Une approche statique quasi-périodique de la capacité portante des groupes de micropieux

Dimension: px
Commencer à balayer dès la page:

Download "Une approche statique quasi-périodique de la capacité portante des groupes de micropieux"

Transcription

1 Une approche statique quasi-périodique de la capacité portante des groupes de micropieux Zied Kammoun 1, Joseph Pastor 2, Hichem Smaoui 3 1 Université de Tunis El Manar, Ecole Nationale d Ingénieurs de Tunis, Laboratoire MOED, 1002, Tunisie 2 Laboratoire LOCIE, Université de Savoie, France 3 Université de Tunis El Manar, Ecole Nationale d Ingénieurs de Tunis, Laboratoire MOED, 1002, Tunisie RÉSUMÉ. Du fait de la géométrie complexe des systèmes sol-micropieux le calcul précis de leur capacité portante est un défi. Leur modélisation nécessite en effet une discrétisation trés fine pour obtenir une précision raisonnable. Ces modèles conduisent à des grands problèmes numériques d optimisation difficilement abordables à l aide des moyens actuels. Le présent article propose un modèle de réduction permettant de résoudre le problème numérique d analyse limite statique du sol renforcé par un groupe de micropieux modélisé en déformation plane. La méthode a été appliquée avec succès au cas d un sol renforcé lorsque les ressources ne permettent pas de résoudre le modèle complet. ABSTRACT. The complex geometry of large soil-micropile systems makes accurate calculation of the bearing capacity of the reinforced soil a computational challenge. This complexity requires finely discretized models to achieve reasonable accuracy. Such models lead to large scale numerical optimization problems that are hardly tractable using a personal computer. In the present paper a model reduction method is made capable of solving the numerical static limit analysis approach of a soil reinforced by a group of micropiles according to a plane strain model. The method has been successfully applied to the problem of a reinforced soil when resources did not permit solution of the full model. MOTS-CLÉS : Analyse limite, Approche statique, Quasi-périodique, Micropieux. KEYWORDS: Limit analysis, Static approach, Quasi-periodicity, Micropiles.

2 31èmes Rencontres de l AUGC, E.N.S. Cachan, 29 au 31 mai Introduction Les micropieux sont des pieux de petit diamètre et de grand élancement. Depuis 1952 leur usage s est largement répandu pour le renforcement des sols et les travaux de reprise en sous-œuvre. Pour prédire la capacité portante des groupes de micropieux, les approches utilisées sont le plus souvent de type méthode simplifiée [dl93]. L approche par la théorie de l analyse limite (AL) permet d obtenir un encadrement rigoureux de cette capacité portante [Kam10]. Cependant sa mise en œuvre pour les groupes de micropieux usuels conduit à des problèmes d optimisation tels que leur résolution conduit à des temps de calcul déraisonnables, d où la recherche d une modélisation spécifique. Par suite, une technique de type homogénéisation partielle, basée sur l hypothèse de la périodicité à l intérieur de la zone du sol renforcée par micropieux, est présentée ici. Une représentation bidimensionnelle du sol renforcé est adoptée pour réduire la dimension du problème numérique, l extension aux problèmes tridimensionnels étant naturelle. Après une brève présentation de l analyse limite (AL), la méthode de réduction proposée est présentée ; elle est ensuite évaluée en l appliquant à des exemples de sol renforcé par un groupe de micropieux. Précisons que l objectif du présent article est essentiellement le développement de cette méthode réduite pour le calcul de la charge limite (ou capacité portante) par l approche statique, ou de borne inférieure, de l AL. Pour situer ses résultats nous aurons besoin de bornes supérieures concernant le problème non réduit, lesquelles bornes seront obtenues à l aide du code cinématique pour lequel nous renvoyons, faute de place ici, à la référence [Kam10]. 2. Analyse limite et méthode statique Selon Salençon (voir [Sal83]), un champ de contrainte σ est dit statiquement admissible (SA) si les équations d équilibre, la continuité des vecteurs contrainte, et les conditions aux limites en contraintes sont vérifiées. Il est plastiquement admissible (PA) si f (σ) 0, où f (σ) est le critère de plasticité du matériau. Un champ σ SA et PA est dit admissible. De même, un champ de vitesses de déformation v est cinématiquement admissible (CA) s il dérive d un champ de vitesses de déplacement u (continu par morceaux et à discontinuités bornées) qui vérifie les conditions aux limites en vitesse. Il est plastiquement admissible (PA) si la loi de normalité est vérifiée, et les champs u et v, à la fois CA et PA, seront appelés admissibles par la suite. Une solution au problème de l analyse limite est un couple de champs (σ,v) où σ et v sont à la fois admissibles et associés par la loi de normalité. Ces solutions peuvent être trouvées ou approchées en utilisant deux méthodes d optimisation. La première, impliquant seulement les contraintes comme variables, est la méthode statique (dite aussi de la borne inférieure). La seconde, qui fait intervenir les seules vitesses de déplacement, est la méthode cinématique (dite de la borne supérieure). Supposons que la puissance virtuelle des charges externes puisse s écrire comme le produit scalaire d un vecteur chargement Q(σ) R n et un vecteur vitesse q = q(u). Un chargement associé linéairement à un champ de contrainte admissible est lui-même dit admissible. L ensemble de ces chargements admissibles forme un convexe K dans

3 Une approche statique quasi-périodique. 3 R n et les n composants de Q sont appelés paramètres de chargement. La frontière K du convexe K, lieu des chargements limites cherchés, peut être déterminée par la résolution des problèmes d optimisation suivants : Q lim =(Q d 1,...,λ 0Q d i,...,q d n) λ 0 = max{λ, Q(σ) = (Q d 1,...,λQd i,...,q d n)}, où σ est un champ de contraintes admissible et Q d un chargement admissible donné. (1a) (1b) 3. Formulation par éléments finis du problème statique Dans le présent travail le problème est formulé en déformation plane. La méthode numérique statique est utilisée telle que détaillée dans [Pas78]. Prenons une discrétisation en éléments finis triangulaires du volume mécanique V doté du repère orthonormé global (x,y). Dans chaque triangle le champ de contrainte est choisi affine et peut être discontinu à travers les bords des éléments. Le critère de von Mises ou de Tresca (équivalents dans le cas présent) s écrit dans le cas présent : f (σ) = (σ x σ y ) 2 + (2τ xy ) 2 2c, (2) où c est la cohésion du matériau. Notons ici que la méthode de réduction proposée dans ce travail est valable aussi pour les critères de Coulomb et de Drucker-Prager. Afin d assurer l admissibilité du champ de contrainte les conditions suivantes sont imposées. Dans chaque élément, les équations d équilibre σ i j, j + γ i = 0, où γ est le poids volumique, donnent deux égalités linéaires. La continuité du vecteur contrainte T i = σ i j n j est imposée aux sommets de chaque segment de discontinuité de normale n, soit quatre égalités par segment. Les conditions aux limites en contraintes, i.e. σ i j n j = Ti d est imposée à chaque sommet des côtés d éléments de frontière, soit quatre égalités par côté. Le critère de plasticité est imposé à chaque sommet de triangle. Il est alors vérifié dans l élément du fait de à la variation linéaire des contraintes dans le triangle et de la convexité du critère [2]. La fonctionnelle est définie a partir de la puissance des charges extérieures ; c est, par exemple, l intégrale des contraintes normales dans le cas d une semelle à laquelle on impose une vitesse normale uniforme. En écrivant le critère directement sous la forme conique V = 2c Y 2 + Z 2, où V est une variable auxiliaire, le problème d optimisation mathématique sous contraintes final est résolu en utilisant le code commercial MOSEK [m02]. Ce code performant est dédié à la résolution du problème dit conique du second ordre (SOCP), où il s agit d optimiser une fonctionnelle linéaire dont les variables doivent satisfaire, outre des contraintes (au sens mathématique) linéaires, un ensemble de contraintes coniques de la forme : n j=1 x2 j x n+1 ; dans le cas présent, n = 2 et x 3 = V.

4 31èmes Rencontres de l AUGC, E.N.S. Cachan, 29 au 31 mai Méthode de réduction quasi-périodique Dans les grands groupes de micropieux, ces derniers sont généralement disposés selon un motif régulier avec une géométrie et une structure périodiques. Lorsque le chargement est uniformément distribué entre les inclusions, le sol renforcé a tendance à réagir sur un mode périodique, notamment loin des limites de la zone renforcée. La méthode proposée tire profit de cette périodicité pour réduire la taille du problème d analyse limite numérique. Figure 1. Le problème de sol renforcé par un groupe de micropieux La figure 1 montre la configuration des sols renforcés par un groupe de n p micropieux. Une fondation rigide repose sur le sol renforcé, et le sol naturel s étend sur les côtés et en dessous de cette zone jusqu au substrat rigide. Pour appliquer la technique de réduction, le domaine est divisé en trois parties. La première est la zone centrale renforcée dont le comportement est supposé périodique, notée zone I. La seconde zone, zone de transition ou de bord (zone II), est une partie du sol renforcé qui sépare la zone périodique du sol non renforcé. Enfin, le reste du sol représente la zone III. Un volume élémentaire (VE) est constitué par un micropieu, la moitié de la largeur du sol de chaque côté et du volume sous-jacent de sol. Quel que soit le nombre de micropieux qu il comporte, la zone périodique est remplacé par un unique élément de volume périodique (VEP) qui vérifie la périodicité et les contraintes de continuité entre VE. Les conditions de périodicité imposées sur le champ de contraintes sont les suivantes : σ gauche n = σ droite n, (3) où n est la normale à droite (ou à gauche) du VEP. Le même type de conditions est aussi imposé entre le bord de la zone II et le VEP pour assurer la continuité du vecteur contrainte avec la zone I reconstituée par périodicité. Comme les n pp VE périodiques sont remplacés par un seul VEP, le chargement F R du problème réduit est donné par : F R = F T + n pp F P (4) où F T est la charge supportée par la zone II et F P la charge supportée par le VEP dans le problème réduit. Il en résulte une réduction considérable de la taille du problème,

5 Une approche statique quasi-périodique. 5 Figure 2. Charge du problème initial Figure 3. Charge du problème réduit au prix d une erreur d approximation. Fait intéressant, l erreur est du côté conservatif car préservant la nature de borne inférieure de la solution. Grâce aux conditions de périodicité et de continuité du VEP avec la zone II, le champ de contraintes résultant de la reconstitution par périodicité horizontale de la zone I et celui des deux autres zones donne en effet un champ de contraintes admissible pour le problème initial. Par ailleurs, la modélisation du composite sol-micropieux au niveau RVE, à la fois dans les directions horizontale et verticale, a le mérite de prendre en compte (au moins partiellement) les effets de pointe et du frottement latéral des micropieux sur la capacité portante. 5. Examples numériques Le problème considéré (Figure 4) est celui d un sol de Tresca renforcé par un groupe de n P micropieux, sur lesquels repose une semelle indéformable de largeur b chargée en son milieu par une force F. Le problème d optimisation numérique associé est noté P 0. La solution pour le problème réduit, notée P (Figure 5), est admissible Figure 4. Exemple d un sol renforcé par des micropieux pour P 0 et fournit donc une borne inférieure pour le problème original. En limitant le

6 31èmes Rencontres de l AUGC, E.N.S. Cachan, 29 au 31 mai nombre de micropieux de transition à un seul de part et d autre, le nombre de micropieux dans le modèle est réduit de n P à 3 seulement. Figure 5. Problème réduit de l exemple considéré 5.1. Effet du mode de transmission de charge Pour illustrer l influence du mode de transmission de charge de la fondation au sol renforcé le problème est considéré avec deux mécanismes de transmission. Dans le premier, la fondation est supposée supportée uniquement par les micropieux. Dans le second, elle est censée reposer et sur la surface du sol et sur les têtes de micropieux. Dans les deux cas, les bornes cinématiques et statiques de la capacité portante sont d abord déterminées par la résolution du problème direct pour un renfort de neuf micropieux (n p = 9). Les résultats sont ensuite donnés pour plusieurs distances de micropieux afin d évaluer les effets de l espacement et du mode de transmission de la charge Fondation supportée uniquement par les micropieux La charge limite statique F du sol renforcé est déterminée dans ce cas avec les conditions aux limites définies de telle sorte que la charge est supportée uniquement par les micropieux. La figure 6 indique la charge limite (statique) du sol renforcé, calculée avec différentes méthodes, en fonction de l espacement. On peut noter à partir des résultats que : La capacité portante du sol renforcé augmente avec l espacement pour une valeur de celui-ci inférieure à 6, 8 m. Au-delà de cette valeur, la capacité portante devient quasiment indépendante de l espacement. La saturation doit refléter la disparition de l interaction entre les micropieux qui ont alors tendance à se comporter comme des inclusions isolées. La différence entre les solutions de l approche statique directe et celle du modèle réduit est relativement faible (moins de 4,2%).

7 Une approche statique quasi-périodique. 7 Figure 6. Influence de l espacement sur la capacité portante. (a) Seuls micropieux chargés (e = 1,8) (b) Seuls micropieux chargés (e = 8,8) Figure 7. Zone plastifiée (solution directe) Les zones plastifiées sont visualisées sur la figure 7. On peut constater que pour des petits espacements, le comportement de la zone renforcée rappelle celui d un mécanisme de bloc (Figure 7-a). Pour un espacement important (Figure 7-b), les volumes élémentaires ont tendance à se comporter de manière indépendante, comme si les micropieux étaient isolés. La zone de rupture est en effet localisée dans une couche mince de sol entourant le micropieu Fondation appuyant à la fois sur le sol et sur les micropieux La charge dans ce cas est maintenant transmise par les micropieux et le sol. La Figure 8 montre la charge limite calculée pour différentes valeurs de l espacement des micropieux. On observe que :

8 31èmes Rencontres de l AUGC, E.N.S. Cachan, 29 au 31 mai Figure 8. Charge limite pour différentes valeurs d espacement La charge limite augmente toujours avec l espacement, contrairement au comportement observé lorsque la charge est supportée uniquement par les micropieux. L erreur augmente avec l espacement jusqu à 9% pour e = 8,8 m (a) Chargement pieux-sol (e = 1,8) (c) Chargement pieux-sol (e = 8,8) Figure 9. Zone plastifiée (solution directe) Les zones plastifiées sonts visualisées sur la figure 9. Pour des faibles espacements, le comportement de la zone renforcée est similaire à celle d un mécanisme de bloc. Pour des espacements importants, le comportement ne reflète pas clairement l hypothèse de périodicité.

9 Une approche statique quasi-périodique. 9 Tableau 1. Effet du nombre de micropieux Statique Réduit Cinématique Nbr. Nbr élém. F (kn) F (kn) Erreur(%) Nbr élém. F (kn) pieux ,3 3779,2 0, , ,8 6301,0 0, , ,6 7982,4 0, , ,6 8822,9 0, Effet du nombre de micropieux sur la performance de la méthode Afin d évaluer le gain de performance de la méthode de réduction pour les groupes de micropieux de grande taille (Figure 10) le problème de l analyse limite est résolu en utilisant les formulations directe statique, directe cinématique et le modèle réduit pour un nombre de micropieux variant de 1 à 31. Figure 10. Exemple pour un grand nombre de micropieux Les conditions aux limites sont telles que la charge est supportée par les micropieux seulement. Le même degré de discrétisation est utilisé dans tous les modèles (c est-à-dire la même taille des éléments finis). Le modèle réduit compte éléments finis quel que soit le nombre de micropieux. D après les résultats, et comme prévu, le temps CPU requis par la solution du modèle réduit n a pas tendance à augmenter avec le nombre de micropieux, alors que le temps CPU de la solution directe augmente presque proportionnellement avec lui. Pour un renforcement de 21 micropieux (tableau 1) le maillage du problème direct est de éléments finis, soit près de deux fois le nombre d éléments dans le modèle réduit, et le temps CPU consommé est presque le double du temps de la solution

10 31èmes Rencontres de l AUGC, E.N.S. Cachan, 29 au 31 mai modèle réduit pour un gain de précision de 0,7%. C est le plus grand problème dont la solution directe est possible avec l Apple Mac Pro 3 GHz utilisé dans ce travail. L erreur relative entre les solutions des modèles direct et réduit se situe entre 0,5 et 0,7% et ne semble pas augmenter avec le nombre de micropieux. Par conséquent, on peut conclure que la méthode de réduction fournit une estimation assez précise pour un nombre illimité de micropieux avec un effort presque constant de calcul. 6. Conclusion Une méthode basée sur un modèle de réduction est proposée pour résoudre le problème numérique d analyse limite statique d un milieu renforcé par un groupe de micropieux périodique tout en préservant la finesse de la description par éléments finis du volume élémentaire périodique. Signalons ici que ce procédé de réduction et plus généralement la méthode statique ne relèvent pas d une approche à l aide d un code élastoplastique usuel de type déplacement ou équilibre, le caractère SA des champs de contraintes résultants n étant qu approximatif, sauf cas très spécial. La méthode de réduction proposée a été appliquée avec succès à l analyse limite statique d un sol renforcé par un grand groupe de micropieux lorsque les ressources ne permettent pas de résoudre le problème du modèle complet. Les résultats numériques montrent que la méthode de réduction fournit une estimation assez précise de la charge limite pour un coût calcul quasi-indépendant du nombre de micropieux. Des différences significatives sont cependant observées selon que la charge est appliquée aux micropieux seuls, ou au sol et aux micropieux. Dans un travail futur, la méthode de réduction pourra être améliorée en limitant la hauteur des volumes élémentaires à celle du seul micropieu, ce qui permettra plus de degrés de liberté dans le sol sous la zone renforcée. Références [dl93] Ministère de l équipement, du logement et des transports. Fascicule N 62 - Titre V : Régles techniques de conception et de calcul des fondations des ouvrages de génie civil, [Kam10] Z. Kammoun. Prévision de la charge limite des sols renforcés par réseaux de micropieux. Thèse de doctorat, Université de Savoie et Ecole Nationale d Ingénieurs de Tunis, [m02] MOSEK ApS. C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen φ, Denmark, [Pas78] J. Pastor. Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical. J. Méca. Appl. (now Eur. J. Mech.- A/Solids), 2 : , [Sal83] J. Salençon. Calcul à la rupture et analyse limite. Presses des Ponts et Chaussées, Paris, 1983.

Rupture et plasticité

Rupture et plasticité Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements

Plus en détail

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE Université Paul Sabatier Master1 CCS Toulouse III TPs RdM.6 + VBA Michel SUDRE Déc 2008 TP N 1 Poutre Fleion-Tranchant On considère 2 poutres droites identiques de longueur L dont la est un de hauteur

Plus en détail

statique J. Bertrand To cite this version: HAL Id: jpa-00237017 https://hal.archives-ouvertes.fr/jpa-00237017

statique J. Bertrand To cite this version: HAL Id: jpa-00237017 https://hal.archives-ouvertes.fr/jpa-00237017 Quelques théorèmes généraux relatifs à l électricité statique J. Bertrand To cite this version: J. Bertrand. Quelques théorèmes généraux relatifs à l électricité statique. J. Phys. Theor. Appl., 1874,

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs.

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs. Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs. H. ZAÏDI a, S. FOHANNO a, R. TAÏAR b, G. POLIDORI a a Laboratoire

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans ANALYSE CATIA V5 1 GSA Generative Structural Analysis 2 Modèle géométrique volumique Post traitement Pré traitement Maillage Conditions aux limites 3 Ouverture du module Choix du type d analyse 4 Calcul

Plus en détail

RELATIONS DES CONTACTS HERTZIENS

RELATIONS DES CONTACTS HERTZIENS RELATIONS DES CONTACTS HERTZIENS 2004-203 Frédy Oberson et Fred Lang LES RELATIONS DES CONTACTS HERTZIENS Lorsque deux solides non conformes sont mis en contact 2, ils se touchent initialement en un point

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Principes de la Mécanique

Principes de la Mécanique Chapitre 1 Principes de la Mécanique L expérience a montré que tous les phénomènes observés dans la nature obéissent à des lois bien déterminées. Ces lois peuvent être, en plus, déterministes ou indéterministes.

Plus en détail

Modélisation géostatistique des débits le long des cours d eau.

Modélisation géostatistique des débits le long des cours d eau. Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité : Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE par S. CANTOURNET 1 ELASTICITÉ Les propriétés mécaniques des métaux et alliages sont d un grand intérêt puisqu elles conditionnent

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Calculs et Certificats de Quantités d Intérêts Non Linéaires d un Mousqueton Cédric Bellis

Calculs et Certificats de Quantités d Intérêts Non Linéaires d un Mousqueton Cédric Bellis Ecole Normale Supérieure de Cachan Département de Génie Mécanique Rapport de Stage de M1 Mécanique et Ingéniérie des Systèmes Stage effectué du 10/04 au 27/08 Laboratori de Càlcul Numèric - Universitat

Plus en détail

Activité 54 : Modélisation des phénomènes associés à la convergence au niveau d une fosse océanique

Activité 54 : Modélisation des phénomènes associés à la convergence au niveau d une fosse océanique Fiche professeur - 4 e Activité 54 : Modélisation des phénomènes associés à la convergence au niveau d une fosse océanique 1. EXTRAITS REFERENTIELS DU BO Partie : L activité interne du globe Connaissances

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

La méthode des éléments finis et le contrôle des calculs

La méthode des éléments finis et le contrôle des calculs Table des matières Techniques Avancées en Calcul des Structures Cours d option La méthode des éléments finis et le contrôle des calculs J.-P. Pelle ENS - Cachan Master MIS Parcours TACS Année universitaire

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

LES VASES DE LA LOIRE : MODELISATION DE L EFFET DE LA CONSOLIDATION SUR DES INFRASTRUCTURES EXISTANTES

LES VASES DE LA LOIRE : MODELISATION DE L EFFET DE LA CONSOLIDATION SUR DES INFRASTRUCTURES EXISTANTES LES VASES DE LA LOIRE : MODELISATION DE L EFFET DE LA CONSOLIDATION SUR DES INFRASTRUCTURES EXISTANTES THE SILTS FROM THE LOIRE RIVER: MODELLING OF CONSOLIDATION EFFECTS ON EXISTING INFRASTRUCTURE Sébastien

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une

Plus en détail

SOMMAIRE Thématique : Matériaux

SOMMAIRE Thématique : Matériaux SOMMAIRE Thématique : Matériaux Rubrique : Connaissances - Conception... 2 Rubrique : Essais... 7 Rubrique : Matériaux...11 1 SOMMAIRE Rubrique : Connaissances - Conception Connaître les matières plastiques...

Plus en détail

PLAN DE COURS. Automne 2014 MAT145 : Calcul différentiel et intégral (4 crédits)

PLAN DE COURS. Automne 2014 MAT145 : Calcul différentiel et intégral (4 crédits) École de technologie supérieure Service des enseignements généraux Responsable(s) de : Robert Michaud Gilles Picard PLAN DE COURS Automne 2014 MAT145 : Calcul différentiel et intégral (4 crédits) Préalables

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE PIERRARD Virton

Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE PIERRARD Virton Influence d un film viscoélastique ultra-mince sur la réponse d une pointe oscillante : vers un aspect quantitatif du mode semi contact d un microscope à force atomique Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Les mesures à l'inclinomètre

Les mesures à l'inclinomètre NOTES TECHNIQUES Les mesures à l'inclinomètre Gérard BIGOT Secrétaire de la commission de Normalisation sols : reconnaissance et essais (CNSRE) Laboratoire régional des Ponts et Chaussées de l'est parisien

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Le planimètre polaire

Le planimètre polaire Le planimètre polaire Document d accompagnement des transparents. Bruno eischer Introduction Dans mon exposé à La Rochelle, ou au séminaire de l IREM de Besançon, j ai volontairement consacré une longue

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par. École Doctorale d Informatique, Télécommunications et Électronique de Paris THÈSE présentée à TÉLÉCOM PARISTECH pour obtenir le grade de DOCTEUR de TÉLÉCOM PARISTECH Mention Informatique et Réseaux par

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.

Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Problèmes mathématiques de la mécanique/mathematical problems in Mechanics Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Cristinel Mardare Laboratoire

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Nombre de marches Nombre de facons de les monter 3 3 11 144 4 5 12 233 5 8 13 377 6 13 14 610 7 21 15 987 8 34 16 1597 9 55 17 2584 10 89

Nombre de marches Nombre de facons de les monter 3 3 11 144 4 5 12 233 5 8 13 377 6 13 14 610 7 21 15 987 8 34 16 1597 9 55 17 2584 10 89 Soit un escalier à n marches. On note u_n le nombre de façons de monter ces n marches. Par exemple d'après l'énoncé, u_3=3. Pour monter n marches, il faut d'abord monter la première. Soit on la monte seule,

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Simulation du transport de matière par diffusion surfacique à l aide d une approche Level-Set

Simulation du transport de matière par diffusion surfacique à l aide d une approche Level-Set Simulation du transport de matière par diffusion surfacique à l aide d une approce Level-Set J. Brucon 1, D. Pino-Munoz 1, S. Drapier 1, F. Valdivieso 2 Ecole Nationale Supérieure des Mines de Saint-Etienne

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

SIMULATION NUMERIQUE DU FLUX D AIR EN BLOC OPÉRATOIRE

SIMULATION NUMERIQUE DU FLUX D AIR EN BLOC OPÉRATOIRE Maîtrise d ambiance et Qualité de l air SIMULATION NUMERIQUE DU FLUX D AIR EN BLOC OPÉRATOIRE PERTURBATION À L ÉTAT STATIQUE OU DYNAMIQUE Alina SANTA CRUZ École d Ingénieurs de Cherbourg LUSAC «Équipe

Plus en détail

APPAREIL ŒDOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUDE DES SOLS NON SATURÉS

APPAREIL ŒDOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUDE DES SOLS NON SATURÉS PPREIL ŒOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUE ES SOLS NON STURÉS INSTRUMENTE OEOMETER PPRTUS TO STUY UNSTURTE SOILS Bernardo IEO, Juan arlos ULLO, Julián TRISTNHO 1 Universidad de Los ndes, Bogotá.. olombie

Plus en détail

Fernando LOPEZ-CABALLERO

Fernando LOPEZ-CABALLERO Laboratoire de Mécanique des Sols, Structures, Matériaux «Étude de phénomènes de liquéfaction» Modélisation numérique des inclusions rigides comme solution aux problèmes de liquéfaction Fernando LOPEZ-CABALLERO

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

Le Système d Information Routier

Le Système d Information Routier Le Système d Information Routier CONTEXTE DU PROJET : 2004 INSTITUTIONNEL : ACTE II DE LA DECENTRALISATION La loi du 13 août 2004 relative aux libertés et Responsabilités locales a prévu dans le domaine

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique SYMPOSIUM DE GENIE ELECTRIQUE (SGE 14) : EF-EPF-MGE 2014, 8-10 JUILLET 2014, ENS CACHAN, FRANCE Influence de la géométrie du conducteur sur la dans un poste sous enveloppe métallique Nesrine REBZANI 1,2,3,

Plus en détail

Mathématiques et Océanographie

Mathématiques et Océanographie Mathématiques et Océanographie Anne-Laure Dalibard Département de mathématiques et applications École normale supérieure 20 avril 2011 Journées Académiques de l IREM de Nantes Plan Présentation rapide

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

8TRD147: Animation et images par ordinateur

8TRD147: Animation et images par ordinateur 8TRD147: Animation et images par ordinateur Simulation de fourrure Y. Chiricota Département d informatique et de mathématique Université du Québec à Chicoutimi / Certaines des illustrations de ce document

Plus en détail

Guilhem MOLLON. Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 2012-2013 V1.10

Guilhem MOLLON. Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 2012-2013 V1.10 INTRODUCTION A LA MECANIQUE DES MILIEUX CONTINUS PARTIE 2 Guilhem MOLLON Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 212-213 V1.1 Table des matières Table des matières 2 Avertissement

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail