D2 TIMBAL POLY REPLAN DEBLOC Etiquettes Plan mis à jour Plan compacté Fichier restructuré Assemblage des programmes de création/gestion de dispositifs Génération et gestion de dispositifs en blocs incomplets à composition aléatoire ou complets, tenant compte des contraintes de terrain, avec repérage des individus par coordonnées cartésiennes. Géométrie des blocs et des parcelles unitaires paramétrable. Contrôle de parenté entre individus du même bloc pour une création de vergers à graines. Dans ce cas, le programme vérifie pour tout individu (D1), après qu il a été tiré, qu aucun des individus qui sont déjà présents dans le bloc ( D2) ne présente avec lui un ou deux ancêtres en commun. Dans second cas, contrainte : ( A1 A' 1) ( A1 A' 2) ( A2 A' 1) ( A2 A' 2). L algorithme de tirage séquentiel des individus de chaque unité génétique pour constitution des blocs est tel que : Pr( Dij) = ni / N où D ij est un individu ou une parcelle unitaire de l unité génétique, D i, d effectif n i. au moment de la réalisation du tirage, si N individus ou parcelles unitaires y participent. Ceci permet de générer des dispositifs optimisés pour des unités génétiques avec des effectifs très inégaux.

7 . S uperviseur (OPE P ) D IS T R IB F IC H IE R données ME N U S Options (A N T A R ) A nalys. syntaxique (D E F C AR ) IN T E R G- G IN T E R G- E Edistrib. tude AN V A R M A JU S T effets fixés A F C Génétique des populations R E GM C OV A R M sur indiv. AC P sur indiv. C OR A N C om par.effets C orrél.de rang A F D IN D E X A C P sur c orrél. de rang A C P sur effets R E GM sur effets C L A S S (dendrogr.) Organigramme global des programmes de biométriegénétique Le superviseur constitue le script et appelle des sous-programmes, qui créent les fichiers de paramètres. Les différents modèles d Analyse de Variance Multivariable (ANVARM) peuvent être suivis par différents programmes qui concernent, par exemple, l Analyse des Données et les comparaisons d effets, avec une représentation en dendrogramme (classification automatique : CLASS). La filière d Analyse Factorielle des Correspondances (AFC) constitue comme les Index de sélection (INDEX) une catégorie à part. Il existe de nombreuses «passerelles» entre les groupes de programmes : par exemple, on peut générer des fichiers de coordonnées issues d Analyse en Composantes Principales (ACP), d analyse factorielle discriminante (AFD) ou d AFC et les rediriger en entrée de programmes d Analyse de Variance. Les ajustements à des effets fixés peuvent utiliser la régression multiple (REGM), sur des voisins éventuellement, l Analyse de Covariance Multiple (COVARM) et l analyse de variance (AJUST). Le module de comparaison d effets et corrélations de rangs (CORAN) génère des fichiers d effets de ce type.

8 Quelques caractéristiques qui font l originalité de DIOGENE Structure modulaire (modèles «à la carte») Ajustement au milieu complexe (Papadakis++) Analyses de variance étude Interaction G x E Analyses de variance + AFD correspondant au modèle Index de sélection avec choix des prédicteurs et pondération raisonnée des caractères-cibles etc Choix d un type de fichier de données permettant : Une lecture sélective de lignes sélectionnées (enregistrements) Une grande rapidité d exécution (capital pour le rééchantillonnage) = Norme «ANTAR» qui intègre : - les données sur un fichier binaire à accès direct - Les informations sur ces données (fichier-paramètre associé)

9 Suite Un pilotage des chaînes des traitement par «scripts» Faciles à corriger et à modifier Permettant la mise en place d un mécanisme de réitération pour des traitements complexes Un rééchantillonnage sur «chaînes entières» Jackknife Bootstrap en se fixant : Le premier et le dernier programme de la chaîne Où se fait le rééchantillonnage (paramètre «AMONT») Le niveau : individuel ou des unités génétiques (familles ) D autres types de traitements réitérés (Papadakis++ )

10 - La méthode du jackknife On élimine tour à tour les individusde rangs 1 à u, u+1 à 2u, (k-1)u+1 à ku. On peut éliminer un seul individu par sous-échantillon : k=n, u=1. Si u>1, les sous-échantillons doivent être représentatifs de l ensemble de la population (c est-à-dire de tous les niveaux de facteurs). Ceci peut être réalisé par permutation aléatoire de l ordre de succession initial des individus. Chaque individu est caractérisé par n variables : y 1, y 2...y n et l on calcule sur la population un paramètre quelconque, F(y 1,y 2,...y n ). Cette fonction des observations est recalculée sur chaque sous-échantillon. L autocorrélation positive entre les sous-échantillons, qui possèdent (k-2)u individus en commun, fait que la variance des valeurs du paramètre sousestimerait la variance d erreur. L estimateur non biaisé de cette variance d erreur (estimateur de Quenouille- Tukey) est donné par : où : Fi = k F ( k ) F* i k = k = i F = S 1 i i F k k i ˆ 2 2 ( 1) k 1 (pseudo-valeur de Tukey) ; F * i est la valeur du paramètre calculée sur le sous-échantillon de rang i amputé des individus de rangs u(i-1)+1 à ui ; F est la valeur calculée sur l échantillon total (ku individus). Ces pseudo-valeurs sont des variables indépendantes et la statistique : Fˆ E( F) Sˆ suit la distribution du t de Student à k-1 degrés de liberté.

11 - La méthode du bootstrap Il s agit d un rééchantillonnage avec remise, qui génère des échantillons de taille N et inclut donc la possibilité d avoir les mêmes données dans des échantillons différents ou dans le même échantillon. Cette méthode s applique lorsque l autocorrélation entre les échantilllons aléatoires générés est réduite et donc la proportion de données communes faible. Ces échantillons peuvent être considérés comme indépendants. La variance entre estimations du paramètre est alors une estimation de sa variance d échantillonnage. Cette méthode est très utilisée en génétique des populations car celle-ci met en œuvre une structuration simple et robuste (en général, il s agit d une population unique ou de hiérarchies à un ou deux niveaux). Elle est plus délicate à utiliser dans le cas de plans expérimentaux en classification croisée ou mixte (croisée et hiérarchique) pour lesquels certaines séquences de tirages avec remise peuvent générer des niveaux de facteurs déconnectés. Mais la méthode présente un avantage important : Le nombre E d échantillons aléatoires différents possibles à partir de N individus est pratiquement infini dès que N est de quelques dizaines : E = N N. Les estimations des paramètres étant indépendantes, l étude de leur distribution sur plusieurs milliers de séquences permet de déterminer leurs intervalles de confiance sans faire l hypothèse d une distribution normale.

12 Organigramme simplifié schématisant l implémentation du rééchantillonnage dans le logiciel DIOGENE.

13 DIOGENE donne bien sûr les seuils de signification associés aux tests statistiques Carres moyens & tests F sous l'hypothese d'effets fixes Carres moyens de l'agc du genotype Genotype_parent ( 11 degres de liberte) y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht E E E E E+04 Tests F ( 11 et 2551 degres de liberte) y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht % 0.000% 0.000% 0.000% 0.000% Carres moyens de l'aptitude specifique, ASC ( 51 degres de liberte) y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht E E E E E+03 Tests F ( 51 et 2551 d.l.) y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht % 0.000% 0.000% 0.001% 0.000%

14 Valeurs génétiques estimées par régression du génotype sur le phénotype [ ] [ ] G GP PP p = 1 Combinaison linéaire des estimations des valeurs génotypiques pour chaque caractère I = b ' G [ ] [ ] G : val.gén. caract. 1 G1 : caractère 1 r(g,i)>0 0 α α ' I : index G2 : caractère 2 r(g,i)<0 S(I) : différentielle de sélection sur l'index La valeur génétique du caractère 1 (gain génétique G1) est positivement corrélée à l index ; celle du caractère 2 (gain génétique G2) est corrélée négativement. Les deux gains génétiques, G1 et G2, sont déterminés par la différentielle de sélection sur l index : S(I) = iσ I où i est l intensité de sélection et par le coefficient de régression de chaque valeur génétique sur l index : b = cov(g, I) / σ 2 I. On a : b1= tg( α ) et b2= tg( α '). Réalisation de gains génétiques partiels sur deux caractères par troncature de la population pour un index corrélé à leurs valeurs génétiques

15 Le coefficient du volume, b1, est constant (b1=1) et le coefficient du pilodyn, b2, varie de -0.3 à Noter la très forte variation induite sur le gain génétique relatif pour le volume par une faible variation du coefficient du pilodyn autour de la valeur b2 = 0. Par ailleurs, la courbe des gains génétiques sur le pilodyn donne une valeur légèrement négative pour b2 = 0. Ceci traduit la légère corrélation génétique négative entre volume et pilodyn à 48 mois (-0,08). Courbes de paramétrage des coefficients des caractères cibles dans un index

16 G ( x j) / σ P ( x j) + 1CPG ( x i, x j) = tg ( α 1) > CPG ( x i, x j) = tg ( α 2) < 0 α 1 α 2 P ( x i ) / σ P ( x i) + 1 σ P ( x i ) Notion de coefficient de prédiction génétique Cette figure représente la réponse corrélée du caractère x j (axe des ordonnées) sélectionné par l intermédiaire du caractère x i (axe des abscisses). Si l on déplace la moyenne phénotypique de la population de +1, pour x j, en unité d écart-type phénotypique, il s ensuit une réponse (sélection indirecte) de 1 CPG(x i, x j ) pour le caractère x j. La réponse peut être positive ou négative suivant le signe du coefficient de prédiction génétique. L héritabilité d un caractère n est autre que le coefficient de prédiction génétique de ce caractère avec lui-même. Dans ce cas, la réponse est, par définition, positive ou nulle.

17 Analyse de l interaction GxE et GxG Ecovalence généralisée (ou interactivité relative) 1 B wi = j = 1 nijγˆ2 ij ni. w = wi i 100 A i = 1wi Régression factorielle (multivariable) γ ij = mα iβ j+ uiβ j+ v jα i+ γ ij.

18 Statistiques spatiales Autocorrélogrammes (Moran ) Papadakis++

19 Les valeurs sur diagonale ne sont autres que les héritabilités DIOGENE calcule et édite les matrices triangulaires-basses de CPG L utilisateur dispose ainsi d infos synthétiques sur l efficacité comparée de la sélection directe & indirecte. Matrices des Coefficients de prediction genetique (heritabilites sur la diagonale) Coefficients de prediction genetique au sens strict y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht86 y 1: ht y 2: pp y 3: ht y 4: pp y 5: ht Coefficients de prediction genetique au sens large y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht86 y 1: ht y 2: pp y 3: ht y 4: pp y 5: ht

20 DIOGENE calcule et édite également après rééchantillonnage : Les tests de signification des paramètres estimés Parametres et tests de la matrice numero 9 Coefficients de prediction genetique au sens strict y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht86 y 1 : ht E. standard : Test t : Signif. (%) : y 2 : pp E. standard : Test t : Signif. (%) : y 3 : ht E. standard : Test t : Signif. (%) : y 4 : pp E. standard : Test t : Signif. (%) : y 5 : ht E. standard : Test t : Signif. (%) :

21 et les intervalles de confiance au seuil choisi par l utilisateur Intervalles de confiance de la matrice 9 Coefficients de prediction genetique au sens strict y 1 y 2 y 3 y 4 y 5 ht84 pp85 ht85 pp86 ht86 y 1 : ht y 2 : pp y 3 : ht y 4 : pp y 5 : ht

22 DIOGENE met ainsi à la disposition de l utilisateur Des méthodes puissantes de restructuration des dispositifs et d ajustement à l environnement. La possibilité d évaluer l interaction génotype x environnement pour chaque unité génétique. La prise en compte de tous les plans de croisements L aptitude à traiter des essais très «troués». Des modèles très généraux d index de sélection. Un système très flexible pour calculer les intervalles de confiance par rééchantillonnage.

23 Exemple de traitement modulaire (chaîne de traitement) Séquence des programmes ENVIR - DIAL Modèle mixte d analyse de variance en demi-diallèle avec effets génétiques aléatoires et dispositif en blocs incomplets (effet bloc fixé). Carré moyen et variance de l effet Deg.de lib. Espérance du carré moyen : E(CM) Test F bloc, CM b B-1 B σ [ ( ) ] β 2 CM 2 b /CM e non biaisé e + 1/ B 1... k k 1 n k = aptitude générale, AGC CM a, σ a 2 P-1 σ 2 σ 2 σ 2 e + k1 a + k2 s CMa/CM s biaisé aptitude spécifique, ASC CM s, σ 2 s C-P σ 2 σ 2 e + k3 s CM s /CM r biaisé intra-famille CM e, e 2 σ N-D-B+1 σ 2 e B : nombre de blocs, P : nombre de parents, C : nombre de croisements, réciproques confondus, N : nombre total de plants. Les tests F de non nullité de la variance d AGC est réalisé par rapport au carré moyen d'asc. Il est biaisé si le demi-diallèle est non-orthogonal et déséquilibré. Celui de non nullité de la variance d'asc est fait par rapport au CM intra-famille. Il est non biaisé dans tous les cas. Pour estimer les composantes de la variance, le système à résoudre est : 1 σˆ e 2 = σˆ CM e et a 2 k1 k2 CM = a CM e σˆ 2 s k3 0 CM s CM e Pour les composantes de la covariance, il suffit de remplacer les carrés moyens par les coproduits moyens pour tout couple de caractères.

24 CONCLUSION DIOGENE = plate-forme de développement Architecture unifiée Outils génériques Modules inter-compatibles Structure de fichiers normalisée Nécessité d une cellule de développement Maintien d une compétence informatique permanente Collège d utilisateurs (de préférence international) Partage des tâches de conception/développement Mise à jour régulière des notices

Optimisation du rééchantillonnage dans un logiciel d Amélioration des Plantes

Optimisation du rééchantillonnage dans un logiciel d Amélioration des Plantes Optimisation du rééchantillonnage dans un logiciel d Amélioration des Plantes Baradat P. INRA-Département EFPA UMR AMAP 34398 Montpellier Cedex 5 FRANCE baradat@ensam.inra.fr Labbé T. INRA-Département

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD

IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD Université de Perpignan - IUT de Carcassonne Vivien ROSSI Année 2006/2007 IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD Ce document est tiré du site : http ://www.stat.ucl.ac.be/ispersonnel/lecoutre/stats/spad/

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

1. Les fondements de l informatique 13

1. Les fondements de l informatique 13 Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

Examen de Statistique Appliquée I

Examen de Statistique Appliquée I Université de Strasbourg Master Éthologie-Écophysiologie 1ère année Examen de Statistique Appliquée I ************************************************************** Le cours, les exercices de travaux dirigés,

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

R i = a 0 +b 0 B i +ε i, R = Xβ +ε,

R i = a 0 +b 0 B i +ε i, R = Xβ +ε, Statistiques 2010-2011 TP sur le Modèle linéaire gaussien avec R 1 Les exercices Vous traiterez les exercices suivants avec le logiciel R. Exercice 1 Des photographies aériennes de champs d orge sont analysées

Plus en détail

MÉTHODES DE CLASSIFICATION

MÉTHODES DE CLASSIFICATION MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ MÉTHODES DE CLASSIFICATION Objet Opérer des regroupements en classes homogènes d un ensemble d individus. Données Les données se présentent en général sous

Plus en détail

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN Pôle Informatique de Recherche et d Enseignement en Histoire ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN A. PREMIER PAS 1. INTEGRATION DU TABLEAU

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Introduction à Rcommander

Introduction à Rcommander Introduction à Rcommander Pauline Scherdel Septembre 2014 Table des matières 1 Introduction à Rcmdr sous R 2 2 Interagir avec R 3 3 Installer et charger le package Rcmdr sous R 3 4 Importation des données

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Présentation du langage et premières fonctions

Présentation du langage et premières fonctions 1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Les modèles d équations structurelles à variables latentes Applications et exercices

Les modèles d équations structurelles à variables latentes Applications et exercices Les modèles d équations structurelles à variables latentes Applications et eercices Emmanuel Jakobowicz Addinsoft XLSTAT 30 mars 2011 Cours de Statistique Multivariée Approfondie 1 Le modèle structurel

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix.

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix. ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN 1 AVRIL 21 CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE EPREUVE D'ORDRE GENERAL DUREE :

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire

Plus en détail

Atelier d économétrie

Atelier d économétrie Atelier d économétrie Chapitre 4 : Le problème de la multicolinéarité : application sous SAS Vincent Bouvatier Université de Paris Ouest - Nanterre La Défense Bâtiment G, bureau 308A vbouvatier@u-paris10.fr

Plus en détail

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus²

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Développement Parc Altaïs 74650 CHAVANOD Tél : 33 / 4.50.69.82.98. Fax : 33 / 4.50.69.82.78.

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Quelques analyses simples avec R en écologie des communautés

Quelques analyses simples avec R en écologie des communautés Jérôme Mathieu janvier 2007 Quelques analyses simples avec R en écologie des communautés 1 Visualisation des données... 2 Aperçu rapide d'un tableau de données... 3 Visualiser les corrélations entre des

Plus en détail

Java. Java. Le livrede. Avec 80 exercices corrigés. Avec 80 exercices corrigés. Le livre. Anne Tasso. 5 e édition. Un best-seller qui a déjà conquis

Java. Java. Le livrede. Avec 80 exercices corrigés. Avec 80 exercices corrigés. Le livre. Anne Tasso. 5 e édition. Un best-seller qui a déjà conquis Anne Tasso Un best-seller qui a déjà conquis des milliers d'étudiants! Java Le livre Java Le livrede de premier premier langage langage Avec 80 exercices corrigés Avec 80 exercices corrigés 5 e édition

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES LOUISANDRÉ VALLET TRAITENQ. Logiciel de dépouillement et de traitement d enquêtes sur microordinateur compatible Mathématiques et sciences humaines, tome 104 (1988),

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Anne Tasso. Java. Le livre de. premier langage. 10 e édition. Avec 109 exercices corrigés. Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2

Anne Tasso. Java. Le livre de. premier langage. 10 e édition. Avec 109 exercices corrigés. Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2 Anne Tasso Java Le livre de premier langage 10 e édition Avec 109 exercices corrigés Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2 Table des matières Avant-propos Organisation de l ouvrage..............................

Plus en détail

CTE Éditeur de classification arborescente pour spécifications du cas de test

CTE Éditeur de classification arborescente pour spécifications du cas de test Tessy Test d intégration et unitaire dynamique automatisé pour des applications embarquées CTE Éditeur de classification arborescente pour spécifications du cas de test Le meilleur outil de test unitaire

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Mathématiques mise à niveau - 521

Mathématiques mise à niveau - 521 Mathématiques mise à niveau - 521 Ces trois modules de mathématiques 521 ont été conçus pour préparer le PR1 de l activité SES option Informatique (EV7). Cette formation est néanmoins ouverte aux agents

Plus en détail

6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr

6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr 6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr Interface d un SGF Implémentation d un SGF Gestion de la correspondance entre la structure logique et la structure

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Data Mining : la classification non supervisée

Data Mining : la classification non supervisée Data Mining : la classification non supervisée Clustering : une affaire de distance. Etude préliminaire. Valeurs discrètes. Soient les deux individus suivants correspondant à des séquences ADN : X = AGGGTGGC

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Un logiciel open source pour l enseignement et la recherche

Un logiciel open source pour l enseignement et la recherche Un logiciel open source pour l enseignement et la recherche Ricco RAKOTOMALALA Laboratoire ERIC Université Lumière Lyon 2 http://chirouble.univ-lyon2.fr/~ricco/tanagra/ 1 sur 23 PLAN 1. Objectifs du projet

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

1 Description générale de VISFIELD

1 Description générale de VISFIELD Guide d utilisation du logiciel VISFIELD Yann FRAIGNEAU LIMSI-CNRS, Bâtiment 508, BP 133 F-91403 Orsay cedex, France 11 décembre 2012 1 Description générale de VISFIELD VISFIELD est un programme écrit

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

L analyse des données statistiques

L analyse des données statistiques L analyse des données statistiques Public : Les cadres devant analyser des données quantitatives et qualitatives Objectif : Apprendre, en utilisant principalement Excel : - à traiter des données provenant

Plus en détail

La gestion des ventes.

La gestion des ventes. I. La prévision des ventes. A. Principe. La gestion des ventes. Elle consiste à déterminer les ventes futures à la fois en quantité et en valeur en tenant compte des tendances et contraintes imposées à

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31 1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives

Plus en détail