MÉTHODES DE CLASSIFICATION

Dimension: px
Commencer à balayer dès la page:

Download "MÉTHODES DE CLASSIFICATION"

Transcription

1 MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ

2 MÉTHODES DE CLASSIFICATION Objet Opérer des regroupements en classes homogènes d un ensemble d individus. Données Les données se présentent en général sous la forme d un tableau individus variables. 1. Ayant défini un critère de distance (dissemblance) ou dissimilarité (pas nécessairement d inégalité triangulaire) entre les individus, on procède au regroupement des individus. 2. Ce regroupement nécessite une stratégie de classification : critère de classification. 2

3 MÉTHODES NON HIERARCHIQUES Partition en k classes Eemples : Centres mobiles Nuées dynamiques Avantages : Permettent la classification d ensembles volumineu. Inconvénients : On impose au départ le nombre de classes. 3

4 HIÉRARCHIQUES : suites de partitions emboîtées a b c d e OU a, b, c, d, e ab, c, d, e abc, de abcde Avantages : La lecture de l arbre permet de déterminer le nombre optimal de classes. Inconvénients : Coûteu en temps de calcul. 4

5 Éléments de vocabulaire classification automatique classification non supervisée apprentissage sans professeur Le terme «classification» en anglais fait référence à l affectation d un individu à une classe (eistant a priori) dans le cadre de l analyse discriminante. Il se traduit en français par le terme classement. L équivalent en anglais de «classification automatique» est «cluster analysis». 5

6 Éléments de vocabulaire E : ensemble des n objets à classer Dissimilarité : dij (, ) = dji (, ) dii (, ) = 0 dij (, ) 0 Similarité : sij (, ) = sji (, ) sij (, ) 0 sii (, ) sij (, ) 6

7 I. MÉTHODES DE PARTITIONNEMENT 1. Considérations combinatoires P nk, = nombre de partitions en k classes de n individus P nk, = Pn 1, k 1+ k Pn 1, k (récurrence) (nombre de Stirling de 2 ème espèce) E : P 12, 5 = P n = nombre total de partitions (nombres de Bell) E : P 12 = Nécessité d algorithmes pour trouver une bonne partition. Comment définir la qualité d une partition? 7

8 2. Inertie intra-classe et Inertie inter-classe n points dans un espace euclidien d 2 ( i i ), distance euclidienne Soit une partition en k classes de poids P i g 1, g 2... g k centres de gravité I 1, I 2... I k inerties associées I W = PI inertie intra i i ( ) I = Pd 2 g, g inertie inter B i i I + I = I g = centre de gravité des n individus B W g 1 g g2 g k 8

9 Comparaison de deu partitions en k classes : La meilleure est celle qui a l inertie I W la plus faible (ou l inertie I B la plus forte). Remarque : Ce critère ne permet pas de comparer des partitions à nombres différents de classe. 3. Méthode des centres mobiles c 1 c 2 c 3 1 ère étape : choi de centres c i et partition associée (les c i sont choisis au hasard). La classe E ci est formée de tous les points plus proches de c i que de tout autre centre. 9

10 2 ème étape : calcul des centres de gravité de chaque classe définition d une nouvelle partition. ( ) g 1 2 ( ) g 3 2 ( ) g itérations successives RÉSULTAT FONDAMENTAL L inertie intra-classe diminue à chaque étape. Démonstration : Soit E gi la classe obtenue en remplaçant c i par ( 2 g ) i centre de gravité de E ci. D après le théorème de Konig-Huygens, g i n étant pas le centre de gravité de E gi k 1 d 2 ( g ) n i= 1 E gi partition E gi., i est supérieur à l inertie intra-classe de la 10

11 Il suffit de montrer alors que : k d ( j g ) n, i i j E n c i = 1 i= 1 k 2 d (,g i ) E g i Or, si on considère un point quelconque, il figurera dans le membre de droite avec son carré de distance au g i qui sera le plus proche de lui par construction des E gi, tandis que dans le membre de gauche, il figurera avec sa distance à un g i qui ne sera pas forcément le plus proche de lui, mais qui sera seulement son centre de gravité dans la partition E ci. Le nuage étant fini, l algorithme converge. L epérience montre que le nombre d itérations nécessaires est en général faible. 11

12 EXEMPLE : Méthode des Centres Mobiles 2 c c 1 Etape 0 Choi des centres c 1 c 2 Etape 1 2 c c 1 Constitution de classes autour des centres c 1 et c 2 Classe 1 : points plus proches de c 1 que de c 2 Classe 2 : points plus proches de c 2 que de c 1 Etape 2 ( 2) g 1 ( 2) g 2 + Calcul des centres de gravité des 2 classes formées à l' étape 1 g g 1 2 Définition de nouvelles classes autour des centres de gravité Etape 3 ( 3) g 1 ( 3) g 2 Calcul des centres de gravité des classes formées à l' étape 2. Nouvelle définition des classes autour de ces centres STABILITE FIN de l algorithme 12

13 4. Généralisation : nuées dynamiques L idée est d associer à une classe un représentant différent de son centre de gravité. Par eemple : un ensemble d individus (noyau formé de q points appelés les étalons) une droite une loi de probabilité Algorithme - Principe Il faut faire décroître le critère U mesurant l adéquation entre les classes et leurs représentants. 13

14 Initialisation Deu possibilités : 1. Soit on se donne au départ une fonction d affectation qui génère une partition ( ) chaque classe sont calculés. Q= Q1... Q k sur E. Les noyau pour 2. Soit on se donne k noyau. Étape d affectation Pour chaque individu, déterminer la classe à laquelle on doit l affecter (nécessité d avoir défini une distance entre un point et un noyau, ou un groupe de points). Étape de représentation Pour chaque classe définie, calculer le nouveau noyau. 14

15 La convergence vers un minimum local est obtenue si chaque étape fait décroître le critère U. ARRÊT DE L ALGORITHME quand la décroissance atteint un seuil fié a priori. Pratique de la méthode Comme la partition finale peut dépendre de l initialisation, on recommence s fois (eemple : s tirages aléatoires de noyau). Formes fortes Ensemble d éléments ayant toujours été regroupés lors de la partition finale. 15

16 Eemples : Première partition Deuième partition partition-produit 1000 individus Trois partitions de base en 6 classes : Partition Partition Partition Ces trois partitions sont ensuite croisées entre elles 6 3 = 216 classes Groupements stables rangés par effectifs décroissants : formes fortes d effectifs importants 16

17 5. Variantes des méthodes «centres mobiles» K-means (Mac Queen 1967) On effectue un recentrage dès qu un objet change de classe. Isodata (Ball et Hall 1965) Un certain nombre de contraintes sont imposées pour empêcher la formation de classes d effectifs trop faibles ou de diamètre trop grand. 17

18 II. LA CLASSIFICATION HIÉRARCHIQUE Elle consiste à fournir un ensemble de partitions de E en classes de moins en moins fines obtenues par regroupements successifs de parties. Arbre de classification ou dendrogramme a b c d e Démarche : Cet arbre est obtenu dans la plupart des méthodes de manière ascendante : On regroupe d abord les deu individus les plus proches qui forment un «sommet» Il ne reste plus que (n-1) objets et on itère le processus jusqu à un regroupement complet. Un des problèmes consiste à définir une mesure de dissimilarité entre classes. Remarque : Les méthodes descendantes ou algorithmes divisifs sont pratiquement inutilisées. 18

19 1. Stratégies d agrégation sur dissimilarités Le problème est de définir la dissimilarité entre la réunion de deu éléments et un troisième : ( b,c ) d a différente.. A chaque solution correspond une ultramétrique A c d (A, c)? a. Le saut minimum Cette méthode (connue sous le nom de «single linkage» en anglais») consiste à écrire que : { ( ) ( ) } d ( a b,c) = inf d a, c ; d b,c La distance entre parties est donc la plus petite distance entre éléments des deu parties. 19

20 b. Le diamètre («complete linkage») On prend ici comme distances entre parties la plus grande distance entre deu éléments. [(, ) ; ] = sup (, ), (, ) [ ] d a b c d a c d b c 20

21 2. Stratégies diverses saut minimum (plus proche) diamètre moyenne des distances médiane des distances distance au centre de gravité. Indice i(a) A L indice ou niveau d agrégation est le niveau auquel on trouve agrégés pour la première fois tous les constituants de A. 21

22 3. La méthode de Ward pour distance Euclidienne Si on peut considérer E comme un nuage d un espace R p, on agrège les individus qui font le moins varier l inertie intra-classe. A chaque pas, on cherche à obtenir un minimum local de l inertie intraclasse ou un maimum de l inertie inter-classe. L indice de dissimilarité entre deu classes (ou niveau d agrégation de ces deu classes) est alors égal à la perte d inertie inter-classe résultant de leur regroupement. Calculons cette perte d inertie : g A = centre de gravité de la classe A (poids p A ) g B = centre de gravité de la classe B (poids p B ) g AB = centre de gravité de leur réunion g AB = p g p + p g + p A A B B A B 22

23 L intertie inter-classe étant la moyenne des carrés des distances des centres de gravité des classes au centre de gravité total, la variation d inertie inter-classe, lors du regroupement de A et B est égale à : (, ) + (, ) ( + ) (, ) p d g g p d g g p p d g g A A B B A B AB Elle vaut : A B 2 (, ) = (, ) δ AB p p p p d g g A + A B B Remarque : Cette méthode entre dans le cadre de la formule de Lance et Williams généralisée : δ [( AB, ) ; C] = ( p + p ) δ ( A, C) + ( p + p ) δ ( B, C) p δ( A, B) A C B C C p + p + p A B C On peut donc utiliser l algorithme général. On notera que la somme des niveau d agrégation des différents noeuds de l arbre doit être égale à l inertie totale du nuage, puisque la somme des pertes d inertie est égale à l inertie totale. Cette méthode est donc complémentaire de l analyse en composantes principales et repose sur un critère d optimisation assez naturel. Elle constitue à notre avis la meilleure méthode de classification hiérarchique sur données euclidiennes. Il ne faut pas oublier cependant que le choi de la métrique dans l espace des individus conditionne également les résultats. 23

24 III. LA PRATIQUE DE LA CLASSIFICATION 1. Les méthodes mites En présence d un grand nombre d individus (>10 3 ), il est impossible d utiliser directement les méthodes de classification hiérarchique. On combine les techniques non hiérarchiques et hiérarchiques. Etape 1 : Méthode «centres mobiles» ou «nuées dynamiques». On forme par eemple 50 classes. Etape 2 : Construction d un arbre à partir des k classes formées à l étape 1. Coupure de l arbre en un nombre judicieu de classes. Etape 3 : Consolidation de la partition obtenue à l étape 2 (méthode de type «centres mobiles»). 24

25 2. Interprétation d une partition 2-1. Utilisation des outils de base de la statistique Pour chaque variable : Calcul de paramètres caractéristiques de chaque classe (moyenne, écart-type, min, ma...) Représentations graphiques : boîtes à moustaches, intervalle de confiance pour les moyennes. Analyse de la variance à un facteur pour chaque variable (on peut ainsi «classer» les variables par ordre de contribution à la création des classes) En liaison avec une analyse factorielle (A.C.P. dans le cas de variables quantitatives) On peut repérer les classes formées dans le plan des individus. Projeter les points moyens représentant chaque classe. Utiliser les valeurs-tests pour chaque classe sur les aes interprétés Les deu approches sont complémentaires, la première approche peut être longue à mettre en oeuvre si le nombre de variables est élevé. 25

26 IV. LA CLASSIFICATION DE DONNÉES QUALITATIVES 1. Les n individus à classer sont décrits par des variables qualitatives a. Données de présence - absence On utilise un des indices de dissimilarité déduit des indices de similarité proposés qui combinent de diverses manières les quatre nombres suivants associés à un couple d individus. a = nombre de caractéristiques communes b = nombre de caractéristiques possédées par i et pas par j c = nombre de caractéristiques possédées par j et pas par i d = nombre de caractéristiques que ne possèdent ni i, ni j. Les indices compris entre 0 et 1 sont aisément transformables en dissimilarité par complémentation à 1. Jaccard a a b c + + Dice ou Czekanowski 2a 2a + b + c Ochiaï a ( a+ b) ( a+ c) Russel et Rao a a + b + c + d Rogers et Tanimoto a+ d a+ d+ 2 b+ c ( ) 26

27 b. Individus décrits par des variables qualitatives à m 1 m 2... m p modalités On utilise la représentation disjonctive complète et la distance du χ 2 entre lignes du tableau. d 2 χ 2 ( i i ), = j np n j ij p i j 2 (Elle traduit le fait que deu individus ayant en commun une modalité rare sont plus proches que deu individus ayant en commun une modalité fréquente). On utilise alors la méthode de Ward (puisque la distance du χ 2 est euclidienne) sur le tableau des distances. Autre solution : Classification hiérarchique sur le tableau des coordonnées factorielles des n individus après A.C.M. de X. Les deu approches sont équivalentes si on utilise tous les facteurs de l A.C.M. soit m i p, en conservant la normalisation de chaque ae à μ. 27

28 2. Classification hiérarchique des lignes (ou des colonnes) d un tableau de contingence Elle s effectue avec la méthode de Ward et la distance du χ 2 entre lignes (ou entre colonnes). Cette méthode revient à regrouper les catégories d une variable qualitative de la façon suivante : à chaque étape, on réunit les deu catégories (en sommant les effectifs) qui font diminuer le moins possible le φ 2 puisque l inertie totale est ici égale à χ2 n. 28

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

MÉTHODES DE CLASSIFICATION. Pierre-Louis GONZALEZ

MÉTHODES DE CLASSIFICATION. Pierre-Louis GONZALEZ MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ 1 MÉTHODES DE CLASSIFICATION Objet: Opérer des regroupements en classes homogènes d un ensemble d individus. Données: Les données se présentent en général

Plus en détail

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage Classification Exemple : Enquête d opinion sur les OGM Pauline Le Badezet Alexandra Lepage SOMMAIRE Introduction Méthodologie Méthode de partitionnement Classification Ascendante Hiérarchique Interprétation

Plus en détail

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1 Clustering Christine Decaestecker, ULB Marco Saerens, UCL LINF75 Clustering 1 Classification non-supervisée (automatique) Méthodes de regroupement ("Clustering") Objectif : Sur base - soit d'un tableau

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données

Plus en détail

GUIDE DU DATA MINER. Classification - Typologies. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Classification - Typologies. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Classification - Typologies Data Management, Data Mining, Text Mining 1 Guide du Data Miner Classification - Typologies Le logiciel décrit dans le manuel est diffusé dans le cadre d

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

ACP et classification de données spatiales

ACP et classification de données spatiales UE STA112 ACP et classification de données spatiales Mars 2012 Gilbert Saporta Conservatoire National des Arts et Métiers gilbert.saporta@cnam.fr http://cedric.cnam.fr/~saporta Compléments sur les indices

Plus en détail

Classification. Pr Roch Giorgi. roch.giorgi@univ-amu.fr

Classification. Pr Roch Giorgi. roch.giorgi@univ-amu.fr Classification Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr Objectif Rechercher

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 6. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 6. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 6 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Analyses statistiques multivariées. Béatrice de Tilière

Analyses statistiques multivariées. Béatrice de Tilière Analyses statistiques multivariées Béatrice de Tilière 23 novembre 2009 ii Table des matières 1 La Statistique 1 1.1 Généralités.................................. 1 1.2 Un peu de vocabulaire............................

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

Évaluation d une approche de classification conceptuelle

Évaluation d une approche de classification conceptuelle Évaluation d une approche de classification conceptuelle Marie Chavent Yves Lechevallier Mathématiques Appliquées de Bordeaux, UMR 5466 CNRS Université Bordeaux 1-351, Cours de la libération 33405 Talence

Plus en détail

TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM

TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM Emmanuel Rachelson and Matthieu Vignes 9 octobre 2013, SupAero - ISAE 1 Présidentielles 2008 - AFC Récupérer les données,

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

MÉTHODES DE CLASSIFICATIONS. UAG IESG STS LS6 BBB Biomathématiques Bruno Hérault 2012 Semestre 2

MÉTHODES DE CLASSIFICATIONS. UAG IESG STS LS6 BBB Biomathématiques Bruno Hérault 2012 Semestre 2 MÉTHODES DE CLASSIFICATIONS UAG IESG STS LS6 BBB Biomathématiques Bruno Hérault 2012 Semestre 2 Objectifs Partitionnement (Soit un ensemble X quelconque. Un ensemble P de sous-ensembles de X est une partition

Plus en détail

Data Mining: Activité hospitalière

Data Mining: Activité hospitalière Data Mining: Activité hospitalière DIAGNE Sénéba 1, Huai Yuan WAN 2 1. S2IFA 2. DRM Chapitre 1 Clustering : Activité hospitalière 1.1 Présentation des données Le périmètre des données représente ici un

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

LES TYPOLOGIES DE PARCOURS METHODES ET USAGES. Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr

LES TYPOLOGIES DE PARCOURS METHODES ET USAGES. Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr LES TYPOLOGIES DE PARCOURS METHODES ET USAGES Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr 1 PLAN Première partie : un exemple traité «en vraie grandeur» : les 26500 jeunes

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

Le Multidimensional Scaling et la cartographie des préférences

Le Multidimensional Scaling et la cartographie des préférences Le Multidimensional Scaling et la cartographie des préférences Gilbert Saporta Conservatoire National des Arts et Métiers http://cedric.cnam.fr/~saporta Avril 2014 Multidimensional scaling Egalement appelé

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Master 2 Informatique UAG. Classification de documents/textes

Master 2 Informatique UAG. Classification de documents/textes Data Mining Master 2 Informatique UAG Classification de documents/textes Utilisée en text mining, information retrieval : amélioration du recall et de la précision Moyen de trouver les voisins les plus

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Introduction à l analyse des correspondances et à la classification

Introduction à l analyse des correspondances et à la classification Introduction à l analyse des correspondances et à la classification Bertrand Iooss Véronique Verrier EDF R&D Département Management des Risques Industriels Cours IUP SID Toulouse - M1-17/10/2011 14/10/2011

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

L analyse des données statistiques

L analyse des données statistiques L analyse des données statistiques Public : Les cadres devant analyser des données quantitatives et qualitatives Objectif : Apprendre, en utilisant principalement Excel : - à traiter des données provenant

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple Analyse simultanée de variables quantitatives et qualitatives à l aide de l analyse factorielle multiple Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus France Analyse Factorielle Multiple

Plus en détail

Analyse multidimensionnelle de données longitudinales

Analyse multidimensionnelle de données longitudinales Analyse multidimensionnelle de données longitudinales Ndèye Niang Conservatoire National des Arts et Métiers Plan Introduction Terminologie-Notations Méthodes directes Coefficient d association vectorielle

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Partie 1 : Étude des caractéristiques d un ensemble d hôtels

Partie 1 : Étude des caractéristiques d un ensemble d hôtels Analyse de données M1 Statistique et économétrie - 2012 V. Monbet Classification Partie 1 : Étude des caractéristiques d un ensemble d hôtels Le fichier hotels.csv contient des caractéristiques liées au

Plus en détail

Analyse multivariée approfondie

Analyse multivariée approfondie Analyse multivariée approfondie Enseignants: NIANG N. et RUSSOLILLIO G. Maître de conférences Statistique Appliquée Laboratoire CEDRIC CNAM http://www.cnam.fr et d autres intervenants extérieurs au Cnam

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements Jean-Pierre NAKACHE Ingénieur de recherche CNRS détaché à l'inserm Chargé de cours à l'isup Josiane CONFAIS Ingénieur d'études chargée des enseignements pratiques à l'isup Approche pragmatique de la classification

Plus en détail

Pierre-Louis GONZALEZ

Pierre-Louis GONZALEZ SEGMENTATION Pierre-Louis GONZALEZ 1 I. Les méthodes de segmentation. Introduction Les méthodes de segmentation cherchent à résoudre les problèmes de discrimination et de régression en divisant de façon

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Plan du cours Analyse en Composantes Principales Introduction Les données Leurs représentations La méthode Modèle Interprétation statistique Espace principal Composantes Principales Représentations Graphiques

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Glossaire Analyse en Composantes Principales (ACP) Analyse Factorielle des Correspondances (AFC) Apprentissage supervisé Apprentissage non supervisé

Glossaire Analyse en Composantes Principales (ACP) Analyse Factorielle des Correspondances (AFC) Apprentissage supervisé Apprentissage non supervisé Glossaire Analyse en Composantes Principales (ACP) : *méthode factorielle (Pearson 1901, Hotelling 1933) permettant de fournir un résumé descriptif (sous forme graphique le plus souvent) d une population

Plus en détail

Baccalauréat STG - Mercatique - CFE - GSI Correction Antilles-Guyane septembre 2011

Baccalauréat STG - Mercatique - CFE - GSI Correction Antilles-Guyane septembre 2011 Baccalauréat STG - Mercatique - CFE - GS Correction ntilles-guyane septembre 2011 EXERCCE 1 Monsieur Prévoyant place un capital de 3 000 euros sur un compte rémunéré à intérêts composés. Le tau de placement

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles

Plus en détail

Data Mining : la classification non supervisée

Data Mining : la classification non supervisée Data Mining : la classification non supervisée Clustering : une affaire de distance. Etude préliminaire. Valeurs discrètes. Soient les deux individus suivants correspondant à des séquences ADN : X = AGGGTGGC

Plus en détail

UNIVERSITÉ LUMIÈRE LYON 2 UFR DE SCIENCES ÉCONOMIQUES ET DE GESTION. M1- Economie quantitative. Analyse des données

UNIVERSITÉ LUMIÈRE LYON 2 UFR DE SCIENCES ÉCONOMIQUES ET DE GESTION. M1- Economie quantitative. Analyse des données UNIVERSITÉ LUMIÈRE LYON 2 UFR DE SCIENCES ÉCONOMIQUES ET DE GESTION M1- Economie quantitative Analyse des données Polycopié 2 : Classification automatique Année Universitaire 2013-2014 Courriel ; rafik.abdesselam@univ-lyon2.fr

Plus en détail

ANALYSE DES DONNÉES TEXTUELLES

ANALYSE DES DONNÉES TEXTUELLES Université Paris Dauphine Ecole Doctorale de Gestion M. Gettler Summa, C. Pardoux ANALYSE DES DONNÉES TEXTUELLES Traitement automatique des questions ouvertes Question ouverte Souhaitez-vous ajouter des

Plus en détail

ACP Voitures 1- Méthode

ACP Voitures 1- Méthode acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

CH 3 : Classification

CH 3 : Classification CH 3 : Classification A- Généralités B- Mesure d éloignement C- Critère d homogénéité D- Choix d une méthode E- Mesures de la qualité F- Interprétation G- ACP/Classification H- Exemple A- Généralités

Plus en détail

4. Programmation en nombres entiers

4. Programmation en nombres entiers IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers a. Modélisation Terminologie de base Programmation en nombres entiers Programmation linéaire avec certaines variables contraintes

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Analyse de données multidimensionnelles

Analyse de données multidimensionnelles Analyse de données multidimensionnelles M1 Statistique et économétrie, 2014 Projet - V. Monbet Le projet est composé de deux parties indépendantes. Les données sont disponibles sur la page web du cours.

Plus en détail

COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES

COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 6 : Modélisation non-supervisée

Plus en détail