T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014"

Transcription

1 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de la rédaction seront évaluées. Les calculatrices sont autorisées mais ne doivent pas être prêtées. Exercice 1-5 points - ( Pour chacune des questions, une seule réponse parmi les trois est exacte. Indiquer sur la copie le numéro de la question et la réponse choisie correspondante puis justifier cette réponse. Chaque réponse exacte et justifiée rapportera 1 point. Une réponse fausse non justifiée enlève 0,5 point. Q1 - La suite (u n ) a pour terme général u n = 2n + 1, alors u n+1 = a) 2n + 2 b) 2n + 3 c) 2n + 4 Q2 - La suite (u n ) vérifie la relation de récurrence u n+1 = u n ² et u 0 = 6, alors u 2 = a) 36 b) 216 c) 1296 Q3 - La suite (u n ) a pour terme général u n = 5 2 n, alors a) décroissante b) croissante c) ni croissante, ni décroissante Q4 - La fonction f définie et dérivable sur l'intervalle [0; + [, est strictement croissante sur l'intervalle [0; 5] et strictement décroissante sur l'intervalle [5; + [. Sa courbe représentative C f dans un repère du plan admet une tangente T au point d'abscisse 6. Laquelle des équations suivantes est celle de la tangente T. a) y = 3x + 3 b) y = x c) y = 6x 36 Q5 - On a tracé ci-dessous la courbe représentative C f d'une fonction f définie sur R ainsi que sa tangente au point A d'abscisse 2. Parmi les 3 courbes représentées cidessous, laquelle représente la fonction dérivée de la fonction f? a) b) c)

2 Exercice 2-4 points - ( Soient u : R R, x 3 + 2x + 7, et C sa courbe représentative dans un repère orthonormé. Soit P la parabole représentant la fonction v : R R, x 2x 2 x Calculer, pour x R, u (x). Dresser le tableau de variations de la fonction u. 2. a) Montrer que pour tout x R, u(x) v(x) = x(x 2 + 2x 3). b) En déduire la position relative de C et P. Exercice 3-5 points - ( Une ville organise la récupération du verre usagé à partir du 1er janvier 2010 En 2010, la ville a récupéré 300 tonnes de verre et en 2011, elle en a récupéré 318 tonnes 1. Déterminer le pourcentage d augmentation de la quantité récupérée entre 2010 et On suppose que chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage. On modélise l évolution de la quantité annuelle récupérée par une suite géométrique. Pour tout entier n, on note u n la quantité de verre récupérée, en tonnes, au cours de l année n a) Expliquer pourquoi u n+1 = u n 1,06 et préciser u 0. b) En déduire l expression de u n en fonction de n. c) Quelle quantité prévoit-on de récupérer en 2016? Arrondir à la tonne d) A l aide de la calculatrice, déterminer l année où la collecte de la ville dépassera les 1000 tonnes. e) Calculer la quantité totale qu on prévoit de récupérer de 2010 à 2020 compris. Arrondir à la tonne.

3 Exercice 4-8 points - ( Partie A Partie B On considère la fonction g définie sur R par g(x) = x Calculer g (x) et étudier son signe. 2. Dresser le tableau de variation de g sur R et en déduire que g(x) > 0 sur R. On considère maintenant la fonction f définie sur [ 1; 3] par f(x) = x x. 1. Montrer que pour tout nombr de [ 1; 3] f (x) = g(x). 2. En utilisant la partie A, donner le signe de f et les variations de f sur [ 1; 3]. 3. Déterminer une équation de la tangente T à la courbe représentative de f au point d abscisse a) Montrer que l équation f(x) = 0 admet une solution unique α dans [ 1; 3]. b) A l aide de la calculatrice déterminer un encadrement de α à 10-2 prés. c) En déduire le signe de f(x) sur [ 1; 3]. 5. Tracer, sur l annexe, la droite T et la courbe C f sur [ 1; 3]. On placera α sur le graphique. Exercice 5-8 points - ( Adèle et Barbara projettent une sortie soit au cinéma soit en randonnée, Adèle ou Barbara décide du choix de l'activité. On désigne par A l'événement «Adèle décide» et par B l'événement «Barbara décide», B est donc l'événement contraire de A. On suppose que la probabilité pour qu'adèle décide est p(a) = Déterminer p(b), probabilité pour que Barbara décide. 2. Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma. Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée. On désigne par C, l'événement «elles vont au cinéma» et par R, l'événement «elles font une randonnée». Déterminer les probabilités conditionnelles p A(C) et p B(C). Pour traiter la suite de l exercice, on pourra s aider d un arbre. 3. a) Calculer les probabilités p(a C). b) Montrer que p(c) = c) En déduire la probabilité qu Adèle et Barbara partent en randonnée. 4. Sachant qu'adèle et Barbara sont allées en randonnée, quelle est la probabilité pour que ce soit Barbara qui ait décidé?

4 T ES/L CORRECTION DEVOIR SURVEILLE 2 15 / 11 / 2013 Exercice 1-5 points - ( Pour chacune des questions, une seule réponse parmi les trois est exacte. Indiquer sur la copie le numéro de la question et la réponse choisie correspondante puis justifier cette réponse. Chaque réponse exacte et justifiée rapportera 1 point. Une réponse fausse non justifiée enlève 0,5 point. Q1 - La suite (u n ) a pour terme général u n = 2n + 1, alors u n+1 = a) 2n + 2 b) 2n + 3 c) 2n + 4 On sait que u n = 2n + 1 Alors u n+1 = 2(n + 1) + 1 = 2n = 2n + 3 Réponse : b) Q2 - La suite (u n ) vérifie la relation de récurrence u n+1 = u n ² et u 0 = 4, alors u 2 = a) 36 b) 216 c) 1296 On sait que u n+1 = u n ² Alors u 1 = 6 2 = 36 u 2 = u 2 1 = 36 2 = 1296 Réponse : c) Q3 - La suite (u n ) a pour terme général u n = 5 2 n, alors a) décroissante b) croissante c) ni croissante, ni décroissante On sait que la suite de terme général v n = 2 n est croissante Comme 5 < 0 Alors u n = 5 2 n Donc la suite (u n ) est décroissante Réponse : a) Q4 - La fonction f définie et dérivable sur l'intervalle [0; + [, est strictement croissante sur l'intervalle [0; 5] et strictement décroissante sur l'intervalle [5; + [. Sa courbe représentative C f dans un repère du plan admet une tangente T au point d'abscisse 6. Laquelle des équations suivantes est celle de la tangente T. a) y = 3x + 3 b) y = x c) y = 6x 36 La fonction f est dérivable et strictement décroissante sur l'intervalle [5; + [. Par conséquent, f'(6) 0. Parmi les réponses proposées, seule la droite d'équation y = 3x + 3 a un coefficient directeur négatif. Réponse : a) Q5 - On a tracé ci-dessous la courbe représentative C f d'une fonction f définie sur R ainsi que sa tangente au point A d'abscisse 2. Parmi les 3 courbes représentées ci-dessous, laquelle représente la fonction dérivée de la fonction f? a) b) c) La fonction f admet un maximum pour x = 2. Donc la dérivée de la fonction f s'annule en changeant de signe pour x = 2. Réponse : b)

5 Exercice 2-4 points - ( Soient u : R R, x 3 + 2x + 7, et C sa courbe représentative dans un repère orthonormé. Soit P la parabole représentant la fonction v : R R, x 2x 2 x Calculer, pour x R, u (x). Dresser le tableau de variations de la fonction u. On a u(x) = x 3 + 2x + 7 Alors la fonction u est dérivable sur R comme fonction polynomiale. D où u (x) = 3x Etude du signe de u (x) 3x > 0 3x 2 > 2 3x 2 < 2 x 2 < < x < 2 3 ou 6 3 < x < 6 3 x 6 3 Signe de u (x) Variation 8,09 de u ,91 2. a) Montrer que pour tout x R, u(x) v(x) = x(x 2 + 2x 3). On a u(x) = x 3 + 2x + 7 et v(x) = 2x 2 x + 7 Alors u(x) v(x) = x 3 + 2x + 7 (2x 2 x + 7) u(x) v(x) = x 3 + 2x + 7 2x 2 + x 7 u(x) v(x) = x 3 2x 2 + 3x Donc u(x) v(x) = x(x 2 + 2x 3) b) En déduire la position relative de C et P. On doit donc étudier le signe de u(x) v(x) pour connaître la position de C par rapport à P. On a u(x) v(x) = x(x 2 + 2x 3) Etude du signe d 2 + 2x 3 On calcule le discriminant : = b 2 4ac = ( 3) = = 16 On trouve deux solutions : Alors > 0 et a > 0 x 1 = b 2a x 2 = b+ 2a = = = = = 3 Conséquence x x x 2 + 2x u(x) v(x) Conclusion Sur ] ; 3] [0; 1] u(x) v(x) 0 u(x) v(x) la courbe C est au dessus de la parabole P = 1 Sur [ 3; 0] [1; + [ u(x) v(x) 0 u(x) v(x) la courbe C est en dessous de la parabole P

6 Exercice 3-5 points - Une ville organise la récupération du verre usagé à partir du 1er janvier 2010 En 2010, la ville a récupéré 300 tonnes de verre et en 2011, elle en a récupéré 318 tonnes 1. Déterminer le pourcentage d augmentation de la quantité récupérée entre 2010 et Le pourcentage d augmentation de la quantité récupérée entre 2010 et 2011 est égal à : = Chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage 6% 2. On suppose que chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage. On modélise l évolution de la quantité annuelle récupérée par une suite géométrique. Pour tout entier n, on note u n la quantité de verre récupérée, en tonnes, au cours de l année n a) Expliquer pourquoi u n+1 = u n 1, 06 et préciser u 0. La quantité u n de verre récupérée, en tonnes, au cours de l année n, augmente de 6% et est donc est multipliée par 1 + 6%. On a donc u n+1 = u n 1,06 D où (u n ) est une suite géométrique de raison 1,06 et de premier terme u 0 représente la quantité de verre récupérée en 2010 et u 0 = 300. b) En déduire l expression de u n en fonction de n. Comme (u n ) est une suite géométrique de raison 1,06 et de premier terme u 0 = 300. Alors u n = u 0 q n Donc u n = 300 1,06 n c) Quelle quantité prévoit-on de récupérer en 2016? Arrondir à la tonne En 2016, la quantité de verre récupérée est donnée par u 6 = 300 1,06 6 soit environ 426 tonnes d) A l aide de la calculatrice, déterminer l année où la collecte de la ville dépassera les 1000 tonnes. A l aide de la calculatrice on obtient donc u et u Donc à partir de n = 21 Donc c est en 2031 que la collecte dépassera les 1000 tonnes ( avec cette modélisation) Attention il y a un décalage de 10 car un est la quantité de verre récupérée, en tonnes, au cours de l année n e) Calculer la quantité totale qu on prévoit de récupérer de 2010 à 2020 compris. Arrondir à la tonne La quantité totale qu on prévoit de récupérer de 2010 à 2020 compris est égale à , , ,492 Donc la quantité totale entre 2010 et 2020 sera d environ 4491 tonnes de verre

7 Exercice 4-8 points - ( Partie A On considère la fonction g définie sur R par g(x) = x Calculer g (x) et étudier son signe. On a g(x) = x + 1 La fonction g est dérivable sur R comme somme de fonctions dérivables sur R. Alors g (x) = 1 Or 1 > 0 > 1 x > 0 1 < 0 < 1 x < 0 Donc x 0 + Signe de g (x) Dresser le tableau de variation de g sur R et en déduire que g(x) > 0 sur R. D après la question1, on en déduit que Partie B x 0 + Signe de g (x) 0 + Variation de g g(0) = e = = 2 La fonction g admet un minimum en 0 qui vaut 2 Alors la fonction g est toujours strictement positive sur R. On considère maintenant la fonction f définie sur [ 1; 3] par f(x) = x x. 1. Montrer que pour tout nombr de [ 1; 3] f (x) = g(x). On a f(x) = x x La fonction f est dérivable sur R comme somme de fonctions dérivables sur R. On a f = u + v w Alors f = u + v w w v w 2 D où f (x) = ex x ( ) 2 Donc f (x) = g(x) avec u(x) = x + 1 u (x) = 1 2 v(x) = x v (x) = 1 w(x) = w (x) = = 1 + ex (1 x) ( ) 2 = x = ex +1 x = ex x+1 = g(x) 2. En utilisant la partie A, donner le signe de f et les variations de f sur [ 1; 3]. On sait que f (x) = g(x) Comme pour tout réel x, g(x) > 0 et > 0 Donc pour tout réel x, f (x) > 0 Donc la fonction f est strictement croissante sur [ 1; 3]

8 3. Déterminer une équation de la tangente T à la courbe représentative de f au point d abscisse 0. Une équation de la tangente à C f au point d abscisse zéro est : y = f (0) (x 0) + f(0) où f (0) = g(0) e 0 = 2 1 = 2 et f(0) = e 0 = 1 Donc une équation de la tangente à C f au point d abscisse zéro est : y = 2x a) Montrer que l équation f(x) = 0 admet une solution unique α dans [ 1; 3]. On a f( 1) = e 1 = e1 = e 2,72 f(3) = e 3 = e 3 4,15 Sur l'intervalle [ 1 ; 3], la fonction f est continue, strictement croissante à valeurs dans [ 2,72 ; 4,15] D après le théorème de la valeur intermédiaire : On obtient l'équation f(x) = 0 admet une unique solution α avec α [ 1 ; 3],. b) A l aide de la calculatrice déterminer un encadrement de α à 10-2 prés. À l'aide de la calculatrice, on trouve f( 0,41) 0,00327 f( 0,40) 0,00327 Donc 0,41 α 0,40. c) En déduire le signe de f(x) sur [ 1; 3]. D après les variations de la fonction f strictement croissante sur [ 1 ; 3] Et que f(α) = 0 Donc x α + Signe de f(x) Tracer, sur l annexe, la droite T et la courbe C f sur [ 1; 3]. On placera α sur le graphique.

9 Exercice 5-8 points - ( Adèle et Barbara projettent une sortie soit au cinéma soit en randonnée, Adèle ou Barbara décide du choix de l'activité. On désigne par A l'événement «Adèle décide» et par B l'événement «Barbara décide», B est donc l'événement contraire de A. On suppose que la probabilité pour qu'adèle décide est p(a) = Déterminer p(b), probabilité pour que Barbara décide. On a p(a) = 7 12 Donc p(b) = p (A ) = 1 p(a) = = 12 7 = Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma. Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée. On désigne par C, l'événement «elles vont au cinéma» et par R, l'événement «elles font une randonnée». Déterminer les probabilités conditionnelles p A(C) et p B(C). Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma donc p A(C) = 3 10 Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée donc p B(R) = 4 10 Alors pb(c) = 1 pb(r) = = 6 10 Donc pb(c) = 6 10 Pour traiter la suite de l exercice, on pourra s aider d un arbre. 3. a) Calculer les probabilités p(a C) A B 4 10 C R C R p(a C) = p(a) p A(C) = = 7 40 p(b C) = p(b) p B(C) = = 1 4 b) Montrer que p(c) = On sait que A et B forment une partition de l univers Alors p(c) = p(a C) + p(b C) = 7 40 Donc p(c) = p(b) pb(c) = = =

10 c) En déduire la probabilité qu Adèle et Barbara partent en randonnée. On cherche donc p(r) Alors p(r) = 1 p(c) = = Donc la probabilité qu Adèle et Barbara partent en randonnée est de Sachant qu'adèle et Barbara sont allées en randonnée, quelle est la probabilité pour que ce soit Barbara qui ait décidé? On cherche donc p R(B) Alors p R (B) = p(r B) p(r) = p(b) p B (R) p(r) = = = 2 20 = Donc la probabilité pour que ce soit Barbara qui ait décidé, sachant qu'adèle et Barbara sont allées en randonnée est de

11 T ES ANNEXE : DS 2 28 NOVEMBRE 2014 NOM : Prénom : Exercice 2

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction Durée : 2 heures Baccalauréat CRH Antilles uyane 3 septembre 203 Correction EXERCICE 7 points Un concessionnaire automobile s est spécialisé dans la vente de deux types de véhicules uniquement : les coupés

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES.

A l'intention des collègues dont les élèves vont tester le sujet prospectif de bac ES. A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES. Le sujet proposé s'inscrit dans le cadre du texte d'orientation ci-joint. L'exercice I est du type "compréhension

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Baccalauréat STG - Mercatique - CFE - GSI Antilles-Guyane 13 septembre 2012 Correction

Baccalauréat STG - Mercatique - CFE - GSI Antilles-Guyane 13 septembre 2012 Correction Baccalauréat STG - Mercatique - FE - GSI Antilles-Guyane 13 septembre 2012 orrection EXERIE 1 et exercice est un questionnaire à choix multiples (QM). Pour chaque question, quatre réponses sont proposées

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013 .E UNIVERSITÉ \PARIS r SID mculré JEAN MONNET Droit - Économie - Gestion Année universitaire 2012-2013 Diplôme de D.A.E.IJ - Option A 2ème session - Septembre 2013 Intitulé de la matière : MATHEMATIQUES

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001 Baccalauréat SMS 001 L intégrale de juin à novembre 001 Antilles Guyane juin 001............................... 3 La Réunion juin 001.................................... 5 Métropole juin 001.....................................

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014 Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée,

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Exercices de révision

Exercices de révision Exercices de révision EXERCICE 1 Le site (imaginaire) «www.musordi.net» propose aux internautes de télécharger des titres de musique sur leur ordinateur. Son offre commerciale pour un trimestre est la

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Baccalauréat STG Mercatique Centres étrangers juin 2007

Baccalauréat STG Mercatique Centres étrangers juin 2007 Baccalauréat STG Mercatique Centres étrangers juin 2007 EXERCICE 1 6 points En 2003, une étude est réalisée sur un échantillon représentatif de la population française composé de 1 500 individus. La première

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Exemples d exercices de type «bac» Série ST2S

Exemples d exercices de type «bac» Série ST2S Exemples d exercices de type «bac» Série ST2S Exercice 1 7 points On étudie le nombre de bactéries contenues dans un organisme à la suite d une infection. Il est donné, en fonction du temps (exprimé en

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Baccalauréat STG 2012. L intégrale d avril à novembre 2012

Baccalauréat STG 2012. L intégrale d avril à novembre 2012 Baccalauréat STG 2012 L intégrale d avril à novembre 2012 Antilles Guyane CGRH juin 2012........................ 3 Métropole La Réunion CGRH juin 2012.................6 Polynésie CGRH juin 2012..............................

Plus en détail

Baccalauréat STG 2013. L intégrale d avril à novembre 2013

Baccalauréat STG 2013. L intégrale d avril à novembre 2013 Baccalauréat STG 2013 L intégrale d avril à novembre 2013 Antilles Guyane CGRH juin 2013........................ 3 Métropole La Réunion CGRH juin 2012.................8 Polynésie CGRH juin 2012..............................

Plus en détail

Baccalauréat STG Mercatique Pondichéry 15 avril 2013 Correction

Baccalauréat STG Mercatique Pondichéry 15 avril 2013 Correction Baccalauréat STG Mercatique Pondichéry 5 avril 203 Correction La calculatrice (conforme à la circulaire N 99-86 du 6--99) est autorisée. EXERCICE 5 points Une entreprise de textile emploie 300 personnes

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale

Plus en détail

Bac SMS : Mathématiques Métropole Juin 2000

Bac SMS : Mathématiques Métropole Juin 2000 Bac SMS : Mathématiques Métropole Juin 2000 L'usage des calculatrices et des instruments de calcul est autorisé. Une feuille de papier millimétré est nécessaire pour le problème. EXERCICE (8 points) La

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

mathématiques mathématiques mathématiques mathématiques

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail