Chapitre 2 : Représentation des nombres en machine

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 : Représentation des nombres en machine"

Transcription

1 Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous tension ou hors tension. Comme il fallait donner un nom à ces états, on a décidé de les appeler 0 et 1. Une telle valeur s appelle un booléen, un chiffre binaire ou encore un bit (binary digit). Si bien qu un tel circuit à deux états s appelle un circuit mémoire un bit. L état d un circuit composé de plusieurs tels circuits se décrit par une suite finie de 0 et de 1, que l on appelle un mot. Par exemple, le mot 100 décrit l état d un circuit composé de trois circuits mémoires un bit, respectivement dans l état 1, 0 et 0. Il est donc plus naturel de compter uniquement à l aide des chiffres 0 et 1 au sein d un ordinateur, c est-à-dire en base 2. I. Représentation des entiers naturels 1. Numération et base On se donne k N. Le principe de la numération en base k est le suivant : Pour décomposer un entier n, on le groupe par paquets de k, puis on groupe ces paquets en paquets de k paquets, etc. Par exemple si on décompose 13 en base 2, on obtient le schéma suivant On obtient donc, si on numérote les nombres de paquets du plus gros au plus petit, 1101 pour 13. Conversion de n en base k Pour obtenir l écriture en base k, on fait donc une succession de divisions de n et des quotients successifs par k, jusqu à obtenir un quotient égal à 0. La liste des restes lue en remontant donne l écriture en base k de n. On a donc besoin de k chiffres pour écrire les entiers naturels en base k : pour les bases jusqu à 10 inclus, on utilise les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. Au-delà, on utilise les lettres. Par exemple, pour la base 16, les symboles utilisés sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. On a l habitude d indiquer la base en indice du nombre. Parmi les bases les plus utilisées on peut citer : - La base 10 (décimal) dans laquelle on écrit depuis le Moyen Âge (sans doute parce que l on a 10 doigts!). - Les bases 2 (binaire), 8 (octal) et 16 (hexadécimal) qui sont utilisées en informatique. - La base 20 (vigésimal) qui était utilisée par les Mayas et les Aztèques (sans doute parce que l on a 2 mains et 2 pieds!). Ex 1 Ecrire 22 et 45 en binaire, 62 en base 8 et en base 16. 1

2 Conversion de n en base 10 Si l on note a p...a 1 a 0 l écriture de n en base k, pour obtenir son écriture en base 10 il suffit d appliquer la formule suivante : n = a 0 + a 1 k + a 2 k a p k p Exemple 1 : = = 13 Exemple 2 : 5AD9 16 = = Binaire Décimal Octal Hexadécimal Binaire Décimal Octal Hexadécimal A B C D E F 2. Écriture binaire (a) Caractéristiques Si on reprend l écriture binaire de treize c est-à-dire : de droite à gauche, 1 unité, 0 deuzaine, 1 quatraine et 1 huitaine. L écriture d un entier naturel en binaire est plus longue que son écriture en base dix mais elle ne demande d utiliser que deux chiffres : 0 et 1. Dans la mémoire des ordinateurs les circuits mémoires un bit sont souvent groupés par huit pour former ce qu on appelle des octets. Les entiers sont alors exprimés en machine en binaire sur un, deux, quatre ou huit octets, soit 8, 16, 32 ou 64 bits. Pour faciliter la lecture on regroupe les chiffres par 4 ou 8 en allant de la droite vers la gauche. Suivant la configuration choisie, on peut représenter des nombres de 0 à = 255 sur un octet voire de 0 à = sur huit octets. (b) Addition et multiplication en binaire On fait comme dans le système décimal, en posant l opération à faire, avec un calcul final fait de droite à gauche, et en appliquant les règles d addition ou de multiplication bit à bit suivantes : = 0, = 1 et = = 0, 0 1 = 0 et 1 1 = 1 Ex 2 Que vaut ? Ex 3 Effectuer l addition en binaire de 45 et 54. Vérifier le résultat en décimal. Ex 4 Effectuer la multiplication en binaire de 45 et 13. Vérifier le résultat en décimal. 2

3 II. Représentation des entiers relatifs 1. Introduction Pour représenter les entiers relatifs en notation binaire, on doit étendre la représentation aux nombres négatifs. Une solution est de réserver un bit pour le signe de l entier à représenter et d utiliser les autres pour représenter sa valeur absolue. Ainsi, avec des mots de 16 bits, en utilisant 1 bit pour le signe et 15 bits pour la valeur absolue, on pourrait représenter les entiers relatifs de = (2 15 1) = à = = Mais cette méthode a plusieurs inconvénients dont l un est d avoir deux zéros. 2. Principe de la notation en complément à deux On utilise alors une autre méthode appelée notation en complément à deux, qui consiste à représenter un entier relatif par un entier naturel. Pour des mots de 8 bits, le principe est le suivant : Sur 8 bits on peut à priori coder les nombres suivants : entier naturel (= 2 8 1) codage binaire On choisit alors de partager l intervalle [0,255] en deux : tous les entiers compris entre 0 et 127 seront représentés en machine par leur écriture binaire «classique». les entiers compris entre 128 et 255 vont représenter les entiers négatifs compris entre 128 et 1. Donc si x est compris entre 128 et 1, sa représentation en machine est x codage binaire «signification» Généralisation et exemples Notation en complément à deux (sur n bits) Soit x un entier relatif. Si 0 x 2 n 1 1, alors il sera représenté en machine par son écriture binaire. Si 2 n 1 x 1, alors il sera représenté en machine par l écriture binaire de l entier naturel x + 2 n qui est lui compris entre 2 n 1 et 2 n 1. Conséquence La représentation d un entier négatif en binaire par la méthode de complément à deux dépend donc complètement du nombre de bits sur lequel sont stockés les entiers en mémoire. Cela signifie qu entre deux machines ayant des capacités différentes, on aura des écritures binaires différentes pour les entiers négatifs! Conversion d un entier relatif du binaire au décimal On commence par convertir l écriture binaire en écriture décimale, on obtient un entier naturel p. Si p < 2 n 1, c est l entier naturel représenté. Si p 2 n 1, l entier négatif représenté est p 2 n. Remarque D après la représentation choisie, on en déduit que le bit le plus à gauche vaut 1 pour les entiers strictement négatifs et 0 pour les entiers naturels. 3

4 Ex 5 Sur 8 bits, représenter les nombres suivants : 1, 48, 100. Déterminer ensuite les nombres correspondants à et Ex 6 Sur 4 bits, déterminer le nombre correspondant à Sur 8 bits, déterminer les nombres correspondants à et Ex 7 Sur 16 bits, donner la représentation de 1, de Déterminer le nombre associé à et Pratique Calcul de la notation en complément à deux Pour déterminer la représentation binaire sur n bits d un entier négatif on écrit la représentation binaire de sa valeur absolue sur n bits. on inverse tous les bits du nombre : on remplace chaque 0 par un 1 et chaque 1 par un 0. on ajoute 1 au nombre obtenu. Quelques explications sur 8 bits On se place dans le cas où on connaît la représentation p sur 8 bits de l entier relatif x et on cherche à calculer la représentation p de son opposé. Si 0 x < 127 alors il est représenté sur 8 bits par p = x et son opposé x par p = x soit p = 256 p. Si 127 x 1 alors il est représenté sur 8 bits par p = x et son opposé x par p = x = 256 p. Finalement si x est représenté par p alors son opposé x est représenté par p = 256 p = (255 p) + 1 Calculer 255 p = p est facile, puisqu il suffit, dans la représentation binaire de p, de remplacer chaque 0 par un 1 et chaque 1 par un 0. Il suffit ensuite d ajouter 1 au nombre obtenu pour avoir x. Exemple Sur 8 bits, 19 = donc 19 =

5 5. Dépassement de capacité Puisque les nombres représentables en machine sont limités par la capacité de stockage de l ordinateur, on peut se demander ce qui se passe lorsque l on atteint ces limites. Le premier cas est d obtenir lors d une somme une retenue sur le bit le plus à gauche (1+1) alors cette dernière est perdue et le résultat obtenu n est évidemment pas le résultat attendu. On appelle ce phénomène dépassement arithmétique (overflow en anglais). Ex 8 Sur 4 bits,que représente ? Un second cas, conséquence inattendue de la notation en complément à 2, est la somme de deux entiers positifs trop grands qui peut donc donner un résultat négatif! De même, la somme de deux entiers négatifs peut être un entier positif. Ex 9 Sur 4 bits,que représente 6 + 6? Ex 10 Sur 8 bits,que représente ? 5

6 III. Représentation des flottants 1. Nombre binaire à virgule Dans le système décimal, écrire un nombre comme 13,48 cela signifie 13,48 = la seule nouveauté étant la présence de puissances négatives de 10 pour les chiffres situés après la virgule. Il en est de même en binaire avec des puissances de 2. Par exemple 110,101 signifie 110,101 = Exemple de conversion (base 2 à virgule fixe) On souhaite écrire 0,35 sous la forme a 2 + b 4 + c + avec a,b,c,..., égaux à 0 ou 1. Pour avoir 8 a, on fait 0,35 2 = 0,7 = a + b 2 + c + ce qui donne a = 0 (la partie entière). 4 On en est à 0,7 = b 2 + c 4 +, faisons comme précédemment 0,7 2 = 1,4 = b + c +, d où 2 b = 1 et ainsi de suite. On obtient ainsi la succession : 0,35 2 = 0,7 0 0,7 2 = 1,4 1 0,4 2 = 0,8 0 0,8 2 = 1,6 1 0,6 2 = 1,2 1 0,2 2 = 0,4 0 0,4 2 = 0,8 0 d où 0,35 = 0, On remarque que la succession des chiffres derrière la virgule est finalement périodique avec derrière 01 le bloc 0110 qui se répète indéfiniment. Cela entraîne qu avec un nombre toujours limité de bits, on n aura jamais exactement 0,35 en binaire. A son tour un nombre comme 17,35(= 17+0,35) s écrira 10001, Cela s appelle une écriture en virgule fixe, par opposition à l écriture des nombres en virgule flottante (float) utilisés par l ordinateur. Virgule flottante signifie que l on peut déplacer la virgule selon notre gré : 17,35 = = 1, , etc. à condition de faire intervenir des puissances de 10 en multiplication. C est particulièrement intéressant pour les très grands nombres ou ceux très proches de 0, pour lesquels on choisit l écriture scientifique, où l on a des nombres de quelques unités multipliés par des puissances de 10, comme par exemple 1, ou 2, Parmi toutes les écritures possibles, on préfère celle où la partie entière du nombre (à gauche de la virgule) est à un chiffre, celui-ci étant compris entre 1 et 9. 6

7 2. Norme choisie On utilise une représentation similaire à la notation scientifique, sauf qu elle est en base deux et définie dans la norme IEEE 754. Modèle de représentation en binaire Un nombre à virgule x est représenté sous la forme x = s m 2 n où s est le signe du nombre, n son exposant et m sa mantisse. Conversion de la représentation en binaire sur 64 bits Le signe s est représenté sur 1 bit : + est représenté par 0 et par 1. L exposant n est un entier relatif représenté sur 11 bits. On a donc 1022 n 1023 ; il est représenté en machine par l entier naturel n qui est compris entre 1 et La mantisse m est un nombre binaire à virgule qui vérifie 1 m < 2 : la partie avant la virgule vaut donc 1, on ne la code donc pas. Elle comprend ensuite 52 chiffres après la virgule, la mantisse sera donc représentée sur 52 bits. Remarque 1 La mémoire de la machine étant finie, seuls certains nombres réels ayant un nombre fini de chiffres après la virgule pourront être représenté de manière exacte, les autres auront une écriture tronquée. Remarque 2 Les deux entiers naturels 0 et 2047 sont réservés pour des situations exceptionnelles (+,, NaN, etc.) Remarque 3 (Représentation sur 32 bits) Sur 32 bits, on a 1 bit pour le signe, 8 pour l exposant et 23 pour la mantisse Remarque 4 : Quel est l intérêt de cette écriture en virgule flottante? Rappelons que pour les nombres entiers écrits avec n bits nous obtenions 2 n nombres s étalant sur un intervalle de longueur 2 n. Cet intervalle est bien trop restreint pour les nombres à virgule, où grâce à l écriture en float on arrive à une gamme de nombres s étalant entre et au signe près sur 64 bits. En effet, Si n = 0,n 1023 = En mettant des 0 derrière la virgule, on obtient le nombre ( 1) s que l on assimile à 0. Si n = 2047,n 1023 = 1024, et avec des 0 derrière la virgule le nombre est ( 1) s , proche de ou +. Conversion d un flottant en écriture décimale Si l on note s le bit de signe, e 1...e 11 les bits d exposant (c est-à-dire l écriture binaire de l exposant) et m 1...m 52 les bits de la mantisse, on obtient l écriture décimale du nombre représenté par ( ) ( 1) s 52 m i i 2 e 1...e i=1 7

8 Ex 11 Convertir en décimale le flottant x représenté en binaire par Cas particuliers Représentation du 0 : La mantisse commence par définition par un 1 implicite, il n est donc pas possible de représenter le zéro par cette convention. On décide alors qu un nombre vaut zéro si et seulement si tous les bits de son exposant et de sa mantisse valent 0. Il reste un choix pour le bit de signe, il y a donc un zéro positif et un zéro négatif dans les nombres à virgule flottante. Par extension, pour tout nombre dont l exposant est composé de onze bits 0, on considère que le chiffre avant la virgule est un 0 implicite, et que l exposant vaut Représentation du +, : Ces valeurs non numériques sont représentées respectivement par les mots de 64 bits Représentation d une incohérence de calcul : Lorsque la machine dénote une impossibilité de calcul telle qu une division par zéro ou la racine carrée d un nombre négatif, elle le signale par l instruction NaN (Not a Number) qui sera codé en binaire par : 0 ou 1 puis puis tout mot de 52 bits non tous nuls 3. Dépassement de capacité et problèmes de précisions (a) Overflow De même que pour les entiers, les nombres à virgule flottante possèdent certaines limites inévitables ; un nombre n est plus représentable sur 64 bits si sa représentation demande un exposant supérieur à 1023, qui est le plus grand représentable sur 11 bits ou un exposant égal à 1023 et une mantisse supérieure à la plus grande mantisse représentable sur 52 bits, c est-à-dire 1 (implicite) suivi de 52 chiffres binaires tous égaux à 1 après la virgule. Tout calcul dont le résultat dépasse cette limite produit une situation qui est également appelée dépassement arithmétique (overflow) ; cependant, au lieu de produire une valeur par simple troncature des bits surnuméraires, on utilise les nombres spéciaux + et, selon le signe du résultat du calcul. Dans les opérations qui suivent, ceux-ci respectent les règles de calcul usuelles sur les limites, et produisent un NaN lorsqu aucune règle de calcul ne peut être appliquée sans ambiguïté. (b) Underflow Une situation similaire mais qui n existait pas pour les entiers se produit lorsque l on veut représenter un nombre trop proche de 0 son exposant est inférieur à 1022, le plus petit exposant représentable sur 11 bits ou ce nombre est inférieur en valeur absolue au plus petit nombre dénormalisé. On parle alors de dépassement par valeurs inférieures ou de soupassement arithmétique (en anglais underflow). 8

9 (c) Problèmes d arrondis : Comme le montre l exemple 0,35 = 0, , la plupart des nombres décimaux ne sont pas représentables exactement sur 64 bits. La troncature donnera pour 0,35 une valeur approchée. D autres erreurs d arrondis se présentent lorsque l on effectue des calculs, notamment entre des nombres dont les ordres de grandeur sont très différents. Par exemple = 1, sera arrondi par la machine à 1. Remarque très importante On retiendra qu il n est pas possible de savoir de façon certaine si le résultat d un calcul est égal à sa valeur théorique lorsque l on manipule des flottants. Par conséquent un test du type «est-ce que a = b?» n a en général pas de sens si a et b sont deux nombres à virgule flottante, puisque ceux-ci ont pu subir des erreurs d arrondis. On le remplacera donc par une condition de la forme «est-ce que a b < ε?» où ε est une valeur proche de zéro, choisie en fonction du problème à traiter et de l ordre de grandeur des erreurs auxquelles on peut s attendre sur a et b. 9

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Logiciel de Base. I. Représentation des nombres

Logiciel de Base. I. Représentation des nombres Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr I. Représentation des nombres Codage et représentation de l'information Information externe formats

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

La Numération. Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB

La Numération. Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB La Numération Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB 1 I. Rappel sur le système décimal Définitions Chiffres décimaux : 0,1,2,3,4,5,6,7,8,9

Plus en détail

Représentation des nombres en langage informatique et conséquences

Représentation des nombres en langage informatique et conséquences CHAPITRE Représentation des nombres en langage informatique et conséquences La création de la numération est un des faits les plus marquants de l histoire de l humanité. Si la plupart des civilisations

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

Problème : débordement de la représentation ou dépassement

Problème : débordement de la représentation ou dépassement Arithmétique entière des ordinateurs (représentation) Écriture décimale : écriture positionnelle. Ex : 128 = 1 10 2 + 2 10 1 + 8 10 0 Circuit en logique binaire Écriture binaire (base 2) Ex : (101) 2 =

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Codage d information. Codage d information : -Définition-

Codage d information. Codage d information : -Définition- Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Numération II. Laval. January 24, 2013. Bellepierre

Numération II. Laval. January 24, 2013. Bellepierre Bellepierre January 24, 2013 Opération en base 4 Les nombres sont tous écrit en base 4... La table d addition + 1 2 3 1 2 3 10 2 3 10 11 3 10 11 12 Exemple 1 1 1 1 2 3 + 2 2 2 1 0 1 1 Opération en base

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Présentation du binaire

Présentation du binaire Présentation du binaire Vers la fin des années 30, Claude Shannon démontra qu'à l'aide de "contacteurs" (interrupteurs) fermés pour "vrai" et ouverts pour "faux" on pouvait effectuer des opérations logiques

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Représentation de l information en binaire

Représentation de l information en binaire Représentation de l information en binaire Les ordinateurs sont capables d effectuer de nombreuses opérations sur de nombreux types de contenus (images, vidéos, textes, sons,...). Cependant, quel que soit

Plus en détail

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels I) Codage des entiers naturels I) Codage des entiers naturels Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ cliquer

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures :

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures : Plan Introduction Systèmes de numération et représentation des nombres Systèmes de numération Système de numération décimaled Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Introduction au codage de l information:

Introduction au codage de l information: Introduction au codage de l information: Quelques éléments d architecture de l ordinateur Comparaison de la carte perforée au DVD Pourquoi est-il nécessaire de coder l information? Numérisation Formats

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Module 1 - Arithmétique Chapitre 1 - Numération

Module 1 - Arithmétique Chapitre 1 - Numération Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Module 1 - Arithmétique Chapitre 1 - Numération 1 Introduction : que signifie 2014? Dans de nombreuses situations, il est nécessaire de pouvoir exprimer

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr Codage des nombres Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Représentation de l'information Un ordinateur manipule des données Besoin de coder

Plus en détail

Systèmes de Numération & Codage

Systèmes de Numération & Codage Systèmes de Numération & Codage Objectif : L électronicien est amené à manipuler des valeurs exprimées dans différentes bases (notamment avec les systèmes informatiques). Il est essentiel de posséder quelques

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

V- Manipulations de nombres en binaire

V- Manipulations de nombres en binaire 1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION FICHE DU MODULE 1 SYSTEMES DE NUMERATION OBJECTIF GENERAL: La compétence visée par ce module est d amener l apprenant à se familiariser avec les systèmes de numération et les codes utilisés par les appareils

Plus en détail

IFT2880 Organisation des ordinateurs et systèmes

IFT2880 Organisation des ordinateurs et systèmes Représentation des nombres flottants Notation exponentielle Représentations équivalentes dans la base 10 de 1,234 1 2 3, 4 0 0. 0 x 1 0-2 1 2, 3 4 0. 0 x 1 0-1 1, 2 3 4. 0 x 1 0 1 2 3. 4 x 1 0 1 2. 3 4

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Le système binaire. Comment comptons nous en décimal? Le binaire. Présentation

Le système binaire. Comment comptons nous en décimal? Le binaire. Présentation Le système binaire Comment comptons nous en décimal? Depuis la fin du moyen-age, nous comptons en base 10. Certains diront que cette pratique est venue du fait que nous avons 10 doigts. Il en découle principalement

Plus en détail

Introduction à l informatique, à Python, et représentation des nombres en machine

Introduction à l informatique, à Python, et représentation des nombres en machine Introduction à l informatique, à Python, et représentation des nombres en machine Table des matières Qu est-ce-que l informatique? Qu est-ce-qu un ordinateur? 2 Principaux composants...............................................

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

REPRÉSENTATION DES NOMBRES EN MACHINE

REPRÉSENTATION DES NOMBRES EN MACHINE Info 2 REPRÉSENTATION DES NOMBRES EN MACHINE Problématique Dans la mémoire d'un ordinateur, les données sont représentées sous forme de séquences de 0 et de 1. Par conséquent, toute information mémorisée

Plus en détail

Microprocesseurs. et Microcontrôleurs

Microprocesseurs. et Microcontrôleurs Ministère de l Enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université Virtuelle de Tunis Microprocesseurs et Microcontrôleurs Représentation de l information en numérique

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Cours. La numération

Cours. La numération Cours La numération Cours sur la numération P V1.6 1/10 Lycée Jules Ferry Versailles - CRDEMA 2007-2008 TABLE DES MATIERES : 1 INTRODUCTION....3 1.1 LA BASE....3 2 LES SYSTEMES DE NUMERATION...3 2.1 LE

Plus en détail

L addition et la multiplication en binaire

L addition et la multiplication en binaire Objectifs : Leçon A1-1 : L addition et la multiplication en binaire OS 1 - Exécuter en binaire une opération arithmétique de base. OS 2 - Représenter un nombre entier relatif. OS 3 - Mettre en œuvre un

Plus en détail

NUMERATION ET CODAGE DE L INFORMATION

NUMERATION ET CODAGE DE L INFORMATION NUMERATION ET CODAGE DE L INFORMATION La nécessité de quantifier, notamment les échanges commerciaux, s'est faite dés la structuration de la vie sociale. Les tentatives de représentation symbolique de

Plus en détail

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs.

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs. 2 nde MPI Le Binaire 1 / 8 I) Le codage 1) Présentation du L informatique utilise des courants électriques, des aimantations, des rayons lumineux... Chacun de ces phénomènes met en jeu deux états possibles

Plus en détail

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique Objectifs : Exploiter les codes numériques & Convertir une information d un code à un autre. I- Mise en situation Réaliser l activité de découverte page 6 ; Manuel d activités II- Systèmes de numération

Plus en détail

INITIATION INFORMATIQUE I (Système de numération) (1 GIM)

INITIATION INFORMATIQUE I (Système de numération) (1 GIM) UNIVERSITE SIDI MOHAMMED BEN ABDELLAH Ecole Supérieure de Technologie de Fès Filière Génie Industriel et Maintenance Mr KHATORY INITIATION INFORMATIQUE I (Système de numération) (1 GIM) TABLE DES MATIÈRES

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Programmation en Langage C (CP2, ENSA Oujda)

Programmation en Langage C (CP2, ENSA Oujda) Programmation en Langage C (CP2, ENSA Oujda) El Mostafa DAOUDI Département de Mathématiques et d Informatique, Faculté des Sciences Université Mohammed Premier Oujda m.daoudi@fso.ump.ma Septembre 2011

Plus en détail

IFT-1215 Introduction aux systèmes informatiques

IFT-1215 Introduction aux systèmes informatiques Systèmes de nombres Rappel Dans un système en base X, il faut X symboles différents pour représenter les chiffres de 0 à X-1 Base 2: 0, 1 Base 5: 0, 1, 2, 3, 4 Base 8: 0, 1, 2, 3, 4, 5, 6, 7 Base 10: 0,

Plus en détail

Numération. I. Représentation des nombres entiers... 2 I.1. Nombres non signés...2 I.2. Nombres signés...2

Numération. I. Représentation des nombres entiers... 2 I.1. Nombres non signés...2 I.2. Nombres signés...2 I. Représentation des nombres entiers... 2 I.1. Nombres non signés...2 I.2. Nombres signés...2 II. Changement de bases...3 II.1. Hexadécimal ou binaire vers décimal...3 II.2. Décimal vers hexadécimal ou

Plus en détail

Systèmes de numérations et codages. Présenté par A.Khalid

Systèmes de numérations et codages. Présenté par A.Khalid Systèmes de numérations et codages Présenté par A.Khalid 2 Plan de la présentation 1. Introduction 2. Nombres binaires Conversion Binaire Décimal Conversion Entier Décimal Binaire Arithmétique Binaire

Plus en détail

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Cours sur la numération La numération Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Le système décimal Les nombres que nous utilisons

Plus en détail

Codes correcteurs d erreurs

Codes correcteurs d erreurs Codes correcteurs d erreurs 1 Partie théorique 1.1 Définition Un code correcteur est une technique de codage de l information basée sur la redondance, qui vise à détecter et corriger des éventuelles erreurs

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

Numération Page 1 sur 5

Numération Page 1 sur 5 Numération Page sur 5 Sommaire : I- Introduction II- III- IV- Différentes bases Base Base Base 6 Correspondance Conversion décimal -> binaire binaire -> décimal hexadécimal -> binaire hexadécimal -> décimal

Plus en détail

Cours 6 : Principes de la représentation des nombres en

Cours 6 : Principes de la représentation des nombres en Cours 6 : Principes de la représentation des nombres en mémoire 2013/2014 Introduction Représentation des données en mémoire naturels signés Nous décrivons les principes de la représentation des nombres

Plus en détail

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental

Plus en détail

Représentation des nombres réels

Représentation des nombres réels Représentation des nombres réels Représentation des nombres réels Un nombre réel est représenté en décimal sous la forme: d m d m-1 d 1 d 0.d -1 d -2 d -n où la valeur du nombre est: m d = 10 i= n d Par

Plus en détail

Informatique appliquée au calcul scientifique. Alexis Herault

Informatique appliquée au calcul scientifique. Alexis Herault Informatique appliquée au calcul scientifique Alexis Herault Table des matières Codage de l information et algorithmique 3 I Représentation des nombres en informatique 3 1 Représentation des entiers dans

Plus en détail

Bases informatiques. Binaire, octale et hexadécimale. TCH010-Informatique

Bases informatiques. Binaire, octale et hexadécimale. TCH010-Informatique Enseignants Coordonateur: David Marche david.marche@etsmtl.ca Chargé de cours: Lévis Thériault levis.theriault@etsmtl.ca Site internet Plan de cours Rappel numérotation en base 10 Bases informatiques i

Plus en détail

Nombres fractionnaires en BINAIRE

Nombres fractionnaires en BINAIRE Nomres Fractionnaires inaires Nomres fractionnaires en BINAIRE Nomres fractionnaires en virgule fixe. Généralités Un nomre fractionnaire comporte deux parties :!"Une valeur entière,!"suivie d une valeur

Plus en détail

1 Représentation des entiers naturels

1 Représentation des entiers naturels 1 Représentation des entiers naturels 1.1 Système de numération à position dans une base Depuis le Moyen Âge, on écrit les nombres entiers naturels dans un système de numération à position en base 10.

Plus en détail

Représentation de l'information sur un ordinateur

Représentation de l'information sur un ordinateur Représentation de l'information sur un ordinateur Par K1wy, le 11 novembre 2010 Ce document a pour objectif d'expliquer les bases de la représentation d'informations en informatique. Ce papier traitera

Plus en détail

Complément à un : addition, signes opposés. Complément à un : addition, signes opposés

Complément à un : addition, signes opposés. Complément à un : addition, signes opposés Complément à un : addition, signes opposés Soient p et q deux entiers de signes opposés. Leur somme est toujours représentable pour la taille de mot mémoire fixée car min(p, q) < p + q < max(p, q) Exemple

Plus en détail

Introduction à l Informatique

Introduction à l Informatique Introduction à l Informatique. Généralités : Etymologiquement, le mot informatique veut dire «traitement d information». Ceci signifie que l ordinateur n est capable de fonctionner que s il y a apport

Plus en détail

Les différents codes utilisés en électronique

Les différents codes utilisés en électronique Section : Technicien Supérieur Electronique Discipline : Génie Electronique Les différents codes utilisés en électronique Domaine d application : Traitement des signaux numériques Type de document : Cours

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Rappel du cours 1 Numérotation dans différentes bases Changements de bases

Rappel du cours 1 Numérotation dans différentes bases Changements de bases Rappel du cours 1 Numérotation dans différentes bases Changements de bases Représentation binaire i des nombres Représentation des entiers positifs (rappel) Nombres entiers négatifs Nombres réels Représentation

Plus en détail

Cours 2 Microprocesseurs

Cours 2 Microprocesseurs 4//2 Cours 2 Microprocesseurs Jalil Boukhobza LC 26 boukhobza@univ-brest.fr Chemin de données Font l objet de ce cours: Les portes logiques et circuits combinatoires Le traitement de quelques opérations

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Nombres de 8 bits Lu en Lu en binaire hexadécimal. Si on admet que le nombre peut représenter des valeurs négatives, on parle de nombres "signés".

Nombres de 8 bits Lu en Lu en binaire hexadécimal. Si on admet que le nombre peut représenter des valeurs négatives, on parle de nombres signés. Nombres signés Nous avons jusqu à présent parlé de nombres entiers naturels. Ils ne peuvent par nature qu être positifs ou nuls. Envisageons maintenant les nombres entiers relatifs ou autrement dit, munis

Plus en détail

IUT de Colmar - Département RT 1ière année. Numération

IUT de Colmar - Département RT 1ière année. Numération IUT de Colmar - Département RT 1ière année. Numération 1 Laurent MURA. SOMMAIRE 1. Les différents systèmes 2. Les différentes conversions 3. Quelques systèmes de codage 4. L arithmétique binaire 2 IUT

Plus en détail

Eléments de syntaxe du langage Java

Eléments de syntaxe du langage Java c jan. 2014, v3.0 Java Eléments de syntaxe du langage Java Sébastien Jean Le but de ce document est de présenter es éléments de syntaxe du langage Java : les types primitifs, les opérateurs arithmétiques

Plus en détail

Chapitre 1: Représentation des Nombres

Chapitre 1: Représentation des Nombres Chapitre 1: Représentation des Nombres 1 Représentation des entiers naturels 11 Écriture dans une base Rappels sur la base 10 Considérons un nombre entier strictement positif, par exemple N = 432 Alors,

Plus en détail

2.1.1.1 Conversion du nombre décimal entier non signé 32928 en nombre binaire sur 16 bits

2.1.1.1 Conversion du nombre décimal entier non signé 32928 en nombre binaire sur 16 bits CHAPITRE : LA NUMERATION (Corrections des exercices) Page 2. FORMAT DES NOMBRES 2. PRÉPARATION 2... Conversion du nombre décimal entier non signé 32928 en nombre binaire sur 6 bits 2...2 Conversion du

Plus en détail

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1.

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1. Cours de Numération A). Introduction : I ). Généralités : Le système binaire (Base 2) a été conçu au 17 ème siècle par le mathématicien LEIBNITZ. Il présente l'avantage de ne comporter que deux symboles

Plus en détail

LA FORMATION CONTINUE PAR LA PRATIQUE

LA FORMATION CONTINUE PAR LA PRATIQUE LE BINAIRE C'est vers la fin des années 1930 que Claude Shannon démontra qu'une machine exécutant des informations logiques pouvait manipuler de l'information. A l'aide de " contacteurs " fermés pour vrai

Plus en détail

Numération Informatique et Science du Numérique

Numération Informatique et Science du Numérique La courbe ci-contre représente le signal délivré par un capteur de température. Ce signal est analogique (il peut prendre une infinité de valeurs continues). Pour être traité par l ordinateur il doit être

Plus en détail

Logique Combinatoire. Fabrice Muller ESINSA 1. ESINSA Université de Nice Sophia Antipolis

Logique Combinatoire. Fabrice Muller ESINSA 1. ESINSA Université de Nice Sophia Antipolis ESINSA Fabrice Muller ESINSA Université de Nice Sophia Antipolis fmuller@i3s.unice.fr http://www.esinsa.unice.fr/~fmuller/ 22 - - Plan Les systèmes de numération Fonctions et Circuits Logiques Simplification

Plus en détail

Architecture des machines

Architecture des machines Architecture des machines Jean-Baptiste.Yunes@univ-paris-diderot.fr Université Paris Diderot http://www.liafa.univ-paris-diderot.fr/~yunes/ Octobre 2012 Codage, Représentation et Arithmétique Bits, octets,

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION Page 1/6 I- SYSTEMES SYSTEMES DE NUMERATION I-1- DECIMAL (base l0) C'est le système le plus utilisé. On peut représenter un nombre décimal sous la forme :... (1997) 10 = 1 10 3 + 9 10 2 + 9 10 1 + 7 10

Plus en détail

TD 3 : Représentation des réels et des caractères

TD 3 : Représentation des réels et des caractères ASR1 bis DUT Informatique 1A IUT A de Lille USTL 2007 2008 Architecture des ordinateurs Exercice 1 TD 3 : Représentation des réels et des caractères Représentation d une partie fractionnaire 1. Coder sur

Plus en détail

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001)

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) F. Pellegrini Université Bordeaux 1 Ce document est copiable et distribuable librement et gratuitement

Plus en détail

Processeurs et Architectures Numériques. Introduction et logique combinatoire

Processeurs et Architectures Numériques. Introduction et logique combinatoire Processeurs et Architectures Numériques Introduction et logique combinatoire Objectifs du cours Connaitre les fonctions de base de l électronique numérique Comprendre la logique combinatoire et synchrone

Plus en détail

tique Contenu de la présentation

tique Contenu de la présentation Unité d enseignement : Systèmes séquentiels s avancés s (SSA) Numération et arithmétique tique Etienne Messerli Institut REDS, HEIG-VD Le 2 février 23 Numération & arithmétique, p Contenu de la présentation

Plus en détail

Logique Combinatoire. Fabrice Muller. Cycle Préparatoire Première Année. Polytech Nice-Sophia Département Electronique

Logique Combinatoire. Fabrice Muller. Cycle Préparatoire Première Année. Polytech Nice-Sophia Département Electronique Cycle Préparatoire Première Année Fabrice Muller Polytech Nice-Sophia Département Electronique Fabrice.Muller@unice.fr http://www.polytech.unice.fr/~fmuller/ pol tech fm ller/ -1- Plan Les systèmes de

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013. Codage des informations & Arithmétique des ordinateurs Corrigé

Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013. Codage des informations & Arithmétique des ordinateurs Corrigé Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013 Codage des informations & Arithmétique des ordinateurs Corrigé * Remarque 1 Merci de me signaler toute erreur de calcul par mail au hibaoui.ens@gmail.com.

Plus en détail

COURS D INFORMATIQUE : OBJECTIFS DU PROGRAMME

COURS D INFORMATIQUE : OBJECTIFS DU PROGRAMME COURS D INFORMATIQUE : OBJECTIFS DU PROGRAMME Vous devrez dans votre vie professionnelle : - communiquer avec les informaticiens de votre entreprise ou de votre laboratoire ; - participer aux prises de

Plus en détail

Les opérations binaires

Les opérations binaires Les opérations binaires Compétences associées A2 : Analyser et interpréter une information numérique Objectifs Etre capable: - De coder les nombres entiers en code complément à 2. - De résoudre les opérations

Plus en détail

Jouons binaire : je devine ce que tu penses!

Jouons binaire : je devine ce que tu penses! Jouons binaire : je devine ce que tu penses! Aziz El Kacimi Université de Valenciennes Cité des Géométries - Gare numérique de Jeumont Atelier mathématique Collège Pablo Neruda - Wattrelos le 21 mai 2012

Plus en détail

Analyse et programmation 1

Analyse et programmation 1 Analyse et programmation Aperçu du fonctionnement de l ordinateur Fonctionnement de l ordinateur Codage de l information Bus d échange d information CPU Exécution d un programme par la CPU Gestion des

Plus en détail

Numération et représentation des entiers...

Numération et représentation des entiers... INFO 3 Numération et représentation des entiers On expose ici la notion de numération de position en base b Ê 2 et on montre comment elle est mise en œuvre pour représenter des entiers relatifs dans un

Plus en détail

Architecture de l ordinateur

Architecture de l ordinateur Architecture de l ordinateur Emmanuel Lazard Université Paris-Dauphine mars 2011 Computers are my forte! BRAZIL (Terry Gilliam, 1985) Ce document a initialement été publié sous forme de livre : Emmanuel

Plus en détail

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5 Introduction à l algorithmique et à la programmation IUT 1ère année 2013-2014 Cyril Nicaud Cyril.Nicaud@univ-mlv.fr Cours 1 / 5 Déroulement du cours Organisation : 5 séances de 2h de cours 10 séances de

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail