Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Seconde 2 IE2 repérage et configurations du plan Sujet 1. 1) Démontrer que les segments [AC] et [BD] ont le même milieu."

Transcription

1 Exercice 1 (5 points) On considère les points A(-3 ;0), B(5 ;-1), C(9 ;6) et D(1 ;7). 1) Démontrer que les segments [AC] et [BD] ont le même milieu. 2) Calculer les longueurs AB et BC. 3) Quelle est la nature du quadrilatère ABCD? DBG est un triangle équilatéral. est le demi-cercle de centre A et de diamètre [BD]. 1) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection des droites (DP) et (BG) 2) Montrer que M appartient au demi-cercle 3) On donne BD = 5 cm. Calculer BC et AP. 4) Calculer l angle DAC. Seconde 2 IE2 repérage et configurations du plan Sujet 2 Exercice 1 (5 points) Le plan est rapport é à un repère orthonormé. On considère les points L(-2 ;1), M(0 ;5), N(2 ;3) et P(4 ;7). 1) Démontrer que les segments [MN] et [LP] ont le même milieu. 2) Calculer les longueurs LM et LN. 3) Quelle est la nature du quadrilatère LMPN? ABCD est un parallélogramme de centre O. I est le milieu de [AB] et J celui de [CD]. La droite (AJ) coupe (BD) en E, la droite (CI) coupe (BD) en F. 1 ) Montrer que DE = EF = FB. 2 ) Que représentent E et F pour les triangles ACD et ACB? 3 ) Montrer que O est le milieu de [EF].

2 Exercice 1 (5 points) On considère les points A(-3 ;0), B(5 ;-1), C(9 ;6) et D(1 ;7). 1) Démontrer que les segments [AC] et [BD] ont le même milieu. 2) Calculer les longueurs AB et BC. 3) Quelle est la nature du quadrilatère ABCD? 1) Les coordonnées du milieu de [AC] sont : x A + x C ; y A + y C 2 Les coordonnées du milieu de [BD] sont : x B + x D ; y B + y D 2 2 = ; = ; = (3 ;3). = (3 ;3). Comme ces deux points ont les mêmes coordonnées alors les segments [AC] et [BD] ont le même milieu. 2) AB² = (x B - x A )² + (y B - y A )² = (5 (-3))² + (-1 0)² = 8² + (-1)² = = 65 BC² = (x C - x B )² + (y C - y B )² = (9 5)² + (6 (-1))² = 4² + 7² = = 65 Donc AB = BC = 65 3) ABCD a ses diagonales qui ont le même milieu : donc ABCD est un parallélogramme. i=1n2i2abcd est un parallélogramme qui a deux côtés consécutifs de même longueur ([AB] et [BC]) : donc ABCD est un losange. BD² = (x D - x B )² + (y D - y B )² = (1 5)² + (7 (-1))² = (-4)² + 8² = = 80 BD² AB² + BC² Donc le triangle ABD n est pas rectangle en A. Donc ABCD est un losange mais pas un carré. 2

3 DBG est un triangle équilatéral. est le demi-cercle de centre A et de diamètre [BD]. 1) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection des droites (DP) et (BG) 2) Montrer que M appartient au demi-cercle 3) On donne BD = 5 cm. Calculer BC et AP. 4) Calculer l angle DAC. 1) Le triangle BCD est rectangle en C car inscrit dans un demi-cercle dont un côté est un diamètre de ce demi-cercle. Donc (BC) est la hauteur issue de B du triangle BDG. (GA) est la hauteur issue de G du triangle BDG. P intersection des hauteurs (BC) et ( AG) est l orthocentre du triangle BDG. (DP) est la troisième hauteur du triangle BDG (car les hauteurs d un triangle sont concourantes). Donc les droites (DP) et (BG) sont perpendiculaires. 2) Le triangle DMB est rectangle en M et son cercle circonscrit est confondu avec celui du triangle BDC. Donc le point M appartient au demi-cercle. 3) En utilisant le théorème de Pythagore dans le triangle BDC rectangle en C, on a : BD² = CD² + BC² BC² = BD² - CD² = 25 2,5² = 18,75 BC = 18,75 4,33 P est aussi le centre de gravité du triangle BDG. Donc AP = 1 3 AG Or AG = BC. Donc : AP = 18,75 3 1,44 4) Cos DBC = BC BD = 18,75 5 DBC = 30 car DBG= 60 et (BC) est la bissectrice de DBG Le triangle ACB est isocèle en A. Donc CAB= = 120 Et DAC= 180 CAB= 60 3

4 Seconde 2 IE2 repérage et configurations du plan Sujet 2 Exercice 1 : (5 points) On considère les points L(-2 ;1), M(0 ;5), N(2 ;3) et P(4 ;7). 1) Démontrer que les segments [MN] et [LP] ont le même milieu. 2) Calculer les longueurs LM et LN. 3) Quelle est la nature du quadrilatère LMPN? 1) Les coordonnées du milieu de [MN] sont : x M + x N ; y M + y N 2 = ; = (1 ;4). Les coordonnées du milieu de [LP] sont : x L + x P ; y L + y P 2 = ; (1 ;4). Comme ces deux points ont les mêmes coordonnées alors les segments [MN] et [LP] ont le même milieu. 2) LM² = (x M - x L )² + (y M - y L )² = (0 (-2))² + (5 1)² = 2² + 4² = = 20 LN² = (x N - x L )² + (y N - y L )² = (2 (-2))² + (3 1)² = 4² + 2² = = 20 Donc LM = LN = 20 = 2 5 3) LMPN a ses diagonales qui ont le même milieu : donc LMPN est un parallélogramme. LMPN est un parallélogramme qui a deux côtés consécutifs de même longueur ([LM] et [LN]) : donc LMPN est un losange. MN² = (x N - x M )² + (y N - y M )² = (2 0)² + (3 5)² = 2² + (-2)² = = 8 MN² LM² + LN² Donc le triangle LMN n est pas rectangle en L. Donc LMPN est un losange mais pas un carré. = 4

5 Seconde 2 IE2 repérage et configurations du plan Sujet 2 ABCD est un parallélogramme de centre O. I est le milieu de [AB] et J celui de [CD]. La droite (AJ) coupe (BD) en E, la droite (CI) coupe (BD) en F. 1 ) Montrer que DE = EF = FB. 2 ) Que représentent E et F pour les triangles ACD et ACB? 3 ) Montrer que O est le milieu de [EF]. 1 ) Le quadrilatère AICJ a deux côtés opposés de même longueur et parallèles ([AI] et [JC]). C est donc un parallélogramme. Les droites (EJ) et (FC) sont donc parallèles. En appliquant le théorème de la droite des milieux dans le triangle FCD, on montre que E est le milieu de [FD]. De même, en appliquant le théorème de la droite des milieux dans le triangle AEB, on montre que F est le milieu de [EB]. Donc ED = EF = FB 2 ) (AJ) et (OD) sont deux médianes du triangle ADC concourantes en E. Donc E est le centre de gravité du triangle ADC. (CI) et (BO) sont deux médianes du triangle ABC concourantes en F. Donc F est le centre de gravité du triangle ABC. 3 ) OE = 1 3 OD et OF = 1 3 OB Or OB = OD, donc OE = OF, donc O est le milieu de [EF]. 5

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions Seconde 2 2-24 Sujet Exercice : ( points) DBG est un triangle équilatéral. C est le demi-cercle de centre A et de diamètre [BD]. ) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2

Seconde 2 IE2 repérage et configurations du plan S1. IE2 repérage et configurations du plan S2 On donne les points A(;3), B(1;-1) et C(6;). 3) Calculer les coordonnées du point D tel que ABDC soit un carré. ABCD est un parallélogramme de centre O. Les hauteurs des triangles ADO et BOC issues respectivement

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Propriétés de géométrie plane vues au collège

Propriétés de géométrie plane vues au collège Propriétés de géométrie plane vues au collège Théorème de Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

CONFIGURATIONS DU PLAN

CONFIGURATIONS DU PLAN onfiguations du plan - Théorème de Pythagore ONFGURTONS DU PLN Théorème de Pythagore Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES GEOMETRIE : RAPPELS PARALLELES ET PERPENDICULAIRES Théorème 1: Si deux droites sont parallèles à une même troisième. Alors elles sont parallèles entre elles. Théorème 2: Si deux droites sont perpendiculaires

Plus en détail

Symétrie axiale cours 6e

Symétrie axiale cours 6e Symétrie axiale cours 6e F.Gaudon 24 février 2004 Table des matières 1 Axes de symétrie 2 1.1 Approche expérimentale..................... 2 1.2 Axes de symétrie particuliers................... 2 1.2.1

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Corrigés 1/8 Corrigé 01 Dans un triangle, une médiane est une droite qui passe par un sommet et par le milieu du côté opposé. Dans un triangle, une médiatrice est une droite perpendiculaire à un côté et

Plus en détail

Corrigé géométrie collège

Corrigé géométrie collège Exercices sur les particularités des triangles Exercice 1 Puisque J est sur la médiatrice de [AC] et que O est le point de rencontre des médiatrices du triangle ABC, alors (OJ) est la médiatrice de [AC]

Plus en détail

( ) Sujet brevet blanc janvier corrigé. Activités numériques : Exercice 1 : = = = = = 8 = + = + 3 = = =

( ) Sujet brevet blanc janvier corrigé. Activités numériques : Exercice 1 : = = = = = 8 = + = + 3 = = = Sujet brevet blanc janvier 001 - corrigé Activités numériques : Eercice 1 : A 1 1 16 7 = B 1 = 7 7 9 7 = 7 7 7 = = 7 7 7 1 C = 1 + 1 = + 0 0 7 7 = = = 0 60 1 1 000 D = 1 000 = = = = 000 1 Eercice : 1 10

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

CONFIGURATIONS PLANES. REPERAGE

CONFIGURATIONS PLANES. REPERAGE CONFIGURATIONS PLANES. REPERAGE Figures planes. Repérage- B.O. GEOMETRIE EUCLIDIENNE Un peu d histoire Les objets de base de la géométrie euclidienne Le point : Objet sans dimension, le point est, à la

Plus en détail

Seconde Exercices pour préparer la composition du deuxième trimestre VECTEURS

Seconde Exercices pour préparer la composition du deuxième trimestre VECTEURS Seconde Exercices pour préparer la composition du deuxième trimestre 2012-2013 VECTEURS Exercice 1 Le plan est rapporté au repère orthonormé (O ;I ;J). On considère les points A 2 ; 5 2 B 6 ; 9 2 C 3 ;

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Exercices : Les éléments de géométrie

Exercices : Les éléments de géométrie Exercices : Les éléments de géométrie Montrer la construction avec cabri géomètre 1. Construire un triangle ABC et son centre de gravité G sachant que AC = 8 cm, I milieu de [AC] et IG = 3 cm 2. Sur la

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Cours de GEOMETRIE PLANE

Cours de GEOMETRIE PLANE Institut municipal : JM Labatte Géométrie plane. 1/8 Cours de GEOMETRIE PLANE I Droites Notations : Un point du plan est représenté par une lettre majuscule : A, B Une droite est notée (d), d, (D) ou (AB)

Plus en détail

DEMONSTRATIONS QUADRILATERES

DEMONSTRATIONS QUADRILATERES DEMONSTRATIONS QUADRILATERES I COMMENT ECRIRE UNE DEMONSTRATION * Une démonstration doit contenir ces 3 étapes : Les données utiles Le théorème La conclusion * LES DONNEES UTILES : Une donnée est quelque

Plus en détail

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18 Nom : Classe : nde / nde 5 Devoir maison n Géométrie plane à préparer pour le : 05 / 11 / 18 Note : / 10 Avis de l élève Avis du professeur Je sais : Oui Non Oui Non Placer des points dans un repère. Justifier

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

NOM : DROITES REMARQUABLES 4ème

NOM : DROITES REMARQUABLES 4ème Exercice 1 1) Retrouver les deux définitions de la médiatrice d un segment [AB]. 2) Construire à la règle et au compas les trois médiatrices d un triangle RST tel que : RS = 10cm, ST = 7cm et RT = 4cm.

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné.

Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné. http://joho.monsite.orange.fr/ Aider l élève à rédiger rigoureusement un raisonnement. Aider l élève à faire le point sur les différents outils à sa disposition pour répondre à un problème donné. Objectifs

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

REPÉRAGE DANS LE PLAN

REPÉRAGE DANS LE PLAN REPÉRAGE DANS LE PLAN Exercice 1 Le plan est muni d un repère orthonormal (O, I, J). On donne : OA = 2OI + 1 OJ ; OB = 2OI ; OD = OJ ; OC = OI OJ 2 et OE = 1 OI OJ 1. Donne les coordonnées des points A,

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Chapitre III : Configurations planes et repérage

Chapitre III : Configurations planes et repérage Chapitre III : Configurations planes et repérage Extrait du programme : I. Configurations planes Dans cette partie, aucune nouveauté! La rédaction devra être apprise, comme indiquée dans les exercices

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

Chapitre 02 : Quadrilatères particuliers

Chapitre 02 : Quadrilatères particuliers Chapitre 02 : Quadrilatères particuliers I] Le parallélogramme (Rappels) et propriétés Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles. Si un quadrilatère est

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 1

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 1 THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 1 Exercice 6 : Soit ABCD un parallélogramme de centre O. Soit E le symétrique du point C par rapport à B. Soit G le point d'intersection

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

MATHEMATIQUES EVALUATION N O 1. REPÈRES 2 nde Vendredi 23 septembre - 1 heure. Nom :... Prénom :... Exercice 1 Soit (O; I ; J) un repère orthonormé.

MATHEMATIQUES EVALUATION N O 1. REPÈRES 2 nde Vendredi 23 septembre - 1 heure. Nom :... Prénom :... Exercice 1 Soit (O; I ; J) un repère orthonormé. MATHEMATIQUES EVALUATION N O 1 REPÈRES nde Vendredi 3 septembre - 1 heure Nom :............................................ Prénom :........................................ Exercice 1 Soit (O; I ; J) un

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Des configurations sans repère

Des configurations sans repère Des configurations sans repère Exercice 1 1. Longueur IB : On sait que cm et que I est le milieu de [AB] donc. Longueur BC : Dans le triangle rectangle ABC, par le théorème de Pythagore :. On en déduit

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

CHAPITRE 11 CONFIGURATIONS

CHAPITRE 11 CONFIGURATIONS A) Le triangle (Rappels) CHAPITRE 11 CONFIGURATIONS 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes d un triangle sont concourantes en un point appelé le centre de gravité.

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

NOM : GEOMETRIE 4ème

NOM : GEOMETRIE 4ème Exercice 1 Soit une droite (d) et un point G situé en dehors de la droite (d). On veut construire la parallèle à la droite (d) passant par le point G. Dans chacun des cas suivants, faire une figure, en

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 Exercice 2

Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 Exercice 2 Seconde 4 IE4 configurations du plan sujet 1 Exercice 1 : (5 points) On considère un triangle ABC. On considère les points : D, intersection de la bissectrice de d B et de sa perpendiculaire issue de A

Plus en détail

Nom : GEOMETRIE ANALYTIQUE 2nde

Nom : GEOMETRIE ANALYTIQUE 2nde Exercice 1 Les points A et B sont tels que A(2 ; 1) et B(5 ; 3). 1) Calculer les coordonnées du point M tel que A soit le milieu du segment [BM]. 2) Calculer les coordonnées du point N, symétrique de A

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

GÉOMÉTRIE PLANE : GÉNÉRALITÉS

GÉOMÉTRIE PLANE : GÉNÉRALITÉS GÉOMÉTRIE PLANE : GÉNÉRALITÉS 1 Un peu d histoire 3000 à 500 La géométrie est purement utilitaire (calculs d aires, de distances, architecture..), on ne s intéresse pas du tout à l aspect démonstration.

Plus en détail

Calcul mental-minitest: triangles et quadrilatères

Calcul mental-minitest: triangles et quadrilatères Calcul mental-minitest: triangles et quadrilatères triangles et quadrilatères Lycée Français de Barcelone sixième (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 1 / 21 Question

Plus en détail

Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé.

Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé. Nom-Prénom :... Vendredi 9 novembre 018 Classe : Seconde DEVOIR EN CLASSE N sujet A Il sera tenu compte de la qualité de la présentation et de la rédaction. L'usage de la calculatrice est autorisé. Exercice

Plus en détail

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES I. CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES a) Un segment contient une infinité de points (tout comme une droite!) b) (AB) et (CD) se coupent car elles ne sont pas parallèles. c) On peut tracer

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Repérage dans le plan (début)

Repérage dans le plan (début) Repérage dans le plan (début) I/ Repère Def: un repère du plan est la donnée de trois points non alignés O, I et J. Def: si les axes ( OI ) et ( OJ ) sont perpendiculaires et si les distances OI et OJ

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

CONFIGURATIONS PLAN ET REPÉRAGE

CONFIGURATIONS PLAN ET REPÉRAGE ours NFGURTNS U PLN ET REPÉRGE 1 Triangles 1.1 Théorèmes des milieux Théorème 1 La droite qui joint les milieux de deux côtés d un triangle est parallèle au troisième côté. La droite qui passe par le milieu

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Les axes de symétrie. des figures usuelles

Les axes de symétrie. des figures usuelles Les axes de symétrie des figures usuelles 1. Le triangle isocèle... p2 4. Le rectangle... p6 2. Le triangle équilatéral... p3 5. Le carré... p7 3. Le losange... p5 Copyright meilleurenmaths.com. Tous droits

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

Coordonnées d'un point du plan

Coordonnées d'un point du plan Fiche exercices EXERCICE 1 (O;I;J) est un repère orthonomé. (Unité de longueur : le centimètre) 1. Placer les points A(-1;3), B(;-1), C(-1;-1), D(-;1), E(1;3).. Calculer les longueurs AB, AC, BC, BD, AE

Plus en détail

PARALLELOGRAMMES PARTICULIERS RECTANGLE - LOSANGE - CARRE

PARALLELOGRAMMES PARTICULIERS RECTANGLE - LOSANGE - CARRE THEME : PARALLELOGRAMMES PARTICULIERS RECTANGLE - LOSANGE - CARRE Le rectangle : Considérons un jouet d enfant constitué de 4 pièces métalliques ( ou en bois ) ; deux ont même longueur et les deux autres

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

Chapitre 02 : Quadrilatères particuliers

Chapitre 02 : Quadrilatères particuliers Chapitre 02 : Quadrilatères particuliers I] Le parallélogramme (Rappels) et propriétés Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles. Si un quadrilatère est

Plus en détail

Exercice 1 1/ Quelles sont les coordonnées des points A, B, C et D ci-dessous?

Exercice 1 1/ Quelles sont les coordonnées des points A, B, C et D ci-dessous? Exercice 1 1/ Quelles sont les coordonnées des points A, B, C et D ci-dessous? 10 A C B D 1 2/ a) Placer le point E tel que CE = BD b) Placer le point F tel que CF = BA c) Placer le point G tel que AG

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

1SA Angles - Corrigé

1SA Angles - Corrigé 1SA Angles - Corrigé Mesure principale des angles Exercice 1 1) Déterminer la mesure principale de l angle orienté dont une mesure est : a) 7π = π b) 199π 6 = 20π 6 5π 6 = 5π 6 c) 77π 3 = 78π 3 + π 3 =

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

Droites remarquables du triangle (1) Cours 4 ème

Droites remarquables du triangle (1)   Cours 4 ème Droites remarquables du triangle (1) www.mathmaurer.com Cours 4 ème I Les médiatrices du triangle 1 - Rappels sur la médiatrice d'un segment Définition 1: On appelle médiatrice d'un segment la droite qui

Plus en détail

Produit scalaire. Exercices Fiche 1. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice Déterminer AB AC.

Produit scalaire. Exercices Fiche 1. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice Déterminer AB AC. Exercice 1 Exercices Fiche 1 Soit ABC un triangle tel que AB=5, AC =3 et BAC = 3 4. Déterminer AB AC. Exercice Soit u et v deux vecteurs tels que u =, u v =-7 et u, v = 6. Déterminer v. Exercice 3 Soit

Plus en détail

Fiche 82 (Sangaku) : Deux cercles dans un cercle

Fiche 82 (Sangaku) : Deux cercles dans un cercle Fiche 82 (Sangaku) : Deux cercles dans un cercle 1) Tracer un cercle de centre D et de rayon 6 cm. 2) Placer deux points A et B sur ce cercle diamétralement opposés. 3) Partager le segment [AB] en quatre

Plus en détail

Chapitre 9 Parallélogrammes. Propriété 1 : Un parallélogramme admet un centre de symétrie : le point d intersection de ses diagonales.

Chapitre 9 Parallélogrammes. Propriété 1 : Un parallélogramme admet un centre de symétrie : le point d intersection de ses diagonales. Chapitre 9 Parallélogrammes I. Le parallélogramme et ses propriétés A. Définition Définition 1 : Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. B. Propriété

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail