Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire mise à jour 22 novembre Fig.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig."

Transcription

1 Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée de Dominique Barbolosi 1

2 Table des matières I Capitre 4 : Fonctions dérivables 3 I.A Nombre dérivé, fonction dérivée I.B Tangente et approimation affine localement au voisinage de a I.C Dérivabilité et continuité I.D Dérivées successives I.E Règles de dérivation I.E.1 Dérivées des fonctions usuelles I.E. Dérivées et opérations sur les fonctions I.E.3 Dérivée d une fonction composée I.E.4 Deu eemples de fonctions composées I.F Applications de la dérivation (étude de fonction) I.F.1 sens de variation I.F. Etremum local I.G Eemple : étude de la fonction tangente Le document s inspire des nombreu livres de Terminale S des différentes éditions. Les figures de ce document ont été réalisées avec métapost et les macros de J-M Sarlat. L environnement bclogo, utilisé pour la réalisation de ce document, est télécargeable ici : ttp://melusine.eu.org/syracuse/wiki/doku.pp/mc/bclogo

3 I Capitre 4 : Fonctions dérivables I.A Nombre dérivé, fonction dérivée Définition 1: f est une fonction définie sur un intervalle I et a est un réel de I. f est dérivable en a si et seulement si l une ou l autre des deu propositions équivalentes est réalisée : f(a + ) f(a) la fonction a une limite finie l en 0, ou encore f() f(a) que la fonction a pour limite l quand tend vers a. a pour tout réel tel que a + I, f(a + ) = f(a) + l + ε() avec lim ε() = 0. 0 Le nombre l est appelé nombre dérivé de la fonction f en a et est noté f (a). Remarques : Le nombre f(a + ) f(a) Soit A(a;f(a)) et M(a + ;f(a + )), le quotient directeur de la droite (AM). ( 0) est appelé tau de variation de f entre a et a +. f(a + ) f(a) ( 0) est le coefficient Lorsque f est dérivable en tout point d un intervalle I inclus dans l ensemble de définition de f, on dit que f est dérivable sur I. Définition : f est une fonction dérivable sur un intervalle I. La fonction dérivée de f sur I est la fonction f qui à tout a dans I associe f (a). I.B Tangente et approimation affine localement au voisinage de a : si C f est la courbe représentative de f dans un repère. Une équation de la tangente T à C f au point A d abscisse a est : y = f (a)( a) + f(a) f(a + ) y M : Pour tout réel tel que a + I, f(a+) = f(a)+f (a)+ε() et lim 0 ε() = 0 On remarque grapiquement ci-contre que, lorsque tend vers 0, M se rapproce de P et donc f(a)+f (a) est une approimation affine de f(a + ), pour proce de 0. f(a) +.f (a) f(a) +1 A P +1 a a + 3

4 I.C Dérivabilité et continuité Proposition 1: f est une fonction définie sur un intervalle I, a est un réel de I. Si f est dérivable en a, alors f est continue en a. Démonstration On suppose que f est dérivable en a, c est à dire, pour 0 tel que a + I, f(a + ) = f(a) + f (a) + ε() avec lim ε() = 0. 0 Or lim f (a) = 0 et lim ε() = 0 donc lim f(a + ) = f(a), ce qui justifie que f est continue en a. Remarque : La réciproque de la propriété est fausse : la fonction racine carrée est continue en 0, mais elle n est pas dérivable en 0. De même, la fonction valeur absolue est continue en 0, mais n est pas dérivable en 0. Je vous invite à regarder, dans les deu cas, la raison pour laquelle la fonction n est pas dérivable en 0 en étudiant et interprètant grapiquement lim f() f(0) 0 I.D Dérivées successives Définition 3: f est une fonction dérivable sur un intervalle I. Sa fonction dérivée f s appelle la fonction dérivée première (ou d ordre 1) de f. Lorsque f est dérivable sur I, sa fonction dérivée est notée f ; f est appellée dérivée seconde (ou dérivée d ordre ) de f. De manière récurrente, pour tout entier naturel n, on définit la fonction dérivée n-ième (ou d ordre n) comme étant la fonction dérivée de la fonction d ordre n 1, f (1) = f et pour tout n, f (n) = f (n 1). Eemple 1: f : cos est dérivable sur R et on a f () = sin, f () = cos, f (3) () = sin, f (4) () = cos et ainsi de suite... I.E Règles de dérivation I.E.1 Dérivées des fonctions usuelles Voici un tableau que l on complètera plus tard dans l année. 4

5 f() f () f est dérivable sur l intervalle λ 0 ] ;+ [ 1 ] ;+ [ n (n N et n ) n n 1 ] ;+ [ 1/ 1/ ] ;0[ ou ]0;+ [ 1 ]0; + [ cos sin ] ;+ [ sin cos ] ;+ [ I.E. Dérivées et opérations sur les fonctions Proposition : u et v sont deu fonctions dérivables sur un intervalle I et k est un réel. Alors ku, u + v et uv sont dérivables sur I et : (ku) = ku ; (u + v) = u + v ; (uv) = u v + uv Si, de plus v ne s annule pas sur I, alors 1 v et u sont dérivables sur I et : ( ) v 1 = v ( u ) u v uv v v et = v v Corollaire : Les fonctions polynômes et rationnelles sont dérivables sur tout intervalle de leur domaine de définition. Eercice 1: Déterminer la fonction dérivée de cacune des fonctions suivantes : 1. f est la fonction définie sur [0;+ [ par : f() = ( 1). f est la fonction définie sur R \ { 1;0} par : f() = Solution : 1. f est dérivable sur ]0;+ [, et f() = u()v() avec u() = 1 et v() = On a alors u () = 1 ; v () = 1 et f = u v + uv f () = 1 + ( 1) 1 = + 1. f est dérivable sur R \ { 1;0}, et f() = u() v() avec u() = et v() = + On a alors u () = ; v () = + 1 et f = u v uv f () = (8 + 1)( + ) (4 + + )( + 1) ( + ). v 5

6 I.E.3 Dérivée d une fonction composée Téorème 1 g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur un intervalle I, et pour tout de I, u() appartient à J. Alors la fonction f définie par f() = g u() = g(u()) est dérivable sur I et pour tout de I, f () = u () g (u()). Démonsration : Pour tout a I, pour tout réel non nul tel que a + I, f(a + ) f(a) g(u(a + )) g(u(a)) g(u(a + )) g(u(a)) u(a + ) u(a) = = u(a + ) u(a) u(a + ) u(a) Or u est dérivable en a, d où lim = u (a). 0 De plus, u est dérivable en a, u est donc continue en a, ce qui donne : lim u(a + ) = u(a). 0 On a également u(a) J et g est dérivable sur J, d où : g(x) g(u(a)) X u(a) f(a + ) f(a) 0 lim X u(a) g(u(a + )) g(u(a)) On obtient alors lim = g (u(a)). Donc lim 0 u(a + ) u(a) et g u est dérivable en a et (g u) (a) = u (a) g (u(a)). = g (u(a)). = u (a) g (u(a)) Remarque : On retrouve ainsi une propriété vue en première : si g() = f(a + b), alors g () = af (a + b). Eercice : Déterminer les dérivées des fonctions suivantes : ( ) 1 1. f est la fonction définie sur R \ {0} par : f() = sin.. f est la fonction définie sur R par : f() = cos( ). Solution : 1. f est dérivable sur R \ {0}. Pour tout R \ {0}, f() = g u() où u() = 1 g() = sin. u () = 1 et g () = cos. On a alors f () = 1 ( ) 1 cos. et. f est dérivable sur R. Pour tout réel, f() = g u() où u() = et g() = cos. u () = et g () = sin et f () = sin( ). 6

7 I.E.4 Deu eemples de fonctions composées Proposition 3: u est une fonction strictement positive et dérivable sur un intervalle I. Alors la fonction f définie sur I par f() = u() est dérivable sur I, et pour tout de I : f () = u () u() Dém : f() = g(u()) où g() = et g () = 1 g est dérivable sur ]0;+ [; pour tout de I, u() > 0, donc la fonction f = g u est dérivable sur I et d après la propriété sur la dérivée d une fonction composée, on obtient : f () = u () g (u()) = u () u(). Proposition 4: u est une fonction dérivable sur un intervalle I et n est un entier naturel non nul. Alors la fonction f définie par f() = [u()] n est dérivable sur I et pour tout de I : f () = n[u()] n 1 u () Dém : f() = g(u()) où g() = n. Pour tout réel, g () = n n 1. Alors pour tout réel, f () = u () g (u()) = u () n[u()] n 1 = n[(u()] n 1 u (). Remarque : Cas où n < 0 et u ne s annule en aucun point de I : On a f() = [u()] n 1 =. Puisque n > 0, on peut appliquer la formule de la dérivée de [u()] n l inverse d une fonction et on obtient : f () = ([u()] n ) ([u()] n ) et ( [u()] n) = nu () [u()] n 1 donc f () = n u ()[u()] n 1 u () [u()] n = n [u()] n+1. On obtient également f () = nu ()[u()] n 1. Eercice 3: Déterminer les dérivées des fonctions suivantes : 1. f est la fonction définie sur R par f() = ( ) 3.. g est la fonction définie sur R par g() = Solution : 1. f est une fonction polynôme, elle est donc dérivable sur R. On a f() = [u()] n où u() = et u () = + 3. On a alors f () = 3 ( + 3)( ).. Comme > 0 sur R, la fonction f est dérivable sur R. On a g() = u() où u() = et u () = + On a alors f () = u () u() = =

8 I.F Applications de la dérivation (étude de fonction) I.F.1 sens de variation Téorème f est une fonction dérivable sur un intervalle I. 1. Si pour tout de I, f () > 0 sauf peut-être en quelques points où f () s annule alors f est strictement croissante sur I.. Si pour tout de I, f () < 0 sauf peut-être en quelques points où f () s annule alors f est strictement décroissante sur I. 3. Si pour tout de I, f () = 0 alors f est constante sur I. E : f est la fonction définie sur R par f() = 3. f est dérivable sur R et f () = pour tout réel. Pour tout R, f () > 0 et f (0) = 0, donc f est strictement croissante sur R. I.F. Etremum local Proposition 5: f est une fonction dérivable sur un intervalle I, c est un point de I. Dire que f(c) est un maimum local (resp. minimum local) signifie que l on peut trouver un intervalle J inclus dans I et contenant c, tel que, pour tout de J, f() f(c) (resp. f() f(c)). On appelle etremum local, un maimum ou un minimum local. Sur l eemple ci-contre, f présente un maimum local en 1 sur l intervalle [c 1 ;c ] et un minimum local en sur [c ;c 3 ] y f( 1 ) +1 c 1 1 c +1 c 3 f( ) 8

9 Téorème 3 f est une fonction dérivable sur un intervalle I ouvert, c est un point de I. 1. Si f(c) est un etremum local, alors f (c) = 0.. Si f s annule en c en cangeant de signe, alors f(c) est un etremum local. Remarque : Lorsque f(c) est un etremum local, la tangente à la courbe représentant f en A(c;f(c)) est orizontale. I.G Eemple : étude de la fonction tangente La fonction tangente, notée tan, est définie pour tout réel tel que π tan = sin cos. Par la suite, on note D l ensemble de définition de la fonction tan. + kπ avec k Z, par Proposition 6: Pour tout de D, tan( + π) = tan. Dém : Si D, alors + π D, et tan( + π) = La fonction tan est périodique de période π. sin( + π) cos( + π) = sin = tan. cos Proposition 7: Pour tout de D, tan( ) = tan Dém : Si D, D et tan( ) = sin( ) cos( ) = sin = tan. cos La fonction tangente est alors impaire, sa courbe représentative admet donc l origine pour centre de symétrie. [ On peut ainsi se contenter d étudier la fonction tangente sur 0; π ]. Proposition 8: La fonction tangente est dérivable en tout réel de D et tan = 1 + tan = 1 cos. Dém : Les fonctions sinus et cosinus sont dérivables sur D et cos 0 sur D, donc la fonction tangente est dérivable sur D. (tan) () = cos + sin cos = 1 + tan = 1 cos.1 Tableau de variation et représentation grapique 1 Voir le TP Info 5 bis 9

10 [ Pour tout 0; π [, (tan) () > 0 donc la fonction tangente est strictement croissante sur [ 0;+ π [. lim sin = 1 et lim cos = 0 + π π < π lim tan = +. π < π donc Ø Ò Üµµ¼ Ü ¾ ¼ ½ Dans un repère ortogonal (O; i, [ j ), on trace la courbe qui représente la fonction tangente sur 0; π [ ], puis par symétrie par rapport à O, on obtient la courbe Γ sur π ; π [. Enfin, on applique à Γ les translations de vecteurs kπ i avec k Z. D où la représentation grapique suivante : y tan() +1-3π - π +1 π 3π 10

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Chapitre I : Continuité et dérivabilité des fonctions réelles

Chapitre I : Continuité et dérivabilité des fonctions réelles ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Cours de mathématiques. Chapitre 9 : Nombres complexes

Cours de mathématiques. Chapitre 9 : Nombres complexes Cours de mathématiques Terminale S1 Chapitre 9 : Nombres complexes Année scolaire 2008-2009 mise à jour 15 février 2009 Fig. 1 Gerolamo Cardano Médecin et mathématicien italien qui ne redoutait pas les

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Terminale ES-L Chapitre IV Convexité.

Terminale ES-L Chapitre IV Convexité. Terminale ES-L Chapitre IV Convexité. I- Définition. Rappel : On appelle corde d'une courbe tout segment reliant deux de ses points. Illustration ci-dessous : on a tracé la courbe représentative d'une

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Nombre dérivé. Tangente et approximation affine. Définitions :

Nombre dérivé. Tangente et approximation affine. Définitions : Nombre dérivé S T f ' (a) a f(a+) M f(a)+f'(a) N 0.6 f'(a) f(a) A P Approimation affine : f(a)+f ' (a) 0.6 Valeur eacte : f(a+).98 Différence :.38 a a+ variable (ou ) Définitions : f( a + ) f( a) une fonction

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

( ) et orienté dans le

( ) et orienté dans le FONCTIONS COSINUS ET SINUS I. Rappels ) Définitions : Dans le plan muni d un repère!! ortonormé O ; i ; j ( ) et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Séquence 2. Fonctions numériques Continuité. Sommaire. 1. Pré-requis. 2. Étude de fonctions (révisions 1 re ES)

Séquence 2. Fonctions numériques Continuité. Sommaire. 1. Pré-requis. 2. Étude de fonctions (révisions 1 re ES) Séquence Fonctions numériques Continuité Objectifs de la séquence Revoir les fonctions dérivables et découvrir les fonctions continues. Étudier le sens de variation d une fonction pour résoudre un problème

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R.

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R. CHAPITRE I Fonctions d une variable réelle. Limites Soit f une fonction définie sur R : et soit R. f W R! R 7! f./ Définition. Limite finie en un point) On dit que f admet ` pour ite lorsque tend vers

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes.

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. FONCTIONS DE REFERENCE Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. I. LES FONCTIONS ELEMENTAIRES ce sont les touches «fct» de la calculatrice

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Métropole - Juin 2012 BAC S Correction

Métropole - Juin 2012 BAC S Correction Métropole - Juin 0 BAC S Correction / 7 Eercice. La courbe C est sous l ae des abscisses pour [-3 ;-]. Affirmation vraie. Sur [- ;], f () 0. Donc f est croissante sur cet intervalle. Affirmation vraie

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien La fonction exponentielle est continue strictement croissante sur R à valeurs dans ]0; + [. Elle définit donc une bijection de R sur ]0; + [, c est-à-dire que quel que soit

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point Capitre 3 Term. ES Notion de continuité sur un intervalle Ce que dit le programme : CONTENUS Notion de continuité sur un intervalle CAPACITÉS ATTENDUES Exploiter le tableau de variation pour déterminer

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 3 Term. S. Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIES appels : Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail