Cours de Physique 2011/2012. LJBM Département de Physique. Classe de 3 e BC

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Physique 2011/2012. LJBM Département de Physique. Classe de 3 e BC"

Transcription

1 Cours de Physique Classe de 3 e BC 2011/2012 LJBM Département de Physique

2 Département de Physique LJBM Document basé sur les travaux de A. Robinet (LRSL) et M. Klosen (LGL) Mise en page et composition: préparé par A. Dondelinger avec pdfl A TEX et KOMA-Script Version Version actuelle du cours disponible sur physique.ljbm.lu

3 0 Table des matières I. Mécanique 1 1. Forces Rappels Notion d équilibre Équilibre d un corps soumis à deux forces Équilibre d un corps soumis à trois forces Exercices Le moment d une force Le levier Équilibre d un levier Définition du moment d une force Méthode de résolution d un problème à moments Exercices Machines simples Poulies Plan incliné Exercices Le travail d une force Le travail au sens physique Définition du travail d une force La règle d or de la mécanique Exercices La puissance d une force Pourquoi la puissance? Définition Exercices Énergie mécanique Notion d énergie Formes d énergie Transferts et transformations d énergie iii

4 Physique 3 e BC 6.4. Conservation de l énergie Exercices II. Électricité Circuits électriques et effets du courant électrique Circuits électriques Les effets de l électricité Électrostatique Charges électriques Types de charges Particules chargées dans la matière Exercices Le courant électrique La nature du courant électrique Sens conventionnel du courant électrique L intensité du courant La mesure de l intensité du courant Analogie électricité-eau La tension électrique La notion de la tension électrique La mesure de la tension électrique Les sources de tension La résistance électrique Description et définition La loi d Ohm Résistance électrique d un fil conducteur Puissance électrique énergie électrique Expérience Exercices Circuits complexes Lois des circuits parallèles Lois des circuits en série Associations de résistances Exercices iv

5 0 Table des matières III. Thermodynamique Température, agitation thermique et chaleur Expérience Observation de Robert Brown Limite inférieure des températures Énergie interne La notion de chaleur Calorimétrie Relation entre l énergie et la température Mélanges et température d équilibre Changement d états États de la matière Vaporisation et condensation Fusion et solidification Changement d état de quelques substances Exercices v

6

7 0 Table des figures 1.1. Représentation graphique d une force Équilibre d un corps soumis à deux forces Ce corps n est pas en équilibre La brique posée sur la table est en équilibre La boule accrochée au ressort est en équilibre Équilibre d un corps soumis à trois forces Résultante R des forces F 1 et F La boule soumise à trois forces est en équilibre Composantes du vecteur F La projection est une grandeur algébrique Décomposition d un vecteur suivant deux directions quelconques Exemples d utilisation pratique de leviers Étude expérimentale de l équilibre d un levier Déplacement du point d application sur la droite d action Définition du bras de levier d une force Forces appliquées à un corps soulevé sans machine Structure d une poulie Forces appliquées à un corps soulevé à l aide d une poulie fixe Forces appliquées à un corps soulevé à l aide d une poulie mobile Exemple d un palan simple Exemples de palans Forces appliquées à un corps sur un plan incliné Le travail dépend de la force et du déplacement Travail d une force d orientation quelconque Calcul de l énergie potentielle de pesanteur d un corps Tournevis testeur Électroscope non chargé (à gauche) et chargé (à droite) Interactions entre objets chargés Modèle simplifié de l atome Répartition des charges dans un conducteur chargé par influence Répartition des charges dans un isolant chargé par influence vii

8 Physique 3 e BC 9.1. Modèle du courant électrique Branchement d un ampèremètre Comparaison des circuits d eau et électrique Séparation des charges Branchement d un voltmètre Circuit électrique contenant un mince fil métallique Trajectoire d un électron dans le réseau métallique Montage expérimental Diagramme U I Géométrie d un fil métallique Rhéostat L agitation thermique des ions métalliques ralentit le passage des électrons Puissance d une lampe Puissance de deux lampes identiques Circuit parallèle contenant deux lampes Circuit série contenant deux lampes Montage en série de deux résistances Montage en parallèle de deux résistances Agitation thermique Mouvement d une particule suspendue dans l eau Métal chaud trempé dans l eau froide Transfert d énergie thermique par chaleur États de la matière et changements d état viii

9 0 Première partie. Mécanique 1

10

11 1 1. Forces 1.1. Rappels Effets d une force Les effets d une force sont répartis en deux catégories : le changement de la nature du mouvement d un corps : effet dynamique ; la déformation d un corps : effet statique. L effet d une force dépend : de son point d application ; de sa droite d action, c est-à-dire sa direction ; de son sens ; de son intensité Représentation d une force par un vecteur On peut réunir toutes ces propriétés en une seule grandeur mathématique, le vecteur ; une force est donc représentée par un vecteur force (figure 1.1). sens point d application F intensité F droite d action corps Figure 1.1.: Représentation graphique d une force 3

12 Physique 3 e BC Notation de la force F La norme du vecteur est égale à l intensité de la force. L intensité du vecteur force F sera notée F. Attention La signification change avec la notation! F : F : vecteur force (intensité, direction et sens) intensité (norme) de la force F Unité de la force F L unité d intensité de force dans le Système international est le newton (N). [ F] = 1 N 1.2. Notion d équilibre En tant qu observateur nous devons choisir un référentiel par rapport auquel nous allons décrire les phénomènes physiques. Notre référentiel de préférence sera la salle de classe, qui est un exemple d un référentiel terrestre. La notion de référentiel sera approfondie en classes de 2 e et de 1 re. Remarque Dans le référentiel choisi, on se donne souvent un repère, dont le rôle est de faciliter l orientation dans le référentiel. Le repère se compose d un point appelé origine (des espaces), et de trois vecteurs i, j et k fixant les directions. Dans beaucoup d applications on choisit un repère orthonormé. Définition 1.1 Un corps est en équilibre si, dans un référentiel terrestre, tous ses points sont au repos ou se déplacent en ligne droite et à vitesse constante. Remarques Nous disons aussi qu il y a équilibre des forces qui s appliquent sur le corps. Cette définition s applique dans tout référentiel galiléen. 4

13 1. Forces Dans la suite, nous allons étudier l équilibre d un corps soumis à 2 ou à 3 forces Équilibre d un corps soumis à deux forces Étude expérimentale Expérience Nous allons appliquer deux forces F 1 et F 2 à un corps très léger de sorte que son poids soit négligeable par rapport aux intensités des forces F 1 et F 2 (figure 1.2). F 1 F2 Figure 1.2.: Équilibre d un corps soumis à deux forces Les forces sont les tensions de deux fils et on mesure leur intensité grâce à deux dynamomètres. De plus, on peut relever sur papier la direction des fils, c est-à-dire la direction des deux forces. On répète plusieurs fois l expérience en changeant la direction et l intensité des forces. Observations Lorsque le corps est en équilibre, les deux forces F 1 et F 2 qui s appliquent sur lui ont : a même ligne d action ; des sens contraires ; des intensités égales Condition d équilibre Ces observations se généralisent dans la condition d équilibre : Si un corps soumis à deux forces F 1 et F 2, les vecteurs-force sont opposés F 1 = F 2 5

14 Physique 3 e BC ou encore : Définition 1.2 F 1 + F 2 = 0 (1.1) La somme vectorielle des deux forces F 1 et F 2 est nulle. Remarque En mathématiques, deux vecteurs opposés n ont pas nécessairement la même ligne d action. En mécanique, cette condition est nécessaire pour avoir l équilibre. Pour s en convaincre, considérons l exemple de la figure 1.3. Les deux forces ont même intensité et des sens contraires, mais n ont pas la même ligne d action ; le corps n est pas en équilibre, il va tourner! F 1 F2 Figure 1.3.: Ce corps n est pas en équilibre Applications La condition d équilibre permet de déterminer une des deux forces connaissant l autre. Voici la procédure à suivre : préciser le corps en équilibre ; identifier toutes les forces qui s appliquent à ce corps ; appliquer la condition d équilibre à ces forces. Les exemples suivants illustrent cette procédure. 6

15 1. Forces Brique sur une table 1 Une brique posée sur une table est en équilibre (figure 1.4). Considérons uniquement les forces qui s appliquent sur la brique : son poids P, vertical et appliqué en G, et la réaction R de la table. G R P Figure 1.4.: La brique posée sur la table est en équilibre. Comme la brique est en équilibre, nous avons : R = P. Les intensités des deux forces sont égales : R = P = m g. Boule accrochée à un ressort Une boule accrochée à un ressort est en équilibre (figure 1.5). Considérons uniquement les forces qui s appliquent sur la boule : son poids P, vertical et appliqué en G, et la tension T du ressort. G T P Figure 1.5.: La boule accrochée au ressort est en équilibre. 7

16 Physique 3 e BC Comme la boule est en équilibre, nous avons : T = P. Les intensités des deux forces sont égales : T = P k x = m g Équilibre d un corps soumis à trois forces Étude expérimentale Expérience Utilisons un corps très léger sur lequel on applique trois forces F 1, F2 et F 3 qui sont les tensions de trois fils (figure 1.6). F 1 F2 O F 3 Figure 1.6.: Équilibre d un corps soumis à trois forces On mesure l intensité des forces grâce à trois dynamomètres. De plus, on peut relever sur papier la direction des fils, c est-à-dire la direction des trois forces. On répète plusieurs fois l expérience en changeant la direction et l intensité des forces. Observations Lorsque le corps est en équilibre, les trois forces F 1, F2 et F 3 qui s appliquent sur lui : sont situées dans le même plan, on dit qu elles sont coplanaires ; se coupent au même point O, on dit qu elles sont concourantes. 8

17 1. Forces Les valeurs des intensités des trois forces ne nous suggèrent pas immédiatement une relation entre les vecteurs F 1, F2 et F 3. Pour trouver une telle relation, nous allons choisir une échelle (par exemple 1 cm pour 0,1 N) et dessiner les vecteurs en leur donnant comme origine le point d intersection O de leurs droites d action (figure 1.7). 1 R F 1 O F 2 F 3 Figure 1.7.: Résultante R des forces F 1 et F 2 L action de la force F 3 doit être équilibrée par une force qui résulte des actions des forces F 1 et F 2. Appelons cette force R, résultante des forces F 1 et F 2. D après la condition d équilibre dans le cas de deux forces (relation 1.1), nous avons : R = F 3 Nous pouvons remarquer que la résultante R est la diagonale d un parallélogramme de côtés F 1 et F 2. Or, ceci est également la somme vectorielle des deux vecteurs F 1 et F 2. Nous pouvons donc écrire : ou encore : R = F 1 + F 2 F 1 + F 2 = F 3 F 1 + F 2 + F 3 = 0, Condition d équilibre Nous pouvons formuler la condition d équilibre : 9

18 Physique 3 e BC Définition 1.3 Si un corps soumis à trois forces F 1, F2 et F 3 est en équilibre : les trois forces sont coplanaires et concourantes ; la somme vectorielle des trois forces est nulle. La deuxième condition s exprime par la relation vectorielle : F 1 + F 2 + F 3 = 0 (1.2) Remarque Cette condition d équilibre peut-être facilement généralisée à un nombre quelconque de forces. La condition d équilibre s écrit alors : Définition 1.4 F 1 + F 2 + F F N = N F i = 0 (1.3) i=1 Exemple : Pendule magnétique Une boule en acier attachée à un fil et attirée par un aimant est en équilibre (figure 1.8). Considérons uniquement les forces qui s appliquent sur la boule : son poids P, vertical et appliqué en G, la tension T du fil et la force magnétique F mag, horizontale et orientée vers l aimant. Comme la boule est en équilibre, nous avons : P + T + F mag = 0. Connaissant le poids de la boule et l angle α, quelles sont les intensités des forces T et F mag? Méthode de résolution d un problème à trois forces Pour résoudre un problème comme celui posé dans l exemple 1.4.2, nous allons systématiquement appliquer la procédure suivante : a) Préciser clairement le corps considéré et pour lequel la condition d équilibre est appliquée. b) Faire un bilan des forces appliquées à ce corps : son poids, la force de réaction si le corps est posé sur un support, la tension si le corps est lié à un fil ou à un ressort, éventuellement une force électrique ou une force magnétique. 10

19 1. Forces 1 α F 3 G F 2 N S F 1 Figure 1.8.: La boule soumise à trois forces est en équilibre c) Exprimer la condition d équilibre (relation 1.2). On peut exploiter cette relation vectorielle de trois manières : 1 re méthode : Utilisation de la relation vectorielle : R = F 1 + F 2 = F 3 qui indique que l une des trois forces appliquées est égale et opposée à la somme géométrique des deux autres. Rappelons que le vecteur R = F 3 est la diagonale du parallélogramme formé par F 1 et F 2. 2 e méthode : Projection de la relation vectorielle sur deux axes perpendiculaires de façon à obtenir des relations algébriques entre les intensités des trois forces. 3 e méthode : Décomposition d une des forces suivant les directions des deux autres. Utiliser ensuite la condition d équilibre pour deux forces sur chacune des directions. Les notions de projection et de décomposition d un vecteur seront présentées dans les deux paragraphes suivants. Il est important de bien maîtriser ces techniques mathématiques Projection d un vecteur On choisit un système d axes perpendiculaires Ox et Oy. La projection du vecteur F sur l axe Ox est obtenue en traçant deux perpendiculaires à cet axe qui passent par les extrémités du vecteur ; la projection F x est le segment de droite sur l axe Ox délimité par les deux perpendiculaires (figure 1.9). 11

20 Physique 3 e BC On procède de la même façon pour déterminer la projection F y du vecteur sur l axe Oy. y M F y M α F H O F x x Figure 1.9.: Composantes du vecteur F Pour calculer les mesures algébriques des projections, on considère le triangle rectangle MHM. Dans ce triangle, l intensité F est l hypoténuse, F x est le côté adjacent et F y le côté opposé à l angle α. Il en suit : et : cos α = F x F F x = F cos α sin α = F y F F y = F sin α, Il est important de noter qu une projection est une grandeur algébrique. Le vecteur F 1 de la figure 1.10 est orienté dans le sens positif de l axe Ox et la projection F 1x est positive. Le vecteur F 2 est par contre orienté dans le sens négatif de l axe Ox et la projection F 2x est négative. La projection d un vecteur perpendiculaire à l axe est nulle. Pour pouvoir utiliser la condition d équilibre (relation 1.2), il faut remarquer que la projection d une somme de vecteurs est égale à la somme des projections sur un axe donné. Nous obtenons ainsi le système de deux équations algébriques : { F1x + F 2x + F 3x = 0 F 1y + F 2y + F 3y = 0 12

21 1. Forces 1 F 2 F 1 F 2,x < 0 F 1,x > 0 x Figure 1.10.: La projection est une grandeur algébrique Remarque Pour simplifier la solution de ce système d équations on choisit un système d axes pour lequel le plus grand nombre de projections s annulent Décomposition d un vecteur suivant des directions quelconques La décomposition d un vecteur F consiste à écrire le vecteur comme une somme de deux autres vecteurs F 1 et F 2 appelés composantes du vecteur : F = F 1 + F 2 La figure 1.11a montre le vecteur F et les directions (1) et (2) suivant lesquelles on veut le décomposer. Sur ces directions on construit le parallélogramme dont F est la diagonale. Les composantes cherchées F 1 et F 2 sont alors les côtés du parallélogramme (figure 1.11b). Pour pouvoir utiliser la condition d équilibre (relation 1.2), il faut décomposer une des forces suivant les directions des deux autres. Par exemple, F1 est décomposé suivant les directions de F 2 et F 3 : F 1 = F 2 + F 3, Chacune de ces composantes doit équilibrer la force dans la direction correspondante. Nous obtenons ainsi le système de deux équations vectorielles : { F 2 + F 2 = 0 F 3 + F 3 = 0 13

22 Physique 3 e BC (1) F (2) F 1 F F2 (a) Directions de la décomposition (b) Composantes de la force F Figure 1.11.: Décomposition d un vecteur suivant deux directions quelconques. Remarque La composante représente l effet de la force suivant cette direction Exercices Voir recueil d exercices. Exercice 1.1 Construire des résultantes et appliquer la condition d équilibre en utilisant la simulation suivante : Exercice 1.2 Décomposer les forces P et T suivant les directions indiquées. L échelle est choisie de sorte que 1 cm correspond à 5 N. P T 14

23 1. Forces Exercice Reprendre le cas de l exemple du paragraphe (pendule magnétique) et déterminer les intensités des forces T et F mag en utilisant les différentes méthodes. Le poids de la boule vaut P = 6,0 N et le fil fait un angle de α = 40 avec la verticale. 15

24

25 2. Le moment d une force Le levier Le levier fut une des premières machines simples qu inventa l homme. De nos jours, on utilise encore des leviers qu on trouve sous des formes très variées : une tige rigide, une planche, un tourne-vis, un tire-bouchon, une brouette, des tenailles, une paire de ciseaux,... La figure 2.1 montre l utilisation d une simple tige rigide pour soulever une charge. 10 kg 10 kg (a) Levier à deux bras (b) Levier à un bras Figure 2.1.: Exemples d utilisation pratique de leviers Tous les leviers ont deux points communs : ce sont des corps solides ; ils sont mobiles autour d un axe. Pour faire fonctionner un levier, on applique une force au levier qui la transmet à un autre corps, par exemple à la charge qu on veut soulever. Lorsque le point d application de la force et le point de contact avec le corps se situent de part et d autre de l axe, on parle d un levier à deux bras (figure 2.1a). Lorsque ces deux points se situent sur le même côté du levier par rapport à l axe ce levier est dit à un bras (figure 2.1b). L utilité du levier est de : réduire l intensité de la force nécessaire pour agir sur un corps ; déplacer le point d application de cette force. Dans le cas des exemples de la figure 2.1, l utilisation du levier permet de réduire la force nécessaire pour soulever la charge. Aussi, le point d application est déplacé à l extrémité droite de la tige. 17

26 Physique 3 e BC 2.2. Équilibre d un levier Nous allons étudier l équilibre d un levier simple. On considère les forces qui agissent sur ce levier et on essaie de formuler une condition d équilibre. Remarques Ici nous ne considérons pas la force avec laquelle le levier agit sur un autre corps mais uniquement la force qui agit sur le levier ; ces deux forces sont égales et opposées (d après le principe de l action et de la réaction). Pour simplifier les figures, la réaction du support n est pas représentée. Faites-le comme exercice! Experience La figure 2.2a montre un levier à deux bras. Pour différentes valeurs de a 1, a 2 et F 1 nous mesurons l intensité F 2 de la force F 2 nécessaire pour que le levier soit en équilibre. Les distances a 1, a 2 sont appelées bras de levier. a 1 a 2 masse axe F 2 a 2 F 2 F 1 dynamomètre a 1 F 1 (a) Levier à deux bras (b) Levier à un bras Figure 2.2.: Étude expérimentale de l équilibre d un levier Les mesures sont réalisées en travaux pratiques et permettent de formuler les conclusions suivantes : Lorsque a 1 et F 1 restent inchangés, F 2 est inversement proportionnel à a 2 : F 2 1 a 2 Lorsque a 2 augmente, l intensité F 2 de la force F 2 diminue. Ceci montre bien l utilité du levier pour réduire l intensité de la force! 18

27 2. Le moment d une force La condition d équilibre ou loi du levier est : F 1 a 1 = F 2 a 2 (2.1) Le produit de l intensité F par la distance a a la même valeur pour les deux forces. On refait la même série de mesures avec le levier à un bras de la figure 2.2b. Les conclusions sont les mêmes, ce n est que le sens de la force F 2 qui change Définition du moment d une force Intéressons-nous à des situations dans lesquelles le levier n est pas en équilibre. Que se passe-t-il par exemple si on augmente F 1 ou a 1 de sorte que F 1 a 1 > F 2 a 2? Le levier se met à tourner dans le sens contraire des aiguilles d une montre! En général, le levier va tourner dans le sens de la force dont le produit F a est le plus élevé. Ce produit caractérise donc l effet de la force sur la rotation du levier et est appelé moment de la force. La notion de moment d une force peut être généralisée au cas d un solide mobile autour d un axe. Nous allons nous limiter à des forces orthogonales à cet axe. Il faut également généraliser la définition du bras de levier. Experience Considérons le disque mobile autour d un axe. Nous allons appliquer les forces F 1 et F 2 de sorte que le disque soit en équilibre. F 2 F 1 F1 F 2 Figure 2.3.: Déplacement du point d application sur la droite d action Observation On constate que le disque reste en équilibre même si on déplace le point d application de, par exemple, la force F 2 sur sa droite d action. L expression de la loi du levier reste valable si a 2 désigne la distance entre l axe de rotation et la droite d action de la force F 2. 19

28 Physique 3 e BC F 1 + a 1 a 2 F 2 Figure 2.4.: Définition du bras de levier d une force Définition 2.1 Le bras de levier a d une force F est la distance de l axe à la ligne d action de F. La figure 2.4 montre le bras de levier d une force orthogonale à l axe de rotation. Le moment d une force caractérise l efficacité de la force dans son action de rotation du solide. Définition 2.2 Le moment d une force F par rapport à un axe qui lui est orthogonal est le produit de l intensité F de la force par son bras de levier : M ( F) = F a L unité S.I. de moment est le newton-mètre (N m) : [M ( F)] = 1 N m Remarques L effet de rotation d une force sur un solide mobile autour d un axe ne dépend pas seulement de son intensité mais aussi de son bras de levier : pour une même intensité la force est d autant plus efficace que sa droite d action est distante de l axe. Le bras de levier d une force dont la droite d action passe par l axe est nul et cette force n a pas d action de rotation. Exercice Étudier les effets de différentes forces sur une porte. En particulier : à quel endroit faut-il pousser la porte pour la fermer avec le moins d effort possible? 20

29 2. Le moment d une force Théorème des moments Les deux forces de la figure 2.4 entraînent le solide dans des rotations de sens opposés. Pour distinguer ces deux cas, nous allons choisir un sens de rotation positif. Généralement, on choisit comme sens positif le sens trigonométrique, c.-à-d. le sens contraire au déplacement des aiguilles d une montre. 2 La force F 1 entraîne le solide dans le sens positif choisi. Nous allons écrire : M + = M ( F 1 ) = F 1 a 1 La force F 2 entraîne le solide dans le sens contraire, donc : M = M ( F 2 ) = F 2 a 2 Le solide est en équilibre lorsque les deux moments sont égaux : M + = M (2.2) Cette expression reste valable même s il y a plusieurs forces qui entraînent le solide dans l un ou l autre sens. Dans ce cas, M + et M doivent être remplacés par la somme des moments des forces qui entraînent le solide respectivement dans le sens positif et dans le sens négatif. La relation (2.2) exprime la condition d équilibre d un solide mobile autour d un axe et est appelé théorème des moments. En général : Théorème des moments Si un solide mobile autour d un axe est en équilibre sous l action de forces, la somme des moments des forces qui entraînent le solide dans un sens est égale à la somme des moments des forces qui l entraînent dans le sens inverse. N M i,+ = i=1 N M j, (2.3) j=1 Remarque On rappelle qu à l équilibre la somme vectorielle des forces est nulle (voir équation (1.3) page 10). En général, pour qu un corps soit en équilibre, il faut donc que deux conditions soient remplies : la somme des forces doit être nulle, pour qu il y ait équilibre de translation ; la somme des moments de force doit être nulle, pour qu il y ait équilibre de rotation. 21

30 Physique 3 e BC 2.4. Méthode de résolution d un problème à moments Pour résoudre un problème faisant intervenir des forces qui agissent sur un solide mobile autour d un axe, nous allons systématiquement appliquer la procédure suivante : a) Préciser clairement le corps considéré et pour lequel les conditions d équilibre sont appliquées. b) Faire un bilan des forces appliquées à ce corps : son poids, la force de réaction si le corps est posé sur un support, la tension si le corps est lié à un fil ou à un ressort, éventuellement une force électrique ou une force magnétique. c) Déterminer l axe de rotation et fixer un sens positif de rotation. d) Exprimer le moment des différentes forces et indiquer si elles entraînent le corps dans le sens positif ou dans le sens négatif. e) Appliquer les relations (1.2) (page 10) et (2.3) (page 21) Exercices Voir recueil d exercices. 22

31 3. Machines simples Une machine simple est un dispositif mécanique qui sert à simplifier l accomplissement d un travail physique, par exemple le levage d une charge. Elle est constituée d éléments simples comme des roues, des cordes, des poulies, des planches, des leviers,... Ces machines font partie des plus importantes inventions de l homme. 3 Nous allons étudier en détail les poulies et le plan incliné. Ces machines simples seront utilisées pour soulever une charge de poids P d une hauteur h. Sans l utilisation de machine, il faut appliquer une force F égale et opposée au poids de la charge (voir figure 3.1). L intérêt d une machine simple est donc de changer une ou plusieurs propriétés de la force à appliquer. m F P h Figure 3.1.: Forces appliquées à un corps soulevé sans machine Poulies Définition 3.1 Une poulie est une roue munie d une rainure qui reçoit une corde, une chaîne ou une courroie. Selon son utilisation, on distingue la poulie fixe et la poulie mobile. 23

32 Physique 3 e BC Figure 3.2.: Structure d une poulie Figure 3.3.: Forces appliquées à un corps soulevé à l aide d une poulie fixe Poulie fixe La façon la plus simple d utiliser une poulie est de la fixer à un support (figure 3.3). On constate que la force F à appliquer à l extrémité de la corde a la même intensité que le poids de la charge : F = P Pour monter la charge d une hauteur h, nous devons déplacer le point d application de la force F d une distance s égale à la hauteur : s = h Conclusion Une poulie fixe sert à changer la direction de la force à appliquer, mais elle ne change pas son intensité! Souvent, il est bien plus pratique de pouvoir tirer vers le bas pour monter une charge. 24

33 3. Machines simples Poulie mobile Une autre façon d utiliser une poulie est de la fixer à la charge (figure 3.4). Une extrémité de la corde est fixée à un support, l autre est tirée verticalement vers le haut. 3 Figure 3.4.: Forces appliquées à un corps soulevé à l aide d une poulie mobile. On constate que l intensité de la force F à appliquer à l extrémité de la corde est égale à la moitié du poids de la charge : F = P 2 (3.1) Pour monter la charge d une hauteur h, nous devons déplacer le point d application de la force F d une distance s égale au double de la hauteur : s = 2 h (3.2) Conclusion Une poulie mobile ne change ni la direction, ni le sens de la force à appliquer, mais elle permet de réduire son intensité à la moitié! Remarque La conclusion ci-dessus n est valable que si le poids de la poulie est négligeable devant le poids de la charge. Si son poids n est pas négligeable, il faut l additionner au poids de la charge. Exercice Utiliser les conditions d équilibre pour déterminer l intensité de la force à appliquer. 25

34 Physique 3 e BC Palan On peut associer une poulie fixe à une poulie mobile pour changer à la fois la direction et l intensité de la force (figure 3.5). Figure 3.5.: Exemple d un palan simple Un tel dispositif est appelé palan. En général, un palan est un dispositif mécanique constitué de deux groupes, l un fixe, l autre mobile, contenant chacun un nombre arbitraire de poulies, et d une corde qui les relie (figure 3.6). Figure 3.6.: Exemples de palans Pour déterminer l intensité de la force à appliquer et le déplacement de son point d application, il suffit de déterminer le nombre N de brins de la corde qui portent la charge. Comme la tension de la corde est partout la même (en négligeant son propre poids), chaque brin porte un N-ième du poids de la charge. Cette même force doit être appliquée à l extrémité de la corde : F = P N (3.3) 26

35 3. Machines simples Lorsque la charge monte d une hauteur h, chacun des N brins de la corde est raccourci de h, c est-à-dire qu il faudra tirer une longueur totale de corde de N h. La force F est donc appliquée sur la distance : s = N h (3.4) Remarque Si le brin de corde sur lequel s applique la force F s enroule autour d une poulie fixe, il ne fait pas partie des brins qui portent la charge! 3.2. Plan incliné 3 Pour monter une charge, on peut également utiliser un plan incliné, par exemple une planche ou une route ascendante. Pour être efficace, le frottement entre le plan et le corps doit être faible, par exemple en utilisant des roues. Dans la suite, nous allons supposer que les forces de frottement sont négligeables. Figure 3.7.: Forces appliquées à un corps sur un plan incliné Pour faire monter le corps d une hauteur h, nous utilisons un plan incliné d une longueur s supérieure à la hauteur (voir figure 3.7, à gauche). En introduisant l angle α entre le plan et l horizontale, nous pouvons écrire : sin α = h s s = h sin α Pour déterminer l intensité de la force F à appliquer, nous allons décomposer le poids du corps suivant les directions parallèle et perpendiculaire au plan (figure 3.7, à droite). En supposant que le corps est déplacé à vitesse constante, nous pouvons appliquer la condition d équilibre : F = P T F = P sin α (3.6) (3.5) On peut ainsi réduire la force en réduisant l inclinaison du plan. Or, une réduction de l inclinaison implique une augmentation du chemin sur lequel la force est appliquée. 27

36 Physique 3 e BC 3.3. Exercices Voir recueil d exercices. 28

37 4. Le travail d une force 4.1. Le travail au sens physique Dans la vie quotidienne, la notion de travail est liée à la sensation d effort physique. La seule application d une force n est cependant pas un travail au sens de la physique. Une force n effectue du travail que lorsque son point d application se déplace. Exemple Un athlète effectue un travail en soulevant une haltère, mais il n en effectue plus lorsqu il la maintient au-dessus de sa tête? 4 En effet, une fois l haltère soulevée, les points d application des forces, appliquées sur l haltère par les mains de l athlète, ne se déplacent plus. Ces forces n effectuent donc plus de travail. La force exercée par les muscles déplace en permanence son point d application (voir fonctionnement du muscle). L athlète se fatigue à cause du travail effectuée par les muscles. Remarque Le travail intellectuel n est pas un travail au sens physique! 4.2. Définition du travail d une force Force et déplacement de même direction À l aide de l exemple suivant, nous allons déterminer une expression mathématique qui va nous permettre de calculer le travail W effectué en fonction de l intensité F de la force et du déplacement d de son point d application. Exemple Monsieur Martin est en train de déménager et doit monter des caisses de même masse du rez-de-chaussée au 1 er étage, 2 e étage,... On notera W 1 le travail effectué pour monter une caisse au 1 er étage. Il s agit de déterminer le travail dans chacun des autres cas de la figure 4.1 en fonction de W 1. 29

38 Physique 3 e BC Figure 4.1.: Le travail dépend de la force et du déplacement Conclusions Si l intensité de la force est la même, comme pour les cas 1, 2 et 3, le travail est proportionnel au déplacement : W d. Si le déplacement est le même, comme pour les cas 1 et 4, le travail est proportionnel à l intensité de la force : W F. Le travail est donc proportionnel au produit F d. On peut donc écrire : W = k (F d) où k est un coefficient de proportionnalité. Le choix de ce coefficient définit l unité du travail ; dans le Système international, k = 1. Définition 4.1 Lorsqu une force constante F, orientée dans la direction et dans le sens du déplacement, est appliquée sur une distance d, elle effectue un travail W : W ( F) = F d L unité du travail est le joule (J) : 1 J = 1 N m, L exemple suivant permet d évaluer l ordre de grandeur de l unité de travail : 1 J est le travail effectué en soulevant de 1 m un corps de poids 1 N, donc de masse 102 g. Ceci correspond à la masse d un bloc carré de chocolat (emballage inclus) d une marque bien connue. 30

39 4. Le travail d une force Force et déplacement de directions différentes Comment évaluer le travail si la force n a pas la même direction que le déplacement? Pour pouvoir répondre à cette question, remarquons d abord qu une force perpendiculaire au déplacement ne travaille pas! Exemple La force avec laquelle une personne porte une valise ne travaille pas. En général, une force n est ni parallèle, ni perpendiculaire à la direction du mouvement. Pour calculer le travail d une telle force F, nous allons la décomposer dans ces deux directions (figure 4.2). F α F N α F T 4 Figure 4.2.: Travail d une force d orientation quelconque La composante normale F N est perpendiculaire au déplacement et ne travaille pas. La composante tangentielle F T est dans la direction du déplacement de sorte que son travail est : W ( F T ) = F T d Le travail de la force F est la somme des travaux de ses composantes : W ( F) = W ( F N ) + W ( F T ) = 0 + F T d où F T peut s exprimer en fonction de α et de F : F T = F cos α. Ainsi, nous pouvons généraliser la définition du travail. Définition 4.2 Lorsqu une force constante F, dont la direction fait un angle α avec la direction du déplacement, est appliquée sur une distance d, elle effectue un travail W : W ( F) = F d cos α 31

40 Physique 3 e BC Remarques Lorsque α = 0, c est-à-dire lorsque la force et le déplacement ont la même direction, alors cos α = 1 et W ( F) = F d. Lorsque α = 90, c est-à-dire lorsque la force est perpendiculaire à la direction du déplacement, alors cos α = 0 et la force ne travaille pas. Lorsque 90 < α < 90, le travail W ( F) > 0 et le corps est accéléré. Lorsque 90 < α < 270, le travail W ( F) < 0 et le corps est décéléré (freiné). Notation Si nous définissons le déplacement par un vecteur d, la définition du travail d une force constante F correspond au produit scalaire des deux vecteurs : W ( F) = F d = F d cos α 4.3. La règle d or de la mécanique Est-ce qu on peut économiser du travail en utilisant une machine simple? On peut en effet réduire l intensité de la force, mais en même temps le déplacement du point d application de la force augmente. Nous allons analyser la question dans un cas simple. Pour soulever d une hauteur h une charge de poids P, on doit effectuer le travail : W = P h Nous allons évaluer le travail effectué lorsqu on utilise une machine simple. En utilisant un palan, le travail effectué est : W = F s = P N N h = P h En utilisant un plan incliné, le travail effectué est : W = F s = P sin α h sin α = P h Dans ces deux cas, les machines réduisent les forces mais conservent le travail. Ce résultat est vrai en général et constitue la règle d or de la mécanique. 32

41 4. Le travail d une force Règle d or de la mécanique Une machine simple permet de réduire la force, mais elle ne modifie pas le travail à effectuer. En d autres mots, une machine simple permet de réduire la force à appliquer sous condition que le chemin de force s allonge. Remarque Ce résultat s applique à des situations où le poids des poulies mobiles et le frottement sont négligeables. En réalité, le travail effectué avec une machine simple est supérieur au travail sans machine Exercices Voir recueil d exercices. 4 33

42

43 5. La puissance d une force 5.1. Pourquoi la puissance? Il est souvent utile de considérer le temps nécessaire pour effectuer un certain travail. Voici deux exemples : Exemple Pour monter une charge au 10 e étage d un bâtiment, un ouvrier met beaucoup plus de temps qu une grue. Nous disons que la grue est plus puissante que l ouvrier, bien que les deux réalisent exactement le même travail. Exemple Une voiture puissante arrive à monter une côte en moins de temps qu une voiture de même masse mais moins puissante. 5 Nous allons définir un nouvelle grandeur appelée puissance qui tient compte à la fois du travail effectué et du temps nécessaire. L exemple suivant va nous permettre de trouver une telle définition. Exemple Trois élèves réalisent des travaux W i différents en des temps t i différents. Comment évaluer la puissance des élèves? Nom W /J t/s Puissance Antoine Jean Marie La puissance est définie comme étant le travail effectué en une seconde ; elle correspond au quotient du travail par le temps. 35

44 Physique 3 e BC 5.2. Définition Définition 5.1 La puissance P d une force est le quotient du travail W effectué par cette force par le temps t nécessaire : P = W t Unité SI L unité de puissance est le watt (W) : 1 W = 1 J/s. La puissance représente le travail que peut effectuer une force par unité de temps. Lorsqu un travail de 1 J est réalisé en 1 s, la puissance est 1 W. Cheval-vapeur La puissance peut être exprimée en chevaux-vapeur. Cette ancienne unité est basée sur l observation suivante : Un cheval peut soulever une charge de 75 kg de 1 m en 1 s. Le travail effectué par le cheval vaut alors W = P h = m g h = 736 J Par conséquent : P = W t = 736 J/s = 736 W = 1 cv Relation entre la puissance et la vitesse d un corps Soit un corps qui se déplace à la vitesse constante v. La force motrice F qui maintient ce mouvement (en équilibrant la force de frottement) développe la puissance P = W t = F d cos α t = F v cos α 5.3. Exercices Voir recueil d exercices. 36

45 6. Énergie mécanique 6.1. Notion d énergie La notion d énergie est une notion fondamentale de la physique. Bien que le terme «énergie» soit utilisé couramment, on constate qu il est difficile de définir la notion d énergie. Nous allons considérer d abord l énergie mécanique. En mécanique, l énergie est nécessaire pour effectuer un travail. Lorsqu un système physique effectue un travail, son énergie diminue! Nous allons dire que la diminution de l énergie est égale au travail effectué. Il en suit que l unité de l énergie est la même que celle du travail : le joule (J). L intérêt de la notion d énergie vient du fait que la quantité totale de l énergie est conservée. Exemple Un corps A effectue un travail sur un corps B en le soulevant. Initialement l énergie de A était de 300 J, celle de B 50 J. Si le travail effectué par A est de 100 J, son énergie après le travail sera 200 J et celle de B 150 J. L énergie totale n a pas changée! Lorsqu on effectue un travail sur un système, on augmente son énergie de la même quantité! 6 Remarque Effectuer un travail nécessite l action d un système, alors que l énergie décrit l état du système Formes d énergie Nous allons discuter en détail les formes d énergie mécanique et ne citer qu une partie des autres formes, non mécaniques. 37

46 Physique 3 e BC Énergie cinétique Exemple Un courant d eau fait tourner une roue hydraulique. L eau en mouvement effectue un travail ; elle possède donc de l énergie. Exemple Une voiture en mouvement peut déplacer une autre voiture si elle l heurte ; elle possède donc de l énergie. Nous pouvons conclure de ces exemples que tout corps en mouvement possède de l énergie, appelée énergie cinétique. Pour déterminer la valeur de l énergie cinétique d un corps, nous pouvons calculer le travail nécessaire pour le mettre en mouvement. Ce calcul sera fait en classe de 2 e. On trouve que l énergie cinétique est proportionnelle à la masse du corps et au carré de sa vitesse. Définition 6.1 Un corps de masse m animé d un mouvement de translation de vitesse v par rapport à un certain référentiel possède dans ce référentiel une énergie cinétique : E cin = 1 2 m v 2 L unité de l énergie cinétique est le joule (J), l unité de la vitesse est le mètre par seconde (m1s) Énergie potentielle de pesanteur Exemple Lorsqu on lâche un camion miniature, il va acquérir de l énergie cinétique et pourra par conséquent effectuer un travail. Au point de départ le camion possède donc de l énergie. Exemple Pour produire de l électricité, la centrale de Vianden utilise l énergie de l eau du bassin supérieur au Mont Saint-Nicolas. Nous pouvons conclure de ces exemples que tout corps situé à une certaine altitude possède de l énergie, appelée énergie potentielle de pesanteur. 38

47 6. Énergie mécanique (1) (2) h niveau de référence Figure 6.1.: Calcul de l énergie potentielle de pesanteur d un corps Pour déterminer la valeur de l énergie potentielle de pesanteur d un corps de masse m, nous pouvons calculer le travail nécessaire pour le soulever à une altitude h. La figure 6.1 montre deux chemins différents pour soulever le corps à une altitude h par rapport au niveau de référence. D après la règle d or de la mécanique, le travail est indépendant du chemin suivi. Nous calculons le travail sur le chemin (2) : W = P h = m g h Définition 6.2 Un corps de masse m situé à une altitude h par rapport à un niveau de référence possède une énergie potentielle de pesanteur : E pot = m g h 6 L unité de l énergie potentielle de pesanteur est le joule (J) Énergie potentielle élastique Un arc tendu peut mettre en mouvement une flèche, le ressort en spirale tendu d une voiture miniature peut accélérer la voiture. L arc et le ressort possèdent donc de l énergie. On appelle énergie potentielle élastique l énergie d un corps élastique déformé. 39

48 Physique 3 e BC Formes d énergie non mécaniques L énergie interne ou thermique est liée aux mouvements des atomes ou molécules d un corps. L énergie électrique est liée aux différences de charge électrique entre deux corps. Une pile a de l énergie électrique. L énergie chimique est liée à la structure de la matière, aux liaisons entre atomes ou entre molécules. L énergie nucléaire est liée aux liaisons entre les particules constituant le noyau de l atome. Elle se manifeste par exemple lorsque des noyaux lourds se cassent (fission nucléaire). L énergie rayonnante est liée aux radiations émises par des corps. Un rayonnement peut être par exemple une onde électromagnétique Transferts et transformations d énergie Transferts d énergie L énergie peut passer d un corps à un autre ; nous disons qu il y a un transfert d énergie. Exemple Une boule de billard A est en mouvement ; elle possède de l énergie cinétique. Elle frappe une boule B initialement immobile. La boule A s immobilise tandis que la boule B est mise en mouvement. L énergie cinétique est transférée de la boule A à la boule B Transformations d énergie Lorsque l énergie d un corps passe d une forme à une autre, on parle de transformation d énergie. Exemple Une boule se trouve à 2 m du sol ; elle possède de l énergie potentielle de pesanteur. Lorsqu elle tombe sous l action de son poids, son énergie potentielle de pesanteur se transforme en énergie cinétique. En mécanique, le travail est un mode de transfert d énergie. Un travail accélérateur augmente l énergie cinétique du corps, un travail de levage augmente son énergie potentielle de pesanteur et un travail tenseur son énergie potentielle élastique. 40

49 6. Énergie mécanique 6.4. Conservation de l énergie Comme il fut déjà remarqué, l intérêt de la notion d énergie vient du fait que la quantité totale de l énergie est conservée. Avant de formuler ce principe fondamental, nous devons définir les notions d énergie totale et de système isolé. Définition 6.3 L énergie totale d un corps est la somme de toutes les formes d énergie. L énergie totale d un système physique est la somme des énergies des corps qui constituent le système. Définition 6.4 Un ensemble de corps qui interagissent uniquement entre-eux est appelé système isolé. Ces définitions permettent de formuler le principe de conservation de l énergie. Loi de la conservation d énergie Lors de transferts ou de transformations d énergie, l énergie totale d un système isolé est conservée. On doit remarquer que l énergie totale comprend toutes les formes d énergie, mécaniques et non mécaniques. Exemple Une voiture en mouvement sur une route horizontale freine. À cause des frottements entre les disques et les plaquettes de frein, son énergie cinétique est transformée en énergie thermique. 6 Lorsqu il y a des frottements, de l énergie mécanique est transformée en énergie thermique. Si les frottements sont négligeables, on peut formuler le principe de conservation de l énergie mécanique. Conservation de l énergie mécanique Lors de transferts ou de transformations d énergie mécanique et en absence de frottements, l énergie mécanique totale d un système isolé est conservée. 41

50 Physique 3 e BC 6.5. Exercices Voir recueil d exercices. 42

51 Deuxième partie. Électricité 6 43

52

53 7. Circuits électriques et effets du courant électrique 7.1. Circuits électriques Définition Définition 7.1 Un circuit électrique est constitué d un générateur (pile, accumulateur, dynamo,...) qui est la source de courant et d un ou plusieurs récepteurs (lampe, fer à repasser, radiateur, machine à laver,...). Les bornes de ces appareils sont reliées entre elles par des conducteurs (fils de cuivre, fils d aluminium,...) pour constituer un circuit fermé, c est-à-dire, ininterrompu. Par commodité, on insère un interrupteur qui permet d ouvrir ou de fermer le circuit Schémas et symboles électriques Pour représenter un circuit électrique, on établit des schémas de montage. Dans ces schémas, les composantes du circuit sont représentées par des symboles standardisés. La table 7.1 (voir page suivante) représente les symboles les plus utilisés. Les fils métalliques assurant les connexions entre les différentes composantes sont représentés par des segments droits. Remarque 7 Afin d éviter toute confusion, on adopte les conventions suivantes : le point de connexion de deux fils est représenté par un petit cercle rempli : si deux fils se croisent sans être connectés, un petit arc de cercle indique que l un des fils passe au-dessus de l autre : Toutefois, si des croisements de fils peuvent être évités, on préfère une représentation sans croisements. 45

54 Physique 3 e BC Table 7.1.: Symboles électriques couramment utilisés Symbole Signification source de courant (pile) 1 Einleitung interrupteur (K ) In Versuchen, die die Gesetze der elektrischenfil Stromkreise de connection untersuchen, müssen meist die elektrische Stromstärke und die elektrische Spannung an oder zwischen verschiedenen Punkten des Stromkreises gemessen werden. Die vorliegende Einleitung ist eine Einführunglampe die Elektrizitätslehre, (ampoule L) insbesondere auch in den Umgang mit den entsprechenden Messgeräten, den so genannten Multimetern. résistance (R) 2 Stromkreise 2.1 Einfache Stromkreise condensateur (C) Damit Strom in einem Stromkreis fließen kann, bobine muss dieser (L) mindestens eine Stromquelle und einen Verbraucher (Dipol) enthalten und er muss geschlossen sein. Ein Schalter kann benutzt werden, um den Stromfluss auf einfache Weise ampèremètre zu unterbrechen. A V Stromquelle M Circuit-série et circuit-parallèle 2.2 Reihen- und Parallelschaltung Reihenschaltung Schalter voltmètre moteur Verbraucher Chaque circuit électrique complexe peut être décomposé en un ou plusieurs circuits plus simples. Mehrere On distingue Dipole sind : in Reihe geschaltet, wenn sie hintereinander geschaltet sind: les circuits «série» : les composantes sont branchées en série, c est-à-dire si une des composantes est débranchée, les autres, branchées en série, ne fonctionnent pas non plus ; Parallelschaltung lesschließt circuits man «mehrere parallèle Dipole» : an lesden composantes gleichen Knoten sont des branchées Stromkreises an, surspricht des branches man von différentes du einer circuit. Parallelschaltung. Le débranchement d une composante n influence pas le fonctionnement d une composante branchée en parallèle TG Praktikum 3

55 7. Circuits électriques et effets du courant électrique Exemples Si deux lampes sont branchées en série, et si on dévisse l une des lampes, l autre lampe va aussi s éteindre. Si deux lampes sont branchées en parallèle, et si on dévisse l une des lampes, l autre lampe va continuer à briller Conducteur et isolant dans un circuit électrique Définition 7.2 Un conducteur électrique est un matériau qui permet le passage de l électricité (p.ex. : les métaux, le graphite, l eau salée,...). Un isolant électrique est un matériau qui ne laisse pas passer l électricité (p.ex. : le verre a, de nombreux matériaux plastiques, le caoutchouc, la toile, le bois sec, les gaz b...). a. Il faut noter que le verre devient conducteur à haute température. b. Lors de la foudre, l air devient conducteur. Remarque En branchant des circuits électriques, on doit se rendre compte que un circuit électrique fermé ne fonctionne que si toutes les composantes sont des conducteurs ; pour éviter des circuits non désirés, on doit isoler certaines parties du circuit électrique. Ainsi les fils de connexion sont entourés d une gaine en matière plastique ; souvent des boîtiers en matière plastique garantissent une sécurité accrue Les effets de l électricité Quels sont les effets de l électricité qui circule dans les fils d un circuit? Effet thermique Un bout de papier est placé sur un mince fil métallique, qui est parcouru par un courant électrique. 7 Observation Le papier commence à brûler après quelques instants. 47

56 Physique 3 e BC Conclusion Le courant électrique provoque l échauffement de tous les conducteurs qu il traverse. Ce phénomène est appelé effet Joule. Applications lampe à incandescence (la température du filament s élève à plus de 2500 C et émet alors une lumière vive) ; appareils de chauffage électrique, sèche-cheveux, grille-pains (toaster),... ; fusibles Effet magnétique Une boussole est placée près d un fil métallique parcouru par un courant électrique élevé. Observation L aiguille de la boussole est perturbée. Si l on permute les bornes du générateur, la perturbation s inverse. Remarque Expérience d Œrsted L effet magnétique du courant électrique a été découvert par hasard en 1820 par le physicien danois Hans Christian Œrsted, alors qu il était en train de montrer une expérience sur la relation entre la chaleur et l électricité (effet thermique). Applications électroaimants ; moteurs électriques Effet chimique Deux électrodes (conducteurs solides) sont plongées dans un électrolyte (solution ionique, p. ex. solution de sulfate de cuivre(ii), de chlorure du cuivre(ii),...). Les électrodes sont ensuite branchées à une source de courant. Observation Lorsqu un courant électrique circule dans l électrolyte, des réactions chimiques se produisent au niveau des électrodes en contact avec le liquide : dégagement gazeux, dépôt d un métal...) 48

57 7. Circuits électriques et effets du courant électrique Applications recharge des accumulateurs ; électrolyse Effet lumineux Certains objets émettent de la lumière sans échauffement s ils sont parcourus par un courant électrique. Applications lampe à lueur des tournevis testeurs (figure 7.1) ; diodes luminescentes (LED) utilisées dans les radioréveils, comme lampes témoins, lampes de poche.... pointe métallique isolation manche isolant contact métallique résistance de protection lampe à lueur ressort Figure 7.1.: Tournevis testeur 7 49

58

59 8. Électrostatique 8.1. Charges électriques Expérience Électrisation par frottement On frotte une baguette (verre, ébonite, matière plastique...) contre un chiffon quelconque (tissu de laine, drap, peau de lapin). Observations La baguette est capable d attirer des objets légers (cheveux, confettis,...) ; en approchant la baguette d une lampe à lueur, on observe que cette lampe brille brièvement. Conclusion et interprétation Un corps qui acquiert la propriété d attirer des corps légers s il a été frotté préalablement, a été électrisé par frottement Expérience Électrisation par contact Un pendule électrostatique est constitué d une boule légère recouverte d une couche conductrice (feuille d aluminium) suspendue à une potence par un fil. Observations Lorsqu on approche une baguette électrisée du pendule, la boule est attirée par la baguette. Après contact avec la baguette, la boule est capable d attirer des corps légers. Conclusion et interprétation Un corps qui, après contact avec un autre corps électrique, acquiert la propriété d attirer des corps légers a été électrisé par contact. 8 51

60 Physique 3 e BC Expérience Électrisation par influence Principe de fonctionnement d un électroscope Un électroscope (figure 8.1) est formé essentiellement d un support métallique auquel est fixé une aiguille, aussi métallique. Ce dispositif est posé sur un pied isolant. Souvent, un plateau métallique est fixé en haut, pour permettre des interactions avec des corps chargés. plateau métallique aiguille (conductrice) support (conducteur) pied isolant Figure 8.1.: Électroscope non chargé (à gauche) et chargé (à droite) Expérience On approche une baguette électrisée d un électroscope, sans le toucher. Observation L aiguille de l électroscope s écarte. Si on éloigne la baguette, l aiguille retombe. Interprétation et conclusion L aiguille et le support se repoussent parce qu ils sont électrisés sous l influence de la baguette. Un corps peut être électrisé par influence en rapprochant un autre corps électrique.. 52

61 8. Électrostatique 8.2. Types de charges On électrise une baguette en ébonite par frottement contre une peau de lapin et on l approche successivement d autres baguettes électrisées. Observations La baguette repousse les baguettes en ébonite et attire des baguettes en verre. De même, si on électrise une baguette en verre par frottement contre un morceau de soie et que l on approche successivement d autres baguettes électrisées, on s aperçoit que la baguette attire les baguettes en ébonite et repousse des baguettes en verre. Figure 8.2.: Interactions entre objets chargés Interprétation On peut déduire de ces expériences qu il existe deux sortes de charges électriques. On les appelle charges positives et charges négatives. Loi des interactions électrostatiques Deux corps portant des charges de même signe se repoussent. Deux corps portant des charges de signes contraires s attirent Particules chargées dans la matière Le fait que les corps macroscopiques peuvent se charger électriquement est dû à leur structure microscopique. Un modèle des plus petits constituants de la matière, des atomes, nous permet de comprendre l origine des charges. 8 53

62 Physique 3 e BC Structure de l atome Un atome peut être considéré comme se composant de deux parties (voir figure 8.3) : un noyau, constitué de protons (chargés positivement) et de neutrons (électriquement neutres) ; une enveloppe, appelée nuage électronique 1, constituée d électrons (chargés négativement). nuage électronique m électron noyau proton neutron Figure 8.3.: Modèle simplifié de l atome Remarque Un atome électriquement neutre contient autant d électrons que de protons, la charge des protons et des électrons étant la même en valeur absolue Électrisation au niveau microscopique Électrisation par frottement Lorsqu on corps est électrisé par frottement, il y a lieu un transfert de charges : les électrons les plus faiblement liés sont transférés d un corps à l autre. Ainsi : un corps chargé positivement présente un défaut d électrons ; un corps chargé négativement présente un excès d électrons. Électrisation par contact Lors d une électrisation par contact, il y a aussi un transfert de charges : un corps chargé négativement transmet des électrons au corps initialement neutre ; un corps chargé positivement arrache des électrons au corps initialement neutre. 1. Le nuage électronique est un terme qui décrit la région de l espace, dans laquelle la chance de trouver les électrons est très grande. La mécanique quantique (voir cours de chimie en 2 e C) nous apprend qu il est impossible de connaître exactement les positions et les mouvements des électrons. 54

63 8. Électrostatique Électrisation par influence Un conducteur métallique contient beaucoup d électrons ayant quitté leur nuage électronique et étant libre de se déplacer dans le conducteur. Lorsqu on approche un corps chargé (p. ex. positivement) du conducteur, les électrons libres sont attirés (voir figure 8.4). Il s établit un déséquilibre des charges dans le conducteur : Les électrons sont en excès du côté du corps positif, ils sont en défaut du côté opposé. Il y a donc séparation des charges à l intérieur du conducteur métallique Figure 8.4.: Répartition des charges dans un conducteur chargé par influence. Lorsqu on divise le conducteur métallique, on obtient deux conducteurs chargés, qui portent des charges égales, mais de signe opposé. Dès qu on éloigne le corps chargé, les électrons se répartissent de nouveau de façon uniforme dans le conducteur. Dans un isolant, les charges électrons ne sont pas libres : ils ne peuvent donc pas se déplacer. Toutefois, lorsqu on approche un corps chargé (positivement) d un isolant, les nuages électroniques des atomes vont se déformer un peu : les électrons ont tendance à se situer du côté duquel on approche la charge (voir figure 8.5) Figure 8.5.: Répartition des charges dans un isolant chargé par influence. Observation La région plus près du corps chargé sera chargée négativement, le côté opposé sera chargé positivement. 8 55

64 Physique 3 e BC Cette observation permet d expliquer pourquoi des petits bouts de papier sont attirés par un corps chargé. Dès qu on éloigne le corps chargé, les nuages électroniques des atomes reviennent dans leur état initial Exercices Exercice 8.1 Deux plaques métalliques neutres et isolées, placées au voisinage d un corps chargé, s électrisent dès qu on les sépare. Explique ce phénomène sachant qu il ne peut s agir d un transfert de charge du corps chargé vers les plaques. Exercice 8.2 Lorsqu on approche deux feuilles transparentes chargées négativement l une de l autre, elles se repoussent mutuellement. Que se passe-t-il si tu tiens ta main entre les deux feuilles? Justifie ta prévision et vérifie par l expérience. Exercice 8.3 Quelle est la répartition des charges dans le conducteur indiqué sur la figure? Exercice 8.4 Place une balle de ping-pong suspendue à un fil entre deux plaques métalliques verticales, l une chargée positivement, l autre négativement. Mets la balle en contact avec l une des plaques : elle se met à osciller entre les deux plaques. Le mouvement, rapide au début, ralentit et s arrête bientôt. Explique ces observations. 56

65 9. Le courant électrique 9.1. La nature du courant électrique Les électrons libres du métal se déplacent à travers les fils de connexion du pôle négatif vers le pôle positif. Cette migration d électrons libres constitue le courant électrique. Entre les deux bornes d une pile existe continuellement une différence de densité des électrons libres. La borne négative possède un excès d électrons tandis que la borne positive présente un défaut d électrons. Si un circuit électrique est relié à la pile, les électrons libres du circuit sont attirés par la borne positive et repoussés par la borne négative de la pile. Ils circulent de la borne négative vers la borne positive à l extérieur du générateur. Ce mouvement d électrons constitue le courant électrique. À l intérieur de la pile, les électrons sont propulsés du pôle positif vers le pôle négatif. Sur la figure 9.1, les boules bleues symbolisent les électrons libres se déplaçant dans les fils de connexion. Les électrons se déplacent très lentement dans les fils de connexion (souvent quelques fractions de millimètre par seconde). Figure 9.1.: Modèle du courant électrique. 57 9

66 Physique 3 e BC 9.2. Sens conventionnel du courant électrique Les savants de l époque ignoraient la nature du courant électrique. Or, les effets magnétiques et chimiques s inversent lorsqu on permute les bornes du générateur. Ils ont donc été amenés à fixer arbitrairement le sens du courant : de la borne positive vers la borne négative, c est-à-dire dans le sens inverse du déplacement des électrons L intensité du courant Définition 9.1 On appelle intensité I du courant électrique la quantité de charge électrique q qui traverse la section du conducteur par unité de temps t : I = q t (9.1) L intensité du courant est exprimée en ampères (A). L unité de la quantité de charge est le coulomb (C) : 1 C = 1 A s. Remarque L ampère est une unité de base du système international des mesures (S.I.). Afin d alléger la notation, l intensité des courants faibles est exprimée en milliampères (ma) et en microampères (µa) qui sont des sous-multiples de l ampère : 1 ma = A 1 µa = A 9.4. La mesure de l intensité du courant Les effets de l électricité sont des indicateurs pour l intensité du courant. L instrument de mesure de l intensité du courant électrique est l ampèremètre. Le mode de fonctionnement des ampèremètres analogiques est basé sur l effet magnétique. Pour connaître l intensité du courant électrique traversant un récepteur, l ampèremètre est mis en série avec ce récepteur (voir figure 9.2). En pratique, on n utilisera pas un ampèremètre pour mesurer une intensité de courant, mais un multimètre, qui permet aussi de mesurer d autres grandeurs que l intensité du courant. Aux travaux pratiques, nous apprendrons à manipuler correctement un tel instrument. 58

67 Zum Messen der elektrischen Stromstärke verwendet man ein sogenanntes Amperemeter. Um die elektrische Stromstärke zu messen, muss dieses Messgerät im elektrischen Stromkreis in Reihe geschaltet werden: alle Elektronen, die durch den Stromkreis fließen, müssen auch durch das Messgerät fließen; dieses zählt also gewissermaßen die Ladung der 9. Elektronen, die durch es Le courant électrique hindurchfließen. 7.4 Stromstärke Figure 9.2.: im Branchement unverzweigten d un ampèremètre Stromkreis Die elektrische Stromstärke wird an zwei verschiedenen Stellen eines unverzweigten elektrischen Stromkreises gemessen Analogie électricité-eau Le circuit électrique est souvent comparé à un circuit d eau. La figure 9.3 montre les analogies entre ces deux types de circuits. pompe Auswertung Beide Amperemeter zeigen den gleichen Wert an: Die Stromstärke ist überall im unverzweigten Stromkreis gleich: Erklärung roue An allen hydraulique Stellen eines unverzweigten Stromkreises bewegen Msich in einer Sekunde gleich viele Elektronen durch den Leiter. (a) Circuit d eau (b) Circuit électrique Figure 9.3.: Comparaison des circuits d eau et électrique

68

69 10. La tension électrique La notion de la tension électrique Les plaques planes et parallèles d un condensateur sont chargées par influence, puis séparées. Elles portent alors des charges opposées (figure 10.1) séparation des charges circuit électrique Figure 10.1.: Séparation des charges On réalise un circuit électrique en reliant les plaques séparées à une lampe à lueur. Observation La lampe à lueur s allume momentanément. Explication Les électrons de la plaque négative traversent la lampe et vont neutraliser les charges sur la plaque positive ; la lampe s allume car un courant électrique la traverse. Lorsque tous les électrons ont quitté la plaque, le courant cesse. Interprétation Le travail nécessaire pour séparer les charges a créé une tension électrique entre les plaques du condensateur. Le condensateur a ainsi «emmagasiné» de l énergie électrique et est alors capable d effectuer le travail électrique nécessaire pour déplacer les électrons et ainsi créer un courant électrique. 61

70 interrupteur (K ) Physique 3 e BC fil de connexion Définition 10.1 lampe (ampoule L) Un travail électrique W est effectué pour déplacer une quantité de charge Q entre deux points d un circuit électrique. La tension électrique U entre ces deux points est égale au travail par unité derésistance charge : (R) A U = W Q La tension est exprimée en volts (V) : 1 V = 1 J/C. V ampèremètre (mesure l intensité du courant) voltmètre (mesure la tension) (10.1) Remarque 3 Mesurer une intensité de courant et une tension électrique Afin d alléger la notation, une tension faible est exprimée en millivolts (mv) et une tension élevée en kilovolts (kv) : 3.1 Règles générales pour le branchement d un multimètre 1 mv = V 1 kv = V Mesurer l intensité de courant La tension électrique est la grandeur physique qui caractérise la différence des états électriques entre deux points du circuit électrique. Elle est tout à fait différente de l intensité du courant. En effet, pour un circuit fermé, le courant traduit la vitesse de circulation des électrons, tandis que la tension indique la force avec laquelle les électrons sont propulsés. Pour un circuit ouvert, l intensité du courant s annule, alors que la tension entre les bornes du générateur reste la même. Pour mesurer l intensité de courant traversant un dipôle, l ampèremètre doit être branché en série avec le dipôle. Le calibre de l appareil doit être choisi de façon à ce que l intensité maximale mesurée ne La mesure de la tension électrique dépasse pas le calibre de l appareil. La tension électrique est mesurée à l aide d un voltmètre Mesurer la tension électrique A Pour connaître la tension électrique aux bornes d un récepteur, le voltmètre est mis en parallèle avec ce récepteur. Pour mesurer une tension électrique aux bornes d un dipôle, le voltmètre doit être branché parallèlement au dipôle. V Il faudra veiller à ce que la tension Figure mesurée 10.2.: Branchement ne dépasse d un voltmètre pas le calibre de l appareil. 4 3C Mesurer des grandeurs électriques 62

71 10. La tension électrique Les sources de tension Il existe plusieurs types de sources de tension. voir document supplémentaire 63

72

73 11. La résistance électrique Description et définition Experience Dans une première étape on branche un mince fil de cuivre en série avec une source de tension et une lampe (figure 11.1). Dans une seconde étape, on remplacera le fil de cuivre par un mince fil de constantan. fil métallique Figure 11.1.: Circuit électrique contenant un mince fil métallique Observation La lampe brille avec moins d éclat après introduction du fil de constantan. Interprétation L effet lumineux étant moins prononcé dans le deuxième cas, on doit supposer que l intensité du courant est plus faible dans le fil de constantan que dans le fil de cuivre. Donc le constantan freine le passage des électrons. Lorsqu on applique une tension aux bornes du fil métallique, les électrons libres se mettent en mouvement, mais ils se heurtent continuellement contre les ions qui se trouvent sur leur chemin (voir figure 11.2). 65

74 Physique 3 e BC Figure 11.2.: Trajectoire d un électron dans le réseau métallique. Lors de chaque choc l électron est freiné, mais la tension appliquée le fait récupérer la vitesse perdue. Ainsi la vitesse de l électron varie continuellement et son mouvement est loin d être uniforme. Les électrons, freinés lors de chaque choc, conservent néanmoins une vitesse moyenne constante, grâce aux impulsions continuelles qu ils reçoivent du générateur. Définition 11.1 On appelle résistance électrique la propriété des matériaux à s opposer au déplacement des électrons. Quantitativement, la résistance R d un récepteur est le rapport entre la tension U appliquée à ses bornes et l intensité I du courant qui le traverse. R = U I La résistance est mesurée en ohms (Ω) : 1 Ω = 1 V A Pour les résistances élevées on utilise le kiloohm avec 1 kω = 1000 Ω Remarques La résistance d un récepteur dépend du matériau qui le compose et de sa température. Un conducteur est un récepteur qui a une résistance (presque) négligeable, un isolant est un récepteur qui a une résistance très élevée (presque infinie). 66

75 11. La résistance électrique La loi d Ohm Expérience But On étudie la variation de la tension U mesurée aux extrémités d une composante électrique en fonction de l intensité I du courant qui la parcourt (figure 11.3). Dispositif expérimental Figure 11.3.: Montage expérimental Figure 11.4.: Diagramme U I Tableau des mesures voir mesures prises pendant les travaux pratiques Observation et conclusion La représentation graphique (figure 11.4 et graphique établi en travaux pratiques) prend l allure d une droite passant par l origine. La tension U aux bornes de la composante électrique et l intensité I du courant qui la parcourt varient proportionnellement : U I La constante de proportionnalité est appelée résistance : U I = R = constante 67

Électricité. 1 Interaction électrique et modèle de l atome

Électricité. 1 Interaction électrique et modèle de l atome 4 e - AL Électricité 1 Électricité 1 Interaction électrique et modèle de l atome 1.1 Électrisation par frottement Expérience 1.1 Une baguette en matière plastique est frottée avec un chiffon de laine.

Plus en détail

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1 3BC - AL Mécanique 1 Mécanique 1 Forces 1.1 Rappel Pour décrire les effets d une force, nous devons préciser toutes ses propriétés : son point d application ; sa droite d action, c est-à-dire sa direction

Plus en détail

CHAPITRE IV : La charge électrique et la loi de Coulomb

CHAPITRE IV : La charge électrique et la loi de Coulomb CHAPITRE IV : La charge électrique et la loi de Coulomb IV.1 IV.1 : La Force électrique Si on frotte vigoureusement deux règles en plastique avec un chiffon, celles-ci se repoussent. On peut le constater

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

3 Charges électriques

3 Charges électriques 3 Charges électriques 3.1 Electrisation par frottement Expérience : Frottons un bâton d ébonite avec un morceau de peau de chat. Approchonsle de petits bouts de papier. On observe que les bouts de papier

Plus en détail

Cours préparatoires de physique

Cours préparatoires de physique Cours préparatoires de physique Août 2012 L. Dreesen LA DYNAMIQUE, LES LOIS DE NEWTON Août 2012 L. Dreesen 1 Table des matières Introduction Force La première loi de Newton La troisième loi de Newton La

Plus en détail

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue.

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue. Chapitre 3 Électricité 3.1 Tension et énergie électriques 3.1.1 Énergie électrique Expérience 3.1 On relie les calottes d une lampe à lueur aux sphères métalliques d une machine de Wimshurst (figure 3.1).

Plus en détail

Cours de Physique 3BC. Yves Reiser

Cours de Physique 3BC. Yves Reiser Cours de Physique 3BC Yves Reiser version du 24 septembre 2015 Table des matières I Mécanique 4 1 Rappels sur les forces................................. 5 1.1 Les effets d une force.............................

Plus en détail

, car la tension dans une corde est partout la même. P F

, car la tension dans une corde est partout la même. P F Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 1 A. Mécanique A1. Machines simples Définition : On appelle machine simple un système mécanique (sans moteur) qui permet de réduire la force pour effectuer

Plus en détail

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts) SNC1D test d électricité Nom : Connaissance et Habiletés de la pensée compréhension (CC) (HP) Communication (Com) Mise en application (MA) 35 % 30 % 15 % 20 % /42 /31 grille /19 Dans tout le test, les

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Quelques généralités et faits historiques sur les

Quelques généralités et faits historiques sur les Quelques généralités et faits historiques sur les phénomènes électriques L. Villain 1 Notion de charge électrique 1.1 Historiques et principaux faits La notion fondamentale à la base de la description

Plus en détail

Défi 1 Qu est-ce que l électricité statique?

Défi 1 Qu est-ce que l électricité statique? Défi 1 Qu estce que l électricité statique? Frotte un ballon de baudruche contre la laine ou tes cheveux et approchele des morceaux de papier. Décris ce que tu constates : Fiche professeur Après avoir

Plus en détail

Forces et Interactions

Forces et Interactions Février 2013 Cours de physique sur les Forces et les Interactions page 1 1 Objectifs Forces et Interactions Le but de ce cours est d'introduire la notion de force et d'étudier la statique, c'est-à-dire

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME 1 DÉFINITION DE L ÉLECTRICITÉ ET DE LA CHARGE ÉLECTRIQUE 2 LES FORCES D ATTRACTION ET DE RÉPULSION L électricité c est l ensemble des phénomènes provoqués par les charges positives et négatives qui existe

Plus en détail

Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique.

Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique. Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique. Relation entre le poids et la masse d un corps Formule : P = m. g Avec p : poids en newton (N) m : masse en kilogramme

Plus en détail

La charge électrique C6. La charge électrique

La charge électrique C6. La charge électrique Fiche ACTIVIT UM 8. / UM 8. / 8. La charge électrique 8. La charge électrique C6 Manuel, p. 74 à 79 Manuel, p. 74 à 79 Synergie UM S8 Corrigé Démonstration La charge par induction. Comment un électroscope

Plus en détail

S 4 F. I) Définitions : 1) En statique et en dynamique :

S 4 F. I) Définitions : 1) En statique et en dynamique : Chapitre 1 : NOTION DE FORCE S 4 F I) Définitions : 1) En statique et en dynamique : Une force, ou action mécanique, peut être définie comme : - toute cause capable de déformer un objet (statique). Exemple

Plus en détail

Usage personnel uniquement. 2008 R. BALDERACCHI Page 1 DICTIONNAIRE DES TERMES UTILISES EN SCIENCES PHYSIQUES AU COLLEGE

Usage personnel uniquement. 2008 R. BALDERACCHI Page 1 DICTIONNAIRE DES TERMES UTILISES EN SCIENCES PHYSIQUES AU COLLEGE Abscisse : dans un graphique, l abscisse est l axe parallèle au bord inférieur de la feuille ou au horizontal au tableau. On représente généralement le temps sur l abscisse. Air : l air est un mélange

Plus en détail

Énergie électrique mise en jeu dans un dipôle

Énergie électrique mise en jeu dans un dipôle Énergie électrique mise en jeu dans un dipôle Exercice106 Une pile de torche de f.é.m. E = 4,5 V de résistance interne r = 1,5 Ω alimente une ampoule dont le filament a une résistance R = 4 Ω dans les

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

CH I Les actions mécaniques.

CH I Les actions mécaniques. I) Les actions mécaniques et les forces : CH I Les actions mécaniques. Pour déplacer un bloc de bois posé sur une table, nous devons fournir un effort physique en tirant ou en poussant. Nous réalisons

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Exercices sur Travail, puissance et l'énergie mécanique

Exercices sur Travail, puissance et l'énergie mécanique F en N LNW Physique II e BC Exercices sur Travail, puissance et l'énergie mécanique 1) Calculer le travail d'une force constante F 3 i 1 j le long d'un trajet rectiligne de A (2,0) vers B (7,4). 2) Le

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

TP n o 1 Électrostatique : mesure d un potentiel et d une capacité

TP n o 1 Électrostatique : mesure d un potentiel et d une capacité TP n o 1 Électrostatique : mesure d un potentiel et d une capacité PREPARATION (à rédiger avant de venir en TP) Il s agit de trouver une méthode pour mesurer la capacité C d un condensateur, en étudiant

Plus en détail

Chapitre 5 : Condensateurs

Chapitre 5 : Condensateurs 2 e B et C 5 Condensateurs 37 Chapitre 5 : Condensateurs 1. Qu est-ce qu un condensateur? a) Expérience de mise en évidence 1. Un électroscope est chargé négativement au moyen d'un bâton d'ébonite frotté

Plus en détail

L électricité et le magnétisme

L électricité et le magnétisme L électricité et le magnétisme Verdicts et diagnostics Verdict CHAPITRE 5 STE Questions 1 à 26, A à D. 1 QU EST-CE QUE L ÉLECTRICITÉ? (p. 140-144) 1. Vanessa constate qu un objet est chargé positivement.

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Module 3 : L électricité

Module 3 : L électricité Sciences 9 e année Nom : Classe : Module 3 : L électricité Partie 1 : Électricité statique et courant électrique (chapitre 7 et début du chapitre 8) 1. L électrostatique a. Les charges et les décharges

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Terminale BEP Construction et topographie

Terminale BEP Construction et topographie Terminale BEP Construction et topographie Epreuve : MATHÉMATIQUES - SCIENCES PHYSIQUES Mathématiques Exercice I, II, III Note :... / 10 Durée : 2 heures Sciences Physiques Exercice IV, V, VI et VII Note

Plus en détail

CHAPITRE II : STATIQUE

CHAPITRE II : STATIQUE CHPITRE II : STTIQUE - Généralités : I. NTIN DE RCE : En mécanique, les forces sont utilisées pour modéliser des actions mécaniques diverses (actions de contact, poids, attraction magnétique, effort ).

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

ST / L électricité statique Nom :

ST / L électricité statique Nom : ST / L électricité statique Nom : 1. Complétez les phrases suivantes à l'aide des mots suivants: contact électrons (x2) frottant induction négatives neutres (x2) positives protons transfert a) L atome

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Partiel PHY121 Mécanique du point

Partiel PHY121 Mécanique du point Université Joseph Fourier Grenoble Licence Partiel PHY2 Mécanique du point Vendredi 23 mars 202 Durée h30 Calculatrices et documents non-autorisés Pour chaque question, 4 réponses sont proposées dont ou

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique Chapitre 6 Électricité 6.1 Champ électrique 6.1.1 Interaction électrique L étude de l électricité peut se ramener à l étude des charges électriques et de leurs interactions. Rappelons que l interaction

Plus en détail

pendule pesant pendule élastique liquide dans un tube en U

pendule pesant pendule élastique liquide dans un tube en U Chapitre 2 Oscillateurs 2.1 Systèmes oscillants 2.1.1 Exemples d oscillateurs Les systèmes oscillants sont d une variété impressionnante et rares sont les domaines de la physique dans lesquels ils ne jouent

Plus en détail

1 Exercices d introduction

1 Exercices d introduction Université Paris 7 - Denis Diderot 2013-2014 TD 4 : accélération, mouvement parabolique, mouvement oscillant 1 Exercices d introduction 1. Evolution de la population mondiale Année (1er janvier) 1500 1600

Plus en détail

Document de révision

Document de révision Document de révision 1. La loi des charges électriques se résume en trois points. Énonce-les. 1-Les charges de signes contraires s attirent 2-Les charges de mêmes signes se repoussent 3-Les objets neutres

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

TP N 1 : ÉLECTRISATION PAR FROTTEMENT

TP N 1 : ÉLECTRISATION PAR FROTTEMENT TP N 1 : ÉLECTRISATION PAR FROTTEMENT Introduction : Certaines substances, lorsqu on les frotte, sont susceptibles de provoquer des phénomènes surprenants : attraction de petits corps légers par une règle

Plus en détail

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS Par Silicium 628 La physique décrit la matière et l espace, leurs propriétés et leurs comportements. Les propriétés mesurables sont nommées GRANDEURS PHYSIQUES.

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Chapitre 3 : Mesure et Incertitude.

Chapitre 3 : Mesure et Incertitude. Chapitre 3 : Mesure et ncertitude. Le scientifique qui étudie un phénomène naturel se doit de faire des mesures. Cependant, lors du traitement de ses résultats ce pose à lui la question de la précision

Plus en détail

Chapitre 3. Dynamique. 3.1 La quantité de mouvement. 3.1.1 Étude expérimentale

Chapitre 3. Dynamique. 3.1 La quantité de mouvement. 3.1.1 Étude expérimentale Chapitre 3 Dynamique Après avoir décrit les mouvements, nous allons nous intéresser aux causes qui les produisent. Notre but est d énoncer les règles qui régissent les mouvements. La dynamique, déjà introduite

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

Effet Joule Livret de l élève

Effet Joule Livret de l élève Dossier de Physique Niveau 4 ème secondaire Effet Joule Livret de l élève Véronique BOUQUELLE Faculté des Sciences Diffusé par Scienceinfuse, Antenne de Formation et de Promotion du secteur Sciences et

Plus en détail

Recueil d exercices pour III e BCF 2014/2015. Exercices de mécanique

Recueil d exercices pour III e BCF 2014/2015. Exercices de mécanique Recueil d exercices pour III e BCF 2014/2015 Exercices de mécanique Loi de Hooke 1. Un cylindre en aluminium de 5 cm de hauteur 5 cm et de 20 mm de diamètre est attaché à un ressort à boudin. Le ressort

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma TP THÈME LUMIÈRES ARTIFICIELLES 1STD2A CHAP.VI. INSTALLATION D ÉCLAIRAGE ÉLECTRIQUE SÉCURISÉE I. RISQUES D UNE ÉLECTROCUTION TP M 02 C PAGE 1 / 4 Courant Effets électriques 0,5 ma Seuil de perception -

Plus en détail

STI2D : Enseignements Technologiques Transversaux

STI2D : Enseignements Technologiques Transversaux 1) Notion de moment d une force : Les effets d une force sur un solide dépendent de la position de la force par rapport au corps. Pour traduire avec précision les effets d une force, il est nécessaire

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

TPE Alternateur. Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez

TPE Alternateur. Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez TPE Alternateur Jordan Offroy Jérémy Brandt Nicolas Crosetti Bastien Dherbomez 1 Thème : Avancées scientifiques et réalisations techniques. Problématique : Comment peut-on transformer de l énergie mécanique

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Chapitre 14 L INGÉNIERIE ÉLECTRIQUE

Chapitre 14 L INGÉNIERIE ÉLECTRIQUE Chapitre 14 L INGÉNIERIE ÉLECTRIQUE Le premier ordinateur programmable pesait 300 tonnes, soit l équivalent de 40 éléphants. Il ne pouvait accomplir que des additions, à un rythme de 5000 à la seconde.

Plus en détail

Chapitre 3 CONDUCTEURS ET ISOLANTS

Chapitre 3 CONDUCTEURS ET ISOLANTS Chapitre 3 CONDUCTEURS ET ISOLANTS Circuit à réaliser Réalisez les circuits ci-dessous, constitué d une lampe (ou une D.E.L. qui est plus sensible que la lampe), une pile et des objets conducteurs ou isolants.

Plus en détail

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ] Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

Modèle d une automobile.

Modèle d une automobile. Modèle d une automobile. On modélise une automobile par deux disques homogènes identiques de masse m de rayon a, de moment d inertie J = (1/) m a par rapport à leurs axes respectifs, de centre C, en contact

Plus en détail

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail

Chapitre II : Propriétés thermiques de la matière

Chapitre II : Propriétés thermiques de la matière II.1. La dilatation thermique Chapitre II : Propriétés thermiques de la matière Lorsqu on chauffe une substance, on provoque l augmentation de l énergie cinétique des atomes et des molécules, ce qui accroît

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

1. La notion de force

1. La notion de force 1. La notion de force livre page 6 & 7 a) introduction Tu as déjà sûrement entendu le terme de force, c est en effet un mot utilisé fréquemment dans le langage commun : on parle de la force publique, de

Plus en détail

Mesure du rendement d une machine à vapeur.

Mesure du rendement d une machine à vapeur. Mesure du rendement d une machine à vapeur. Rappels : Le rendement N est le rapport entre l énergie utile (fournie par la machine ) et l énergie motrice (fournie à la machine). C est aussi le rapport entre

Plus en détail

Enseignement secondaire. 3e classique F - Musique

Enseignement secondaire. 3e classique F - Musique Enseignement secondaire Classe de IIIe Physique 3e classique F - Musique Nombre de leçons: 2.5 Nombre minimal de devoirs: 1 de voir par trimestre Langue véhiculaire: Français I. Objectifs et compétences:

Plus en détail

ÉLECTRICITÉ - - - - -- - - -

ÉLECTRICITÉ - - - - -- - - - ÉLECTRICITÉ I LA FORCE ÉLECTRIQUE Pierre BOUTELOUP 1Deux ballons Frottons deux ballons de baudruche identiques avec une peau de chat et suspendonsles au même point du plafond. On constate qu ils s écartent

Plus en détail

L intensité électrique

L intensité électrique Sommaire de la séquence 7 L intensité électrique t Séance 1 Qu est-ce que l intensité électrique? t Séance 2 L intensité électrique dans des circuits en série 1 Le circuit à étudier 2 Les résultats de

Plus en détail

LE COURANT ELECTRIQUE CONTINU

LE COURANT ELECTRIQUE CONTINU LE COURT ELECTRQUE COTU 1- perçu historique de l'électricité Voir polycop 2- Le courant électrique l existe deux types de courant. EDF. faire tirages feuille exercice et T annexe Montrer effet induction

Plus en détail

Electrotechnique triphasé. Chapitre 11

Electrotechnique triphasé. Chapitre 11 Electrotechnique triphasé Chapitre 11 CADEV n 102 679 Denis Schneider, 2007 Table des matières 11.1 GÉNÉRALITÉS... 2 11.1 1 DÉFINITION TENSIONS TRIPHASÉES... 2 11.1.2 COURANTS TRIPHASÉS... 2 11.1.3 AVANTAGE

Plus en détail

ÉLECTRICITÉ DÉFINITION DÉFINITION NATURE DU COURANT UNITÉS DE MESURE

ÉLECTRICITÉ DÉFINITION DÉFINITION NATURE DU COURANT UNITÉS DE MESURE DÉFINITION NATURE DU COURANT DÉFINITION «Électricité» est un mot provenant du grec ἤλεκτρον, êlektron, signifiant ambre jaune. Les Grecs anciens avaient découvert qu après avoir été frottée, l ambre jaune

Plus en détail

Rappel sur les atomes Protons p + Neutrons n 0. Les objets sont faits de différents matériaux ou de diverses substances.

Rappel sur les atomes Protons p + Neutrons n 0. Les objets sont faits de différents matériaux ou de diverses substances. Module 3 Électricité statique Rappel sur les atomes Protons p + Électrons e- Neutrons n 0 Rappel: Toute matière est faite d atomes et est composée d électrons (e-), de protons (p+) et de neutrons (nº).

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

PHYSIQUE Discipline fondamentale

PHYSIQUE Discipline fondamentale Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Exprime sur ce document, toutes les idées qui te passent par la tête lorsque tu entends le mot force.

Exprime sur ce document, toutes les idées qui te passent par la tête lorsque tu entends le mot force. Chapitre 1 : Rappel sur la notion de force 1) Mes représentations Exprime sur ce document, toutes les idées qui te passent par la tête lorsque tu entends le mot force. Constatation La perception du mot

Plus en détail

Dans le dessin à gauche, rajouter en couleurs (rouge et noir) les fils pour que les deux lampes soient branchées en dérivation.

Dans le dessin à gauche, rajouter en couleurs (rouge et noir) les fils pour que les deux lampes soient branchées en dérivation. NOM : PHYSIQUE CLASSE : Qu estce qu un courtcircuit? Dans le dessin à gauche, rajouter en couleurs (rouge et noir) les fils pour que les deux lampes soient branchées en dérivation. Pourquoi un courtcircuit

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

LES LENTILLES. EXERCICE 3 : Compléter les rayons émergents ou incidents manquants à chacun des schémas suivants F F

LES LENTILLES. EXERCICE 3 : Compléter les rayons émergents ou incidents manquants à chacun des schémas suivants F F LES LENTILLES Compléter les phrases suivantes en ajoutant les mots ou groupes de mots manquants 1 Une lentille convergente a ses bords alors qu une lentille divergente a ses bords 2 Un rayon incident passant.

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Conditionneur pour les capteurs

Conditionneur pour les capteurs Conditionneur pour les capteurs Les éléments de la chaîne de mesure Grandeur Physique Grandeur électrique Capteur Conditionneur lecture/commande/controle Appareil mesure/ capteur par abus de langage Capteur

Plus en détail