Introduction à l algorithmique. David Cachera ENS Cachan Bretagne

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l algorithmique. David Cachera ENS Cachan Bretagne"

Transcription

1 1 Introduction à l algorithmique David Cachera ENS Cachan Bretagne

2 2 Plan Introduction à l algorithmique Notion de complexité Recherche dichotomique Calculs de puissance

3 3 Un peu d histoire Etymologie algiros (pénible, malade) + arithmos (nombre) = algorisme Abu Mohammed ibn Mûsâ al-khowârizmî (IX e s) Al-jabr wa'l-muqabalah «remise en place et simplification» : règles de calcul sur la représentation décimale Moyen-âge : algoristes vs. abaquistes

4 Un peu d histoire : machines 4

5 5 Un peu d histoire XIX e -XX e siècles : du calcul à la procédure fin XIX e : axiomatisation des mathématiques (Cantor, Bolzano...) quels problèmes peut-on résoudre de façon mécanique? pas de machine concrète : dispositif abstrait programme de Hilbert : décrire et prouver les résultats mathématiques de façon finitaire et systématique impossible : Gödel

6 6 Procédure effective : différents modèles idée commune : décomposition en calculs élémentaires fonctions récursives circuits machine de Turing (1936) tous sont équivalents!

7 7 Définition (Universalis) : «spécification d'un schéma de calcul, sous forme d'une suite d'opérations élémentaires obéissant à un enchaînement déterminé.»... insuffisante : nombre fini de données nombre fini d étapes, chaque étape étant formée d un nombre fini d opérations effectives terminaison déterminisme programme : description d un algorithme dans un langage «compris» par une machine

8 8 Calculabilité et complexité Peu de problèmes ont une solution algorithmique problème de l arrêt : il n existe pas de programme qui, étant donné le texte d un programme, répond «oui» si celui-ci s arrête en temps fini, «non» sinon résultat indépendant de la modélisation de la notion de programme (ou algorithme) théorie de la calculabilité (décidabilité)

9 9 Calculabilité et complexité Pour ceux qui admettent une solution, les algorithmes sont-ils utilisables en pratique? pour un problème donné, il peut y avoir plusieurs algorithmes différents plus ou moins adaptés à un langage de programmation donné utilisant plus ou moins de ressources de calcul temps mémoire évaluation de la complexité

10 10 Complexité Évaluer le nombre d opérations élémentaires (ou la quantité de mémoire) nécessaires à l exécution de l algorithme. Notion robuste Indépendante d un ordinateur donné Indépendante du langage de programmation, du compilateur Exprimée en fonction de la taille de la donnée à traiter Modèle abstrait Pas un temps en microsecondes Pas un nombre exact : ordre de grandeur opération élémentaire Opération qui prend un temps considéré comme constant Réalisme du modèle? ex coût de transfert vs. coût de calcul Mais les méthodes de calcul restent les mêmes

11 11 Un premier exemple : recherche d un élément dans une collection

12 12 Recherche d un élément dans une collection? Modélisation du problème : un tableau T de n éléments chaque élément est indicé par un entier entre 1 et n on recherche l élément X en parcourant tout le tableau on s arrête dès qu on a trouvé X

13 13 Algorithme pour i = 0 à n-1 faire si T[i] = X alors sortir fin pour Remarques pseudo-code : pas un langage de programmation pas de déclaration préalable des objets comment sait-on que X a été trouvé? si i < n, i est l indice minimal d une case du tableau contenant X

14 14 Correction de l algorithme L algorithme termine toujours (boucle pour, sans modification de i) Si à la fin i<n, c est qu on est sorti de la boucle avant sa terminaison normale, donc T[i] = X Sinon? Notion d invariant de boucle à chaque retour au début de la boucle, on vérifie la propriété I : pour tout k tel que 0!k<i, T[k] " X conservation de l invariant on note i la valeur de i après l exécution du corps de la boucle : si T[i]=X alors i =i sinon i =i+1 si I est vrai pour i, alors I est vrai pour i si à la fin i=n, l invariant nous permet de conclure que X n est pas dans T l invariant nous fournit aussi la minimalité de i

15 15 Complexité maximale pour i = 0 à n-1 faire si T[i] = X alors sortir fin pour Questions fondamentales : que compter? En fonction de quoi? Paramètre : taille du tableau (n) Opération élémentaire comparaison T[i]=X hypothèse de complexité unitaire Complexité au pire : n comparaisons de X à T[i] Cmax(n) = n

16 16 Complexité en moyenne De façon générale, pour un algorithme A, Cmoy(n)=!d Dn p(d).c(a,d) Dn : ensemble des données de taille n p(d) : probabilité d avoir la donnée d en entrée de l algorithme C(A,d) : coût de l algorithme A sur la donnée d On a la relation Cmin(n) " Cmoy(n) " Cmax(n)

17 17 Complexité en moyenne pour i = 0 à n-1 faire si T[i] = X alors sortir fin pour Ici, on considère tous les éléments de T sont distincts q la probabilité que X soit dans T si X est dans T, toutes les positions sont équiprobables Pour i entre 0 et n-1, on note Di les données où X apparaît à la i e place, et D0 celles où X est absent. On a alors p(di)=q/n et p(d0)=1- q C(A,d) = i+1 si d Di, C(A,d)= n si d D0 donc Cmoy(n)=(1- q).n +! (i+1).(q/n)=(1- q).n + (n +1).q/2

18 18 Ordres de grandeur f O(g) «f=o(g)» il existe une constante positive c et un entier n0 tels que f(n)! c. g(n) pour tout n # n0 f est dominée asymptotiquement par g f $(g) il existe deux constantes positives c et C et un entier n0 tels que C. g(n)! f(n)! c. g(n) pour tout n # n0 f et g sont de même ordre de grandeur asymptotique temps constant linéaire O(c)!(n) quadratique!(n 2 ) polynomial O(n p ) (au plus) exponentiel O(2 np )

19 19 Ordres de grandeur n n " log2(n) n n n (11 chiffres)...(13 chiffres) 2 n (16 chiffres)...(31 chiffres)...(91 chiffres) nombre de protons dans l univers : 79 chiffres nombres de secondes depuis le big bang : 24 chiffres

20 Recherche dichotomique 20

21 21 Recherche dichotomique Recherche d un élément dans un tableau linéaire au pire et en moyenne Peut-on faire mieux? tableau trié : recherche dichotomique Image: dan / FreeDigitalPhotos.net

22 22 Recherche dichotomique On recherche l élément X dans le tableau T, de taille n soit M l élément au milieu de T si X=M, fin de la recherche si X>M, X ne peut se trouver que dans la moitié droite de T si X<M, X ne peut se trouver que dans la moitié gauche de T g??? d

23 23 Recherche dichotomique g:=0 ; d:=n-1 tant que g d faire m:=(g+d) div 2 si X=T[m] alors res:=m ; sortir sinon si X<T[m] alors d:=m-1 sinon g:=m+1 fin tant que si g>d alors res:=0 Remarque : g et d peuvent «dépasser» des bornes de T, mais pas m

24 24 Correction Il faut montrer que l algorithme termine toujours s il existe un entier i entre 1 et n tel que T[i]=X alors l algorithme termine avec res entre 1 et n tel que T[res]=X réciproquement, si res est strictement positif à la fin, c est que X est dans le tableau Terminaison on considère la suite (gi,di) des bornes dans les itérations successives de la boucle g0=0 et d0=n-1 mi=(gi+di) div 2 à l itération k, si gk>dk ou si T[mk]=X alors on sort de la boucle si gk!dk et X<T[mk], il y a une nouvelle itération avec gk+1=gk et dk+1=mk-1<dk le cas X>T[mk] est symétrique la suite des écarts (dk - gk) est donc strictement décroissante

25 25 Correction Retour d un résultat toujours avec la suite (gi,di), on considère p l indice d arrêt : pour k<p on a gk!dk, et soit gp>dp, soit X=T[mp] on montre par récurrence sur k la propriété P suivante pour tout k entre 0 et p, il existe un entier ik tel que gk! ik!dk et T[ik]=X

26 26 Complexité de la recherche dichotomique On évalue le nombre de comparaisons entre X et T[m] À chaque itération, la taille de la portion de T dans laquelle se fait la recherche est divisée par 2 Relation de récurrence : C(n)! 2 + C(n div 2) On montre par récurrence forte sur n que C(n)! 2 log2(n) + 2 vrai pour n=1 si vrai pour k<n, alors C(n)! 2 + (2 log2(n div 2) + 2)! 2 + (2 log2(n/2) + 2)! log2(n) Complexité au pire en O(log2(n)) (en fait, $(log2 (n)) ) Complexité en moyenne : aussi en $(log2 (n)) (plus difficile)

27 Calcul de puissance 27

28 28 Algorithme de multiplication Complexité? x Algorithme naïf : complexité en O(n 2 ), où n est la taille (nombre de chiffres) des opérandes Rem : il existe des solutions (logicielles et matérielles) plus astucieuses...

29 29 Calcul de A n A quoi ça sert? puissances de grands entiers : cryptographie (RSA) chemins dans des graphes : puissances de matrices Algo naïf : A A A A A A A... A : n-1 multiplications On va essayer d être plus efficace si n est une puissance de 2 : A, A 2, A 4,... A n si n est pair : A n = (A n/2 ) 2 si n est impair : A n = A A n-1 on va s appuyer sur le codage binaire de n n pair : l écriture binaire de n se termine par 0 n impair : l écriture binaire de n se termine par 1 ex. n = 23 : 10111

30 30 Algorithme «SX» [Inde - II e s av JC] = =1011*2+1: A =A carre(a 1011 ) A 23 =A carre(a carre(a carre(carre(a 1)))) puissances successives : on transforme l écriture binaire de n 0 donne S (square) 1 donne SX (square and multiply) ex : 23 donne SXSSXSXSX algo : commencer à 1 lire le mot de S et X de gauche à droite S : élévation au carré X : multiplication par A

31 31 Algo «SX» + pas de stockage intermédiaire - on commence par les poids forts nombre de multiplications : longueur binaire de n + nombre de 1 optimisation : commencer par A au lieu de 1 permet d économiser 2 multiplications

32 32 Dans l autre sens... Démarrage par les poids faibles? (multiplication des égyptiens) n = ak 2 k + ak-1 2 k a1 2 + a0 A n =(A 2k ) a k (A 2 k-1 ) a k-1 (A 2 ) a 1 (A) a 0 stocker les A p pour les puissances successives de 2 multiplier lorsque le bit correspondant est à 1

33 33 Dans l autre sens... r:=1 ; y:=a pour i de 0 à k faire si a[i]=1 alors r := r * y y := y * y fin pour Nombre de multiplications : longueur binaire de n + nombre de 1 Optimalité des méthodes binaires? ex. n=15= avec SX optimisé A 15 =A5 A5 A5

34 34 Conclusion Algorithmique trouver des solutions effectives à un problème modélisation du problème notion de structure de données (ici tableau) souci d efficacité Calculs de complexité : analyse des algorithmes au pire (maximale), en moyenne moyenne : souvent techniques difficiles, notions de probabilité

35 35 Correction Retour d un résultat toujours avec la suite (gi,di), on considère p l indice d arrêt : pour k<p on a gk!dk, et soit gp>dp, soit X=T[mp] on montre par récurrence sur k la propriété P suivante pour tout k entre 0 et p, il existe un entier ik tel que gk! ik!dk et T[ik]=X la propriété P est vraie pour k=0 supposons P vraie pour k<p par hypothèse de récurrence, gk!dk, et mk=(gk+dk) div 2 le cas X=T[mk] est impossible car k<p, il reste donc deux cas soit X<T[mk], et alors ik < mk puisque la liste est triée ; comme gk+1=gk et dk+1=mk -1, on a gk+1!ik!dk+1 et X=T[ik] : on pose ik+1=ik le deuxième cas est symétrique la récurrence est établie, on a donc gk! ik!dk, et X est bien découvert dans le tableau

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ. Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité

NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ. Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ PLAN Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité 1 DÉFINITION D'UN ALGORITHME Procédure de calcul

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

Algorithmique... Complexité. Luc Brun. luc.brun@greyc.ensicaen.fr. A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p.

Algorithmique... Complexité. Luc Brun. luc.brun@greyc.ensicaen.fr. A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p. Algorithmique... Complexité Luc Brun luc.brun@greyc.ensicaen.fr A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p.1/25 Plan... Notion de complexité Comment évaluer la complexité d un algorithme

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Programmation avancée

Programmation avancée Programmation avancée Chapitre 1 : Complexité et les ABR (arbres binaires de recherche) 1 1 IFSIC Université de Rennes-1 M2Crypto, octobre 2011 Plan du cours 1 2 3 4 5 6 7 8 9 10 Algorithmes Définition

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

IN 101 - Cours 05. 7 octobre 2011. Un problème concret Recherche de collisions

IN 101 - Cours 05. 7 octobre 2011. Un problème concret Recherche de collisions Un problème concret Recherche de collisions IN 101 - Cours 05 7 octobre 2011 Le paradoxe des anniversaires dit que 365 élèves sont suffisants (en moyenne) pour avoir une collision d anniversaire, deux

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la seconde partie

Mathématiques pour l informatique 1 notes de cours sur la seconde partie Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Analyse de la complexité algorithmique (1)

Analyse de la complexité algorithmique (1) Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble

Plus en détail

Tri en Python. # on cherche k tel que a k = min(a j ) ji

Tri en Python. # on cherche k tel que a k = min(a j ) ji Tri en Python On considère ici des tableaux ou listes d entiers ou de ottants. En Python, on peut trier une liste à l aide de la méthode sort : si a est une liste d entiers ou de ottants, a.sort() modi

Plus en détail

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples CH.1 COMPLEXITÉ 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples L2-2 ch1 1 1.1 Les ordres de grandeur Chaque problème peut être résolu de différentes manières par des algorithmes

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes Tableaux VS Listes Tableaux VS Listes Petit chapitre. Plan Introduction Tableaux / Vecteurs Définition abstraite Qu a-t-on fait avec des vecteurs? Que peut-on faire avec des vecteurs? Listes chaînées Définition

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Cours d Algorithmique et structures de données 1

Cours d Algorithmique et structures de données 1 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII ALGORITHMIQUE II Récurrence et Récursivité Récurrence Suite récurrente: la déition d une suite est la donnée d un terme général déi en fonction du (ou des) terme(s) précédant(s) D un terme initial qui

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Complexité des algorithmes

Complexité des algorithmes Complexité des algorithmes par Robert Rolland R. Rolland, Aix Marseille Université, Institut de Mathématiques de Marseille I2M Luminy Case 930, F13288 Marseille CEDEX 9 e-mail : robert.rolland@acrypta.fr

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION Licence STS Université Claude Bernard Lyon I LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION 1 COURS 5 : Les Tableaux PLAN DE LA SÉANCE Comprendre l utilité des tableaux Apprendre à manipuler

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2 Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Cette deuxième séance est entièrement consacrée aux applications du principe Diviser pour Régner. Nous regarderons

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation. Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7 Computix Matériel : grilles carrées comportant un nombre impair de cases. Quelques-unes sont données en annexe ; mais on peut aussi les construire soi-même, ou les faire construire par les élèves. Elles

Plus en détail

RETOUR SUR LE DERNIER COURS MAIS CE N EST PAS UNE SI MAUVAISE CONVENTION

RETOUR SUR LE DERNIER COURS MAIS CE N EST PAS UNE SI MAUVAISE CONVENTION RETOUR SUR LE DERNIER COURS Diviser pour Régner Divide and Conquer ACT Sophie Tison Université Lille 1 Master Informatique S1 Praticable Par convention, un algorithme est dit praticable si il est polynomial,

Plus en détail

ÉPREUVE FACULTATIVE D INFORMATIQUE. Codage cyclique

ÉPREUVE FACULTATIVE D INFORMATIQUE. Codage cyclique ÉCOLE POLYTECHNIQUE CONCOURS D ADMISSION 2003 FILIÈRES PSI ET PT ÉPREUVE FACULTATIVE D INFORMATIQUE (Durée : 2 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve. Avertissements

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position Ecriture formelle Système de numération : les principes de groupement et de position Ce qu est un système de numération Sur le plan de la REPRESENTATION des nombres, on s est vite rendu compte de la difficulté

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

mercredi 16 novembre 11 6. Récurrences

mercredi 16 novembre 11 6. Récurrences 6. Récurrences Motivations Les relations de récurrence munies de conditions initiales permettent de définir des suites de nombres. En informatique, elles proviennent essentiellement : des définitions inductives

Plus en détail

Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A

Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A Djamel Aouane, Frederic Devernay, Matthieu Moy Mars - avril 2015 1 Manipulations de fichiers Pour organiser des

Plus en détail

Les mathématiques du calcul

Les mathématiques du calcul Les mathématiques du calcul Module Maths Discrètes, INSA, Univ Lyon 1, 2015-2016 Eric Tannier (eric.tannier@univ-lyon1.fr) Les mathématiques du calcul Tradition orientale Al-Khawarizmi Al-Khawarizmi, 783-850

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

Étude du circuit d une course [tb03] - Exercice

Étude du circuit d une course [tb03] - Exercice Étude du circuit d une course [tb03] - Exercice Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 8 avril 2015 Table des matières 1 Étude du circuit d une course / pg-circuita1

Plus en détail

Introduction à l Informatique (INF 311) Amphi 9 : stockage efficace de l information. Amphi 9: stockage efficace de l information

Introduction à l Informatique (INF 311) Amphi 9 : stockage efficace de l information. Amphi 9: stockage efficace de l information F. Morain École polytechnique Introduction à l Informatique (INF 311) Promo X2013 3/46 F. Morain École polytechnique Introduction à l Informatique (INF 311) Promo X2013 4/46 Introduction à l Informatique

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Module 1 - Arithmétique Chapitre 1 - Numération

Module 1 - Arithmétique Chapitre 1 - Numération Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Module 1 - Arithmétique Chapitre 1 - Numération 1 Introduction : que signifie 2014? Dans de nombreuses situations, il est nécessaire de pouvoir exprimer

Plus en détail

Algorithmique et graphes

Algorithmique et graphes Tourisme et digicodes Stéphane Henriot Étienne Simon Département d informatique École normale supérieure de Cachan stephane.henriot@ens-cachan.fr etienne.simon@ens-cachan.fr GICS, 2014 http://gics.fr Outline

Plus en détail

Algorithmique Partie 1

Algorithmique Partie 1 Algorithmique Partie 1 IUT Informatique de Lens, 1ère Année Université d Artois Frédéric Koriche koriche@cril.fr 2011 - Semestre 1 Modalités Sommaire 1 Modalités 2 Programmation 3 Données 4 Opérateurs

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Les arbres binaires de recherche

Les arbres binaires de recherche Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s

Plus en détail

Chapitre 7. Récurrences

Chapitre 7. Récurrences Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Introduction à l informatique, à Python, et représentation des nombres en machine

Introduction à l informatique, à Python, et représentation des nombres en machine Introduction à l informatique, à Python, et représentation des nombres en machine Table des matières Qu est-ce-que l informatique? Qu est-ce-qu un ordinateur? 2 Principaux composants...............................................

Plus en détail

Algorithmique avancée

Algorithmique avancée Algorithmique avancée IUP 2 Frédéric Vivien 24 avril 2002 Table des matières 1 Introduction 9 1.1 Qu est-ce que l algorithmique?.. 9 1.2 Motivation : calcul de x n. 9 1.2.1 Problème. 9 1.2.2 Algorithme

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Contrôle sur papier. INF441 Modex Programmation efficace juin 2010. 1. Photo de dés

Contrôle sur papier. INF441 Modex Programmation efficace juin 2010. 1. Photo de dés Contrôle sur papier INF441 Modex Programmation efficace juin 2010 1. Photo de dés Plusieurs dés ont été lancés sur une table, et une photo a été pris de haut. Cette photo est représentée par une matrice.

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Complément C7 Infodauphine.com

Complément C7 Infodauphine.com Complément C7 Infodauphine.com Pourquoi se soucier des performances? L'utilisateur n'aime pas attendre Le timing peut-être critique Trading VBA est un outil de productivité La notion de temps d'exécution

Plus en détail

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les informations traitées par l ordinateur (nombres, instructions,

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

1 de 1. Algorithmique. Récursivité. Florent Hivert. Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert

1 de 1. Algorithmique. Récursivité. Florent Hivert. Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 1 de 1 Algorithmique Récursivité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 2 de 1 Récursivité et Récurrence Deux notions très proche : mathématiques : récurrence

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

UV Théorie de l Information. Codes à longueur variable

UV Théorie de l Information. Codes à longueur variable Cours n 5 : UV Théorie de l Information Compression de l information : Codage de source sans distorsion Ex 1 : Code de Shannon Fano Ex 2 : Code de Huffman Ex 3 : Codage par plage Ex 4 : Codage de Lempel

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

IN Cours septembre Matthieu Finiasz

IN Cours septembre Matthieu Finiasz IN 101 - Cours 04 30 septembre 2011 présenté par Matthieu Finiasz Un problème concret Laquelle de ces deux fonctions est la meilleure? 1 int factoriel(int n) { 2 int i, res; 3 res = 1; 4 for (i=2; i

Plus en détail

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Algorithmique P2 Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Sources supplémentaires Cours Algorithms and Data Structures in Java, Patrick Prosser, 2000, Glasgow University Algorithmique

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail