Que faire lorsqu on considère plusieurs variables en même temps?

Dimension: px
Commencer à balayer dès la page:

Download "Que faire lorsqu on considère plusieurs variables en même temps?"

Transcription

1 Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites à l étude de n variables aléatoires, n 2. On considère deux variables aléatoires X et Y. On aimerait savoir s il existe un lien entre les deux variables et le quantifier. Exemple 0.1 On peut se demander s il y a influence de la pollution par CO2 sur l évolution des cancers. La variable X modélisera alors le taux de CO2 et la variable Y le nombre de cancer. 1 Cas de variables indépendantes On dit de deux variables qu elles sont indépendantes si la connaissance de l une ne donne aucune information sur la connaissance de l autre. C est le cas le plus simple à étudier. Lorsque cela est possible, on essaye au maximum de travailler avec des variables indépendantes. Définition 1.1 Deux variables aléatoires X et Y sont indépendantes si pour tous intervalles A et B de R on a IP(X A, Y B) = IP(X A)IP(Y B). Proposition 1.2 Deux v.a. X et Y sont indépendantes dans le cas discret pour tous x, y, IP(X = x, Y = y) = IP(X = x)ip(y = y), dans le cas continu, notons f X la densité de X et f Y la densité de Y, on a pour tout intervalles A, B de R IP(X A, Y B) = f X (x)dx f Y (y)dy. A B la transformée de Laplace du couple vérifie pour tout (u, v), L (X,Y ) (u, v) = L X (u)l Y (v) où L (X,Y ) (u, v) = E[e ux+vy ]. 33

2 34 CHAPITRE 3. COUPLE DE VARIABLES pour toutes fonctions h, g : R R E[h(X)g(Y )] = E[h(X)]E[g(Y )]. Définition 1.3 Les variables aléatoires X 1,..., X n sont indépendantes si pour tout intervalles A 1,..., A n de R on a IP(X 1 A 1,..., X n A n ) = n IP(X i A i ). Une suite de variables (X n ) n indépendantes est une suite telle que pour toute sous partie finie I N, les variables (X i ) i I sont indépendantes. Remarque 1.4 Si les v.a. X 1,..., X n sont indépendantes, alors elles sont indépendantes deux à deux. Attention La réciproque est fausse! Par exemple, soient X et Y deux variables indépendantes de même loi : IP(X = 1) = IP(X = 1) = 1/2. On considère Z = XY. Les variables sont deux à deux indépendantes, mais pas mutuellement indépendantes. Dans la nature les objets, les événements, les comportements sont rarement indépendants les uns des autres. Modéliser la chaîne de nucléotides dans un brin d ADN par des variables indépendantes à valeurs dans {a, c, g, t} est trop simpliste et loin de la réalité car on sait qu il y a des zones codantes et d autres non. Exemple 1.5 Considérons les enfants de parents hétérozygotes de génétopye Aa. La distribution des enfants est i=1 IP(AA) = 1/4 IP(Aa) = 1/2 IP(aa) = 1/4. On choisit de façon aléatoire 240 de ces enfants. On définit N 1, N 2, N 3 le nombre d enfants de génotype AA,Aa et aa respectivement. 1. Les variables N 1, N 2 et N 3 suivent respectivement des lois Binomiales B(240, 1/4), B(240, 1/2) et B(240, 1/4). 2. Ces variables ne sont pas indépendantes, car N 1 + N 2 + N 3 = 240 (si on connait les valeurs de N 1 et N 2, on en déduit facilement la valeur de N 3 ). 3. Soit k 1, k 2, k 3 N. Si k 1 + k 2 + k 3 240, on a Si k 1 + k 2 + k 3 = 240, on a On remarque que IP(N 1 = k 1, N 2 = k 2, N 3 = k 3 ) = 0. IP(N 1 = k 1, N 2 = k 2, N 3 = k 3 ) = 240! 1 k1 ( 1 k2 ( 1 ) k3. k 1!k 2!k 3!( 4) 2) 4 IP(N 1 = k 1, N 2 = k 2, N 3 = k 3 ) IP(N 1 = k 1 )IP(N 2 = k 2 )IP(N 3 = k 3 ). Les variables ne sont effectivement pas indépendantes. On dit que le triplet (N 1, N 2, N 3 ) suit la loi multinomiale M(240, (1/4, 1/2, 1/4)).

3 2. QUE FAIRE S IL EXISTE UN LIEN ENTRE LES VARIABLES? 35 Définition 1.6 On effectue un sondage avec remise (ou sur une population suffisament grande) avec d réponses possibles sur une sous-population de taille n. On note p 1 la proportion dans la population totale d individu correspondant à la première réponse, p 2 la proportion dans la population totale d individu correspondant à la deuxième réponse,..., p d la proportion dans la population totale d individu correspondant à la dernière réponse. On définit N 1 le nombre d individus ayant choisi la première réponse, N 2 ceux qui ont choisi la seconde,..., N d ceux qui ont choisi la dernière réponse. Alors la loi de (N 1, N 2,..., N d ) est appelée loi multinomiale M d (n, p), avec n N, n 1, p i ]0, 1[ tels que p 1 + p p d = 1. n! d P (N 1 = k 1, N 2 = k 2,..., N d = k d ) = k 1!k 2!...k d! pk 1 1 pk pk d d avec k i = n C est une généralisation de la loi Binomiale. Pour d = 2, on retrouve la loi Binomiale. i=i 2 Que faire s il existe un lien entre les variables? Comme on a définit la loi d une variable aléatoire, on va définir la loi d un couple de variables. 2.1 Cas des variables discrètes Propriétés 2.1 Soient X et Y deux variables discrètes. La loi du couple (X, Y ) est définie par l ensemble des probabilités : IP(X = x, Y = y) pour toutes valeurs possibles x et y. Remarque 2.2 Notons D X et D Y l ensemble des valeurs possibles de X et de Y respectivement. On peut retrouver les lois de chacune des variables à partir la loi de couple. Soit x D X, on a IP(X = x) = IP(X = x et Y D Y ) = y D Y IP(X = x, Y = y) De même, pour y D Y, on a IP(Y = y) = x D X IP(X = x, Y = y). À partir de la loi du couple, on retrouve facilement la loi de chacune des variables. Par contre, des lois de chacune des variables on ne peut pas déduire la loi du couple, car elles ne rendent pas compte des connections, des liens qui existent entre les variables. Dans le cas où les variables sont discrètes et prennent un petit nombre de valeurs, on écrit en général la loi du couple sous la forme d un tableau : Y \X... Somme des colonnes. IP(X = x, Y = y) IP(Y = y) Somme des lignes IP(X = x)

4 36 CHAPITRE 3. COUPLE DE VARIABLES Exemple On lance une pièce truquée 3 fois. La probabilité de tomber sur "Pile" est 2/3. Soit X le nombre de "Face" obtenu dans les deux premiers jets et Y le nombre de "Face" obtenu dans les deux derniers jets. La loi de (X, Y ) est donnée par y\x IP(Y = y) ( 0 2 ) 3 ( 3 = ) = /9 ( ) 2 ( 3 3 = ) 2 ( ) = 6 ( 1 ) = /9 ( ) = 2 ( 1 ) = /9 IP(X = x) 4/9 4/9 1/9 2. L université de Rennes 1 veut évaluer l effet de l offre MIPE sur le campus et voir quel système d exploitation est apprécié des étudiants. Les proportions collectées sont résumées dans un tableau : Système d exploitation Filière Windows Mac OS Linux Biologie Droit/Économie Informatique Mathématiques On déduit de ce tableau les proportions d élèves qui ont profité de l offre MIPE en fonction des filières, ainsi que la répartition des systèmes d exploitation sur le campus. Exercice 2.4 On effectue une suite infinie de lancers indépendants d un dé équilibré. On note les lancers à partir de 1. On définit les deux variables aléatoires : X est égale au numéro du lancer qui donne le premier 6, Y est égale au nombre de 5 obtenus avant le premier 6. Déterminer la loi du couple (X, Y ). Corrigé : Le couple est à valeurs dans N N avec Y < X. Par conséquent si k n, IP(X = n, Y = k) = 0 et si k < n, IP(X = n, Y = k) = IP( k fois 5 et pas de 6 sur les n 1 premiers lancers et un 6 au n ème lancer. )! «k «n 1 k n = k Cas des variables à densité Définition 2.5 La loi du couple de v.a. (X, Y ) est dite à densité s il existe une fonction f (X,Y ) de deux variables telle que le fonction de répartition du couple vérifie pour tout (u, v) R 2 u v IP(X u, Y v) = f (X,Y ) (x, y)dxdy satisfaisant les conditions suivantes : 1. f (X,Y ) (x, y) 0 pour tout (x, y) R 2,

5 2. QUE FAIRE S IL EXISTE UN LIEN ENTRE LES VARIABLES? f (X,Y ) (x, y)dxdy = 1. On peut facilement retrouver la densité à partir de la fonction de répartition. En dérivant une fois par rapport à chacune des variables la fonction de répartition, on obtient f (X,Y ) (u, v) = 2 u v F (X,Y )(u, v). Proposition 2.6 Si le couple (X, Y ) admet une densité. Alors, pour tout A R R IP((X, Y ) A) = f (X,Y ) (x, y)dxdy. Par conséquent, X et Y sont indépendantes si et seulement si pour tous x, y A f (X,Y ) (x, y) = f X (x)f Y (y). Remarque 2.7 De même que pour les variables discrètes, on peut retrouver facilement les lois de chacune des variables. Soit u R, on a La densité de X est f X (x) = F X (u) = IP(X u) = IP((X, Y ) ], u] ], + [) u ( + ) = f (X,Y ) (x, y)dy dx. + f (X,Y ) (x, y)dy. De même, la densité de Y est f Y (y) = + f (X,Y ) (x, y)dx. Exemple Considérons le couple (X, Y ) de densité f (X,Y ) (x, y) = 3/8(x 2 +xy/2)i [0,1] [0,2] (x, y). Cette fonction est bien une densité de probabilité. On en déduit la densité de X : f X (x) = + f (X,Y ) (x, y)dy = 2 = 3 x(x + 2) si x [0, 1] 4 On peut calculer par exemple IP(X > Y ) : IP(X > Y ) = = ( x 2x 3 dx = Considérons le couple (X, Y ) de densité ) f (X,Y ) (x, y)dy dx = (x2 + xy 2 )dy 1 0 ( x f (X,Y ) (x, y) = c(y 2 x 2 )e y si y < x < y, y > (x2 + xy ) 2 )dy dx Cette fonction est bien une densité de probabilité lorsque c = 1/8. Les densités de X et Y sont : f X (x) = 1 4 ( x + 1)e x pour x R et f Y (y) = 1 6 y3 e y pour y > 0

6 38 CHAPITRE 3. COUPLE DE VARIABLES 3 Évaluer la dépendance entre deux variables On va introduire une nouvelle quantité, la corrélation, qui permet d estimer la dépendance entre deux variables aléatoires. Définition 3.1 La covariance de deux v.a. X et Y est La corrélation est alors définie par Cov(X, Y ) = E(XY ) E(X)E(Y ). ρ(x, Y ) = Cov(X, Y ) V ar(x)v ar(y ). L espérance E[XY ] est calculée à partir de la loi jointe de (X, Y ) : 1. dans le cas discret, lorsque la somme a un sens, E[XY ] = x,y xyip(x = x, Y = y) 2. dans le cas continu, lorsque l intégrale a un sens, E[XY ] = + + xyf (X,Y ) (x, y)dxdy. Remarque 3.2 Soient X et Y deux v.a. Alors V ar(x + Y ) = V ar(x) + V ar(y ) + 2Cov(X, Y ). Preuve. En développant le carré, on obtient le résultat : V ar(x + Y ) = E[(X + Y E[X + Y ]) 2 ] = E[(X E[X] + Y E[Y ]) 2 ] = E[(X E[X]) 2 ] + E[(Y E[Y ]) 2 ] + 2E[(X E[X])(Y E[Y ])] = V ar(x) + V ar(y ) + 2E[XY ] 2E[X]E[Y ] = V ar(x) + V ar(y ) + 2Cov(X, Y ). Propriétés 3.3 Si X et Y sont indépendantes, alors E[XY ] = E[X]E[Y ]. Par conséquent, si X et Y sont indépendantes on a Cov(X, Y ) = 0 et V ar(x + Y ) = V ar(x) + V ar(y ). Attention La réciproque est fausse! Cov(X, Y ) = 0 ne veut rien dire sur les variables. Par contre, Cov(X, Y ) 0 implique que les variables sont dépendants. Proposition Contrairement à la covariance, la corrélation ne dépend pas de l unité de mesure des variables. Par exemple que des vitesses soient mesurées en m/s ou en km/h ne changera pas la valeur de la corrélation. 2. Le coefficient de corrélation est compris entre 1 et 1. Plus ρ(x, Y ) est proche de 1, plus les variables sont dites dépendantes.

7 4. LOI CONDITIONNELLE POUR DES VARIABLES DISCRÈTES Lorsque ρ(x, Y ) = 1, alors il existe a, b R tels que ax + by = 0, les variables sont entièrement liées (il suffit de connaitre la valeur d une des variables pour connaitre la valeur de l autre). Exemple 3.5 Une étude médicale sur l effet du tabac est menée dans un hopital. Les 2278 patients sont divisés en deux groupes : ceux atteints d un cancer pulmonaire (X = 1) et les autres (X = 0). Les membres de chaque groupe sont ensuite répartis selon le nombre Y de paquets de cigarettes fumés par jour. Cancer Nombre de paquets de cigarettes Total pulmonaire Total On souhaite étudier l association entre cancer pulmonaire et la consommation de cigarette en calculant la covariance. La proportion de personnes atteintes d un cancer pulmonaire est 6.72%, le nombre moyen de paquets de cigarettes consommés est 0.65, on obtient Cov(X, Y ) = = 0.02 La covariance est positive, le résultat indique qu il y a un lien positif entre la déclaration du cancer et la consommation de cigarettes (plus on consomme des cigarettes, plus le risque de cancer est grand!). 4 Loi conditionnelle pour des variables discrètes Lorsque les variables sont dépendantes, avoir une information sur une des variables a une influence sur la loi de l autre. On définit alors la notion de loi conditionnelle. On se limite ici aux variables discrètes, mais une telle notion peut être étendue aux variables à densité. Définition 4.1 On considère deux variables aléatoires X et Y discrètes. Soit y une valeur de Y possible. La loi conditionnelle de X sachant que Y = y est donnée par l ensemble des valeurs IP Y =y (X = x) = IP(X = x, Y = y) IP(Y = y) pour tout x. Exercice 4.2 Loi de Poisson et loi Binomiale 1. Soient X et Y deux variables indépendantes, de loi de Poisson de paramètre respectif λ et µ. Déterminer la loi conditionnelle de X sachant {X + Y = n}. 2. Si X 1,..., X r sont indépendantes de lois de Poisson de paramètres respectifs λ 1,..., λ r, quelle est la loi conditionnelle de (X 1,..., X r ) sachant {X X r = n}? Corrigé :

8 40 CHAPITRE 3. COUPLE DE VARIABLES 1. On montre en utilisant les fonctions génératrices que X + Y P[λ + µ). Soit k N, si k > n IP X+Y =n(x = k) = 0 et si k n IP X+Y =n(x = k) = = IP(X = k, Y = n k) IP(X + Y = n)! «k n λ µ k λ + µ λ + µ Indép. = «n k. IP(X = k)ip(y = n k) IP(X + Y = n) On retrouve la loi B(n, λ λ+µ ). λ 2. On obtient une loi multinomiale M(n, p) avec p = ( λ 1 + +λ r,..., r λ 1 + +λ r ). λ 1

9 5. EXERCICES SUR LE CHAPITRE Exercices sur le chapitre 3 Exercice On jette simultanément deux dés. On note X le nombre de chiffres pairs apparus et Y le maximum des deux chiffres obtenus. Chercher la loi du couple (X, Y ). X et Y sont-elles indépendantes? Exercice La loi d un couple de variables aléatoires est donnée par le tableau suivant : X\Y Déterminer la loi de X, puis celle de Y /6 1/12 1/ /12 1/24 1/ /4 1/8 1/ Calculer E[X], E[Y ], E[XY ] et Cov(X, Y ). Les variables X et Y sont-elles indépendantes? 3. On pose U = X et Z = X + Y. Donner le tableau de la loi du couple (U, Z). Les variables U et Z sont-elles indépendantes? Exercice À la recherche de l ancêtre commun On considère une population cellulaire de taille constante N. La population est isolée (pas de migration), il n y a pas de sélection, les générations ne se chevauchent pas et la reproduction se fait de façon indépendante entre les cellules. Chaque cellule n a qu un seul parent. On étudie l évolution de la population. On choisit quatres cellules au hasard et on note X le nombre de générations écoulées depuis le premier ancêtre commun entre les deux premières et Y le nombre de générations écoulées depuis le permier ancêtre commun entre les deux dernières cellules. On cherche le nombre de générations écoulées U depuis le plus jeune ancêtre de chacun des couples et le nombre de générations écoulées V depuis le plus vieux des deux ancêtres de chacun des couples. 1. Expliquer pourquoi on peut modéliser les lois de X et de Y par des lois géométriques G(p) et exprimer p en fonction de la taille de la population. 2. Exprimer U et V en fonction de X et Y. 3. Déterminer la loi du couple (U, V ). 4. En déduire les lois de U et V. Vérifiez que V suit une loi géométrique de paramètre q = 2p p On rappelle que l espérance d une loi géométrique G(p) est 1/p. Exprimer l espérance de V en fonction de N. Puis sans calcul, en déduire l espérance de U. Exercice Les amoureux du banc public Deux personnes se donnent rendez-vous. L heure d arrivée de chacune de ces deux personnes sur les lieux est une variable uniforme entre midi et une heure. Les personnes n ayant pas de téléphone portable, on suppose ces deux variables indépendantes. Quelle est la probabilité qu ils arrivent au même instant? Quelle est la probabilité que le premier arrivé doive attendre plus de 10 minutes? Si les deux personnes se donnent un rendez-vous plus précis, à midi exactement par exemple. La loi uniforme est-elle adaptée au problème? Quelle autre type de loi peut-on utiliser?

10 42 CHAPITRE 3. COUPLE DE VARIABLES Exercice Soient X et Y deux variables aléatoires indépendantes et de même loi : P (X = k) = 2 k pour k N. Calculer les quantités suivantes : P (X = Y ), P (X < Y ), P (min{x, Y } n), P (X divise Y ). Exercice À la pêche aux Homards Il n existe aucune méthode pour déterminer l âge exact d un homard. Le homard ne montre aucun signe mesurable de vieillissement : aucune perte d appétit, aucun changement dans le métabolisme, aucune perte de besoin reproducteur ou de capacité, aucun déclin dans la force ou la santé. Les homards, quand ils meurent, semblent mourir des causes externes. Ils sont pêchés par les humains, mangés par les sceaux, gaspillés par les parasites, mais ils ne semblent pas mourir de l intérieur. Un pêcheur de Cancale se spécialise dans la pêche au homard. Le pêcheur veut estimer le temps qu il dispose pour vendre ses homards. 1. Quelle loi usuelle peut-on utiliser pour modéliser la durée de vie T d un homard? Notons λ le paramètre de la loi de T. Exprimer en fonction de λ la durée de vie moyenne d un homard ainsi que l écart type associé. 2. On considère n homards choisis de façon indépendantes. On note T 1,..., T n leurs durées de vie respectives. On note U = min(t 1,..., T n ) le premier instant où au moins un des homards décède et V = max(t 1,..., T n ) le premier instant où tous les homards cessent de vivre. Exprimer les lois de U et de V. Reconnaitre la loi de U. Exercice On considère une variable aléatoire équidistribuée X telle que IP(X = 1) = IP(X = 0) = IP(X = 1) = 1/3. On pose Y = X 2. Montrer que Cov(X, Y ) = 0, mais que X et Y ne sont pas indépendantes. Exercice Recherche de cellules malignes On fait deux biopsies à un patient. Dans la première n cellules sont étudiées et on désigne par X le nombre de cellules malignes. Dans la seconde m cellules sont étudiées et on note Y le nombre de cellules malignes. La probabilité qu une cellule soit maligne est notée p. 1. Par quelle loi peut-on modéliser les variables X et Y? 2. Que représente X + Y? Déterminer la loi de X + Y. 3. Le laborantin a mélangé par inadvertance les deux éprouvettes. Quelle est alors la loi conditionnelle de X sachant {X + Y = k}? Exercice L oeuf ou la poule? On considère deux espèces de poules : les poules bressanes et les poules de Janzé. On supppose qu une poule pond des oeufs selon une loi de Poisson de paramètre λ pour les bressanes et µ pour celles de Janzé. On note X le nombre d oeufs pondu par jour par une poule bressane choisie au hasard et Y le nombre d oeufs par jour d une poule de Janzé choisie aussi au hasard.

11 5. EXERCICES SUR LE CHAPITRE En utilisant la fonction génératrice, trouver la loi du nombre d oeufs total pondu par jour par les deux poules? 2. Sachant qu au total elles ont pondu n oeufs, quelle est la loi du nombre d oeufs pondu par la poule bressane? Exercice Mutation dans un brin d ADN L ADN est soumis à des mutations endogènes et exogènes. Pour survivre, les cellules disposent d un mécanisme de réparation, mais parfois la mutation se fixe et se transmet aux cellules filles. On suppose que le nombre de mutation M subi par l ADN suit une loi de Poisson de paramètre λ et on note p la probabilité qu une mutation soit fixée. 1. Quelle est la loi du nombre de mutation fixée F sachant que M = k? 2. Déterminer la loi du couple (M, F ). 3. Déterminer la loi de F, son espérance et sa variance. 4. Quelle est la loi de M sachant que F = n?

12 44 CHAPITRE 3. COUPLE DE VARIABLES

Couple de variables aléatoires - Notion d indépendance.

Couple de variables aléatoires - Notion d indépendance. Couple de variables aléatoires - Notion d indépendance. Préparation au Capes - Université Rennes 1 On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres 1 Introduction Le nombre de piles obtenus au cours d une série de n lancers de pile ou face ou plus généralement dans

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

TD 1 & 2 Rappels de probabilités

TD 1 & 2 Rappels de probabilités Master IF, ENS de Lyon Évaluation de performance 5 & 22 septembre 20 TD & 2 appels de probabilités lionel.rieg@ens-lyon.fr Probabilités discrètes. Calcul de probabilités Exercice Soient A et B des événements

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

2 36. k 2 3 4 5 6 7 8 9 10 11 12

2 36. k 2 3 4 5 6 7 8 9 10 11 12 Chapitre 2 : Variables aléatoires discrètes Les variables aléatoires qui apparaissent dans ce chapitre (et son appendice) sont des exemples de variables aléatoires discrètes. I- Variables aléatoires. 1.

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Préparation au CAPES de Mathématiques

Préparation au CAPES de Mathématiques Université Claude Bernard Lyon 1 Année universitaire 2007-2008 Préparation au CAPES de Mathématiques Probabilités F. Bienvenüe-Duheille Chapitre 1 Probabilités 1 Mesure 1.1 Définitions On se place sur

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ARTHUR CHARPENTIER 1 Soit X la variable aléatoire continue de fonction de densité : { (1.4)e 2x + (0.9)e 3x pour x > 0 f X (x) = 0 sinon. Trouver E[X]. A) 9 20 B)

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Probabilités 2009-2010. Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010. Livret d exercices. x k pour tout x R. k!

Probabilités 2009-2010. Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010. Livret d exercices. x k pour tout x R. k! Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010 Probabilités A.L Basdevant, C. Hardouin Livret d exercices 1 Rappels, calculs utiles Exercice 1. 1) On rappelle que e

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Probabilités discrètes : exercices

Probabilités discrètes : exercices Université de Strasbourg Probabilités Département de mathématiques Agreg interne 2015-2016 Probabilités discrètes : exercices Vous pouvez me contacter à l adresse nicolas.juilletatmath.unistra.fr. J ai

Plus en détail

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Liste des fiches de probabilités Probabilités 1 : Introduction aux espaces probabilisés Probabilités 2 : Variables

Plus en détail

Cours de probabilités Terminale S. Paul Milan

Cours de probabilités Terminale S. Paul Milan DERNIÈRE IMPRESSION LE 27 juillet 2014 Cours de probabilités Terminale S Pour aller plus loin... Paul Milan Table des matières 1 Espace probabilisé 2 1.1 Cas où l univers est fini..........................

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Exercices corrigés, tome 04 : les énoncés

Exercices corrigés, tome 04 : les énoncés Exercices corrigés, tome 4 : les énoncés Table des matières : 1. Applications linéaires, p.2. 2. Variables aléatoires, p.6. 3. Intégrales, p.12. 4. Polynômes, p.16. 1 1 Applications linéaires Exercice

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique

Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique 2 2 i Introduction Ce cours présente des méthodes numériques qui utilisent des nombres aléatoires pour

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Cours de Mathématiques E.S.P.C.I Deuxième année. Elie Raphaël Polycopié des élèves rédigé à partir du cours

Cours de Mathématiques E.S.P.C.I Deuxième année. Elie Raphaël Polycopié des élèves rédigé à partir du cours Cours de Mathématiques E.S.P.C.I Deuxième année Elie Raphaël Polycopié des élèves rédigé à partir du cours 2 Ce polycopié a été rédigé sous L A TEX2e par Julien Berthaud, Cyrille Boullier, Régis Schach

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Outils statistiques. Notes de cours.

Outils statistiques. Notes de cours. 1 Outils statistiques Notes de cours. Clotilde Fermanian Françoise Lucas Année 2010 2011 L2-L3 Université Paris 12 Val de Marne. 2 Avertissement : Ce texte constitue des notes qui couvrent ce qui a été

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Licence Pro Amélioration Végétale

Licence Pro Amélioration Végétale Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

1 Espaces probabilisés discrets

1 Espaces probabilisés discrets I.S.F.A. L3 (1ʳe année) 1 Espaces probabilisés discrets Probabilités, fiche d exercices n 1 Exercice 1 On cherche à modéliser le lancer de deux dés à six faces, un rouge et un noir. Voici trois modèles

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

Exercices sur les lois de probabilités continues

Exercices sur les lois de probabilités continues Terminale S Exercices sur les lois de probabilités continues Exercice n 1 : X est la variable aléatoire de la loi continue et uniforme sur [0 ; 1]. Donner la probabilité des événements suivants : a. b.

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Exercices de Probabilités

Exercices de Probabilités Exercices de Probabilités Christophe Fiszka, Claire Le Goff Section ST Table des matières 1 Introduction aux probabilités 2 2 V.a.r, espérance, fonction de répartition 3 3 Lois usuelles 5 3.1 Loi de Bernoulli,

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Exercices supplémentaires : Loi binomiale

Exercices supplémentaires : Loi binomiale Exercices supplémentaires : Loi binomiale Partie A : Loi binomiale Dans une région pétrolifère, la probabilité qu un forage conduise à une nappe de pétrole est 0,1. 1) Justifier que la réalisation d un

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Baccalauréat STMG Antilles Guyane / 18 juin 2015

Baccalauréat STMG Antilles Guyane / 18 juin 2015 Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question

Plus en détail

Cours de probabilités, ECS deuxième année. Alain TROESCH

Cours de probabilités, ECS deuxième année. Alain TROESCH Cours de probabilités, ECS deuxième année Alain TROESCH 10 janvier 2012 Table des matières 1 Rappels de probabilités générales et discrètes 5 1.1 Principes généraux du calcul des probabilités.....................

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 Laurence GRAMMONT Laurence.Grammont@univ-st-etienne.fr Les solutions des exercices posés dans ce polycopié ne sont pas rédigées. October

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Exercices corrigés de SQ20

Exercices corrigés de SQ20 1 Exercices corrigés de SQ2 Corrigés TD 1 à 4 Printemps 215 responsable de l'uv : André Turbergue SQ2 TD1 : espaces probabilisés TD1 : espaces probabilisés 1 Énoncés Exercice 1. Calculer si possible une

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail