Acoustique non-linéaire - fondements. S.Ayrinhac

Dimension: px
Commencer à balayer dès la page:

Download "Acoustique non-linéaire - fondements. S.Ayrinhac simon.ayrinhac@upmc.fr"

Transcription

1 Aousique non-linéire - fondemens S.Ayrinh

2 Aousique fiblemen non-linéire Que se sse--il lorsque l'mliude de ression de l'onde ousique ugmene? Lorsque l surression ' ugmene : En eroln l héorie linéire, enre 6 e 8 db on eu onser que : L iesse riulire m u deien du même ordre de grndeur que l iesse du son : u ~ m/s - dns l'ir : m = m u-delà l'onde n'es lus sinusoïdle érêge - dns l'eu : m = : formion de bulles, iion - lorsque '=.-. m : on sor de l'ousique linéire oir lire Chigne&Kergomrd.6 On enre dns le domine de l'ousique NL lorsque l'mliude de l'onde n'es lus onsidérée omme infiniésimle On elle es ondes des ondes d'mliude finie finie wes.

3 D'où ien l non-linérié? Les riions de ression ousique enrînen des riions de T, or l iesse du son lole déend de T e don de l iesse ousique. Anlogie e l ension de l orde : l ension déend de l'llongemen, or ee longueur hnge e l ibrion de l orde. Un erin nombre de hénonèmes son à rendre en ome : - oneion ou deion - erins ermes du e ordre ne son lus négligebles dns les équions - non linérié de l'équion d'é Conséquenes - l'onde se déforme u ours de l rogion réion d'ondes de ho - le rinie de suerosiion n'es lus lble inerion enre les ondes Nous llons riller dns un s simle : - ondes lnes - non dissiies - dns un fluide rfi non isqueu - ousique fiblemen non-linéire : effes lolemen négligebles mis umulifs M=/ << nombre de Mh ousique. En ousique foremen non-linéire : M ~ équions de Rnkine-Hugonio. - ondiions isenroiques dibiques - s de hos

4 Rels e noions / En résene d'une onde : fluuion uour de l'équilibre d'une grndeur hysique ' iesse riulire, iesse d'enrînemen du fluide - é d'équilibre = leur moyenne de l grndeur fluune m,. kg/m, T K, m/s il n'y s de iesse d'enrinemen fluide u reos - une iesse d'enrînemen non nulle hnge l iesse de rogion de l'onde Aousique linéire : les riions r ror à l'é d'équilibre son fibles on néglige les ermes du e ordre 4

5 5 Z,, S our une onde lne sinusoïdle Z imédne ousique rérisique es l iesse du son Relion ression-densié linéire Nombre de Mh ousique M ondension M Rels e noions /

6 Origines de l non-linérié Equion d'euler FD liqué u fluide non-linéire, Conserion de l qunié de mouemen équion lole : D D dériée riulire grd di erme de oneion grd Equion d'euler D, onde lne, linéire : D, onde lne, non-linéire : Coneion : les ondes délen le milieu u ours de leur rogion Quesion : our quels yes d'ondes n'y --il s de oneion? 6

7 Origines de l non-linérié Equion d'euler FD liqué u fluide non-linéire, Conserion de l qunié de mouemen équion lole : D D dériée riulire grd di erme de oneion grd Equion d'euler D, onde lne, linéire : D, onde lne, non-linéire : Coneion : les ondes délen le milieu u ours de leur rogion Quesion : our quels yes d'ondes n'y --il s de oneion? les ondes éleromgnéiques 7

8 Equion de oninuié rinie de onserion de l msse - L qunié de fluide se onsere, il n'y ni soure réion ni uis disriion de liquide débi mssique renrn S V n ds di di Théorème de Green-Osrogrdsky V V ugmenion du olume dv dv équion lole, D, non-linéire : Equion de oninuié relion inégrle relion lole n ds di surfe S fermée : emrisonne le olume V D, onde lne, linéire : D, onde lne, non-linéire : 8

9 L'équion d'é du fluide - our un fluide ou un gz, l'équion d'é renseigne sur l'é d'équilibre hermodynmique. - Equion d'é : relion enre les grndeurs V ou, e T en nglis equion of se - EoS - L'équion d'é eu s'erimer en fonion de différenes ribles, r eemle l'équion d'é isenroique :,S où S es l'enroie oir nnee - Cee équion d é es inéressne r l iesse du son es isenroique oir nnee - C'es une relion à riori non-linéire Déeloemen limié uour de l'é d'équilibre de l'eos isenroique en fonion de e S onsn uour de ' '' '''...!! ' '' '''...!! Rel : déeloemen de Tylor de l fonion f u oin f ' f '' f ''' f f!!!... 9

10 Ce son des oeffiiens onsns, uniques our hque oule,. Ils déenden don des ondiions eérieures. Ce son des grndeurs hermodynmiques, dériées de l'équion d'é.... 6,,, S S S A B C... 6 C B A En ériure lus ondensée : Eerie : monrons que A es l'inerse de l omressibilié dibique S Inroduisons les oeffiiens A, B e C :

11 Ce son des oeffiiens onsns, uniques our hque oule,. Ils déenden don des ondiions eérieures. Ce son des grndeurs hermodynmiques, dériées de l'équion d'é.... 6,,, S S S A B C... 6 C B A En ériure lus ondensée :, A S S S A, Eerie : monrons que A es l'inerse de l omressibilié dibique S Inroduisons les oeffiiens A, B e C :

12 ... 6 C B A... C B A... C B... A B S linéire non-linéire Equion d'é du fluide , A B A B A B S... A B e Relion enre e

13 Inerréion grhique : - L ene de l fonion n'es ure que ², l iesse u rré lulée à l'équilibre, 'es une relion linéire oir figure i-dessous - C'es l'ér à ee loi linéire qui es resonsble de l non-linérié de l'équion d'é Soure : Ben Co, Aousis of Ulrsound Imging, ge h://www.ul..uk/medhys/sff/eole/bo/bens_leure_noes

14 4 milieu B/A ir.4 eu C 5 éhnol C,5 merure liquide C 7,8 liquide e bulles oeffiien B/A dns quelques fluides,,, S S S C B A - B/A es le rmère de non-linérié elé ussi rmère de Beyer, sns unié - les ermes C e suérieurs son négligebles, S A B rmère de non-linérié B/A

15 Clul de B/A our un gz rfi - Trnsformion isenroique d'un gz rfi : loi de Lle oir nnee où es le oeffiien dibique =C /C V k TV k k V...!! n n n n n n n... 6 On idenifie les oeffiiens A e B A B Aliion à l'ir onsidéré omme un gz rfi - L'ir es omosé de moléules diomiques dizoe N, dioygène O, e don =.4 - Don B/A=.4 A B 5 Formulions équilenes de l loi de Lle les k i son des onsnes Rel : série binomile déeloée en =

16 Viesse du son iesse de rogion de l erurbion r ror u mouemen du fluide B... erme orreif dû à l non-linérié du fluide gz ou liquide A iesse de rogion de l erurbion r ror à un reère fie ' erme sulémenire dû à l oneion d ' ' es l dériée de l osiion de l'onde r ror u ems d Combinons les deu : B ' A On inrodui un noueu oeffiien : ' 6

17 Coeffiien de non-linérié B A oeffiien de non-linérié sns unié - our un gz : =. - our un liquide : 6 - Même si le milieu es linéire B=, n'es s égl à à use du erme de oneion - Aenion à l erminologie : B/A es le rmère de NL lors que be es le oeffiien de NL ' - relons que es l iesse insnnée elle déend du ems. L'onde se roge oujours en moyenne à, mis des orions loles se rogen à ', don lus ie our les rêes que our les reu. - eu rier enre m e m, m es l'mliude de l'onde. Conséquenes : Il y déformion/disorion rogressie de l'onde ridissemen seeening du fron d'onde 7

18 Biln des équions Equion d'euler D, onde lne, linéire D, onde lne, non-linéire Equion de oninuié D, onde lne, linéire : D, onde lne, non-linéire : Equion d'é du fluide linéire non-linéire e B A... L ombinison de es équions nous erme d'éblir l'équion de rogion d'une onde linéire ou non-linéire. 8

19 9 Eblissemen de l'équion de rogion linéire Eerie : rerouer l'équion des ondes linéire à rir de es équions

20 On lique les dériées roisées our fire rire un erme idenique On sousri les équions our obenir l'équion de rogion linéire en. Soluion : Eblissemen de l'équion de rogion linéire Eerie : rerouer l'équion des ondes linéire à rir de es équions

21 Ce sysème dme une soluion si le déerminn es nul, uis on dédui Eblissemen de l'équion de rogion non-linéire On éri les équions uiles. L soluion déillée es donnée dns le lire de Chigne & Kergomrd, ges On donne ii le rinie du lul. On éri un sysème de équions uis on le rééri en fonion de / e /. On uilise l relion our érire On injee d/d dns l remière équion e on mulilie r our rouer l soluion.

22 Equion de rogion non-linéire : iesse de rogion de l erurbion / u mouemen du fluide : iesse riulire ' = + : iesse de rogion de l erurbion / à un reère fie : ' dns le s linéire fibles mliudes - on eu monrer que ' = + où =+B/A - es elé le oeffiien de NL, il onien ermes issus de l NL du milieu e de l oneion - lorsque =, on reroue l'équion de rogion linéire

23 Soluions de l'équion de rogion non-linéire Deu yes de soluion, g ;, f ;, g ', f ' - Quelle forme es l lus filemen essible eérimenlemen? C'es l forme. Il suffi d'éloigner un mirohone de l soure > qui enregisre le signl en fonion du ems. - Quelle es l forme de our une onde sinusoïdle simle? Il suffi de rendre u=usin[omeg-/]. - On onse que l fonion déend d'elle-même : ommen luler? Il fu regrder les inerseions enre l ourbe f=u e g=fu our hque oule,. Lorsqu'il y lusieurs inerseions, el signifie que l ourbe u es muliluée. - L qunié es-elle simle à mesurer? L ression es lus simle à mesurer. Dns le s d'une onde lne, e u son roorionnels.

24 Soluions de l'équion de rogion non-linéire Deu yes de soluion, g ;, f ;, g ', f ' - Quelle forme es l lus filemen essible eérimenlemen? C'es l forme. Il suffi d'éloigner un mirohone de l soure > qui enregisre le signl en fonion du ems. - Quelle es l forme de our une onde sinusoïdle simle? Il suffi de rendre = m sin[-/]. - On onse que l fonion déend d'elle-même : ommen luler? Il fu regrder les inerseions enre l ourbe f= e g=f our hque oule,. Lorsqu'il y lusieurs inerseions, el signifie que l ourbe u es muliluée. - L qunié es-elle simle à mesurer? L ression es lus simle à mesurer. Dns le s d'une onde lne, e son roorionnels. 4 4

25 Formion d'un ho / Soure sinusoïdle de fréquene On dessine les fluuions de iesse riulire en fonion du ems, our lusieurs osiions m m L rêe oyge lus ie que : elle rre rogressiemen le reu qui oyge moins ie que à noer : l'onde se enhe dns l direion des déroissns Ariion d'un ho lorsque l'onde résene un rofil eril à l disne = limie de lidié de nore héorie Disne de formion d'un ho : lul omle dns l'nnee m 5

26 Formion d'un ho / L grndeur deien muliluée en un erin nombre de oins : à un ems donné, il eise lusieurs leurs de l iesse ossibles ; e n'es s hysique! our rouer le rofil "réel" de l'onde, il fu uiliser l loi des ires égles on enre dns l héorie des hos, --d le domine de l'ousique foremen non-linéire dns les hos se roduisen des roessus irréersibles : les roessus ne son lus dibiques on roue un rofil yique en dens de sie swooh L déformion rès grnde de l forme d'onde enrîne une diminuion sulémenire de l'mliude : er-énuion non linéire l dissiion rrondir les ngles u finl on reroue une onde sinusoïdle de lus fible mliude 6

27 Aenion : l'onde se déforme de mnière oosée lorsqu'on l regrde en osiion ou en ems. 7

28 Cs riulier : l'onde en N L'onde en N s'éle u ours du ems, r l rêe oyge lus ridemen que le reu. Dns le s des ondes en den de sie, e hénomène d'élemen es onrrié r l ériodiié du hénomène. Deu eemles : Ce ye d'onde es renonré dns le s du boom sonique en éronuique lorsqu'un ion ein Mh. Un bllon goflble qui éle rodui une onde en N rérisique D.T.Deihl, Amerin Journl of hysis,

29 Soure : hèse X.Job 5.6 Générion d'hrmoniques Le sere de l'onde qui se déforme n'es s quelonque : il y riion d'hrmoniques e diminuion du fondmenl. Ces hrmoniques son les omosnes d'une série de Fourier. fondmenl f hrmoniques f=n*f Il y rnsfer de l'énergie du fondmenl ers les hrmoniques. Or l'énuion ugmene lorsque l fréquene ugmene don l'onde s'énuer lus ie. 9

30 Soure : hèse X.Job 5.6 Vriion de l'mliude serle des omosnes en fonion de l disne normlisée / Déroissne du fondmenl : er-énuion non linéire : disne d'riion d'un ho Ariion e roissne des hrmoniques e

31 Le rinie de suerosiion n'es lus lble : deu ondes qui s'ddiionnen on une ion muuelle l'une sur l'ure. Inerion à ondes : l'inerion NL de ondes de fréquenes f e f rée des ondes u fréquenes somme e différene f f Générion d'hrmoniques os os E E h h f,,,,,, h h h reue : soi l somme de ondes noées e : fonion h soi le résul de l rnsformion fonion f rnsformion linéire : fréq. idenique en sorie rnsformion non-linéire : riion de fréq.nouelles... h h h f

32 Soure : A.Bouyssy hysique our les sienes de l ie. les ondes BELIN 988 ges 8-9 Non-linérié d'un sysème enrée-sorie Signl de sorie, sns e e disorsion Signl d'enrée de fible mliude Signl d'enrée de fore mliude L rnsformion roorionnelle à guhe n'es que l'roimion linéire sur un fible domine de riion de l rnsformion lus générle à droie

33 Anglis Frnçis Bibliogrhie Aousique : rogion dns un fluide D. Royer e E. Dieulesin Tehniques de l'ingénieur AF8 Aousique des insrumens de musique A. Chigne e J. Kergomrd ISBN hire 8. Non-linériés, ges Frédéri Elie, mi 9 : h://fred.elie.free.fr/ousique_nonlineire.hm Cours générlise sur les non-linériés en hysique: h://le.nrs-orlens.fr/~ddwi/enseignemen/ours-nonl.df Sringer hndbook of ousis ISBN : hire 8. Nonliner Aousis in Fluids ges Nonliner Aousis: Theory nd Aliions Mrk F. Hmilon e Did T. Blksok

34 Annee : iesse du son dibique L rogion du son es un roessus dibique ou isenroique, on noe ee iesse S. Cel signifie que l hleur ne se roge s des ries de l'onde où l T es l lus hue ers les ries de l'onde où l T es l lus bsse, u ours de l rogion de l'onde. Newon, qui i suosé un roessus isoherme, s'es romé du feur en luln l iesse du son dns l'ir =8m/s. Lle roué l bonne leur en onsidérn une rogion dibique = m/s. Fleher [] monre que l fréquene f de l'onde se rogen à une iesse doi êre rès inférieure à leur limie f lim our que l rogion uisse êre onsidérée omme dibique es l onduiié hermique : C f V lim Une ure démonsrion, lus omliquée, éé roosée r Coens e l []. [] N.H.Fleher, Amerin Journl of hysis, [] Coens, Beyer, Bllou, JASA

35 5 Annee : disne de formion d'un ho f on eu rouer l disne our lquelle le fron es ride, --d l dériée es infinie : u f ' / ' ' f f Lorsque le dénomineur es égl à, = : ' f - on suose ii << ousique fiblemen non-linéire - es miniml lorsque f' es miml

36 Lorsque l soure f es sinusoïdle f f m sin f ' m os m sin f ' m m m k M k - = signifie formion d'un ho - les équions d'ousique fiblemen non-linéire ne son lus lbles u-delà de - deien fible on oi lus filemen l NL lorsque l'mliude m de l'onde es grnde réisible! le oeffiien de non-linérié es grnd ouf! l fréquene de l'onde es grnde 6

37 Annee : rels de hermodynmique Toue l'informion hermodynmique d'un fluide es onenue dns l fonion rérisique qui eu rendre lusieurs formes : SU,V, FT,V, GT, ou HS, S:enroie, F:énergie libre, G:enhlie libre, H:enhlie. De ee fonion on dédui l'équion d'é V,T [ou V,S], insi que les oeffiiens lorimériques C, C V e les oeffiiens hermoélsiques, T. Eemles d'équions d'é du gz rfi : V, T V, S V nrt V S e / C V our une rnsformion isoherme, dt=, don V=onsne. our une rnsformion dibique e réersible don isenroique, ds= e on reroue l loi de Lle V =onsne. Référene : Thermodynmique C-SI Niols Choime 7

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH Meşer Ion eodor HE VOLAILIY OF HE FINANCIAL MARKE A QUANIAIVE APPROACH Universiy of Orde, Fculy of Economics, imeser@uorde.ro Absrc: During he ls yers, he finncil mrkes hve been subjec o significn flucuions

Plus en détail

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se psi--a-uomiquesysèmes ominoires- J.Kuhler V4.- CIENCE INDUTRIEE POUR INGÉNIEUR CI-8 pge /8. Auomique A. ysèmes ominoires PCII oopp ioonn II Codge de l informion. Opéreurs logiques fondmenux. Fonions logiques.

Plus en détail

Systèmes séquentiels - Fonction Mémoire

Systèmes séquentiels - Fonction Mémoire Cours - ysèes séqueniels - Foncion Méoire Pge /8 ysèes séqueniels - Foncion Méoire ) EPEENTATION PA UN CONOGAMME...3 2) OBTENTION D UN EFFET MEMOIE PA AUTO-MAINTIEN....3 2) CAIE DE CAGE DE DIFFEENTE MEMOIE...

Plus en détail

PROPAGATION DES ONDES SONORES DANS LES FLUIDES. I. L approximation acoustique. L équation de propagation. 1 ) Le cadre de l étude.

PROPAGATION DES ONDES SONORES DANS LES FLUIDES. I. L approximation acoustique. L équation de propagation. 1 ) Le cadre de l étude. ONDE ACOUTIQUE DAN LE FLUIDE () PROPAGATION DE ONDE ONORE DAN LE FLUIDE I L aoimaion aousique L équaion de oagaion ) Le ade de l éude Les effes de la esaneu ou les auses d amoissemen (isosié, ) ne son

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

CAPES EXTERNE. Partie I : Première approche de la constante d Euler

CAPES EXTERNE. Partie I : Première approche de la constante d Euler SESSION 2 CAPES EXTERNE MATHÉMATIQUES Prie I : Preière roche de l cose d Euler Soi N L focio es coiue e décroisse sur ],+ [ e doc sur [,+] Doc our ou réel de [,+], o + D rès l iéglié, o O e dédui que +

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

MATRICES EXERCICES CORRIGES Exercice n 1.

MATRICES EXERCICES CORRIGES Exercice n 1. MATRICES EXERCICES CORRIGES Exercice n. 6 8 4 On considère l mrice A = 0 7 3. 7 0, 8 ) Donner le form de A ) Donner l vleur de chcun des élémens 4, 3, 33 3 3) Ecrire l mrice rnsposée A de A donner son

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Introduction a QuickSort

Introduction a QuickSort M2 - SL lorihmes sur les séquenes en bioinformique ours 6: lorihmes probbilises de reherhe de moifs lessndr rbone Universié Pierre e Mrie urie Pln QuikSor rndomisé lorihmes rndomisés Reherhe ourmnde du

Plus en détail

distance parcourue temps mis pour la parcourir

distance parcourue temps mis pour la parcourir CH IV VITESSE - DEBIT - MASSE VOLUMIQUE - DENSITE RAPPELS DE COURS QUESTION 26 Conversion de m/s en km/h : il fut à l fois onvertir les mètres en kilomètres et les seondes en heures. On : 1 m = 0, 001

Plus en détail

,Y e. , Z e ) est supposée être en C, centre optique de la lentille (point nodal du plan principal objet pour un système optique)

,Y e. , Z e ) est supposée être en C, centre optique de la lentille (point nodal du plan principal objet pour un système optique) PROJECTION DE L'ESPACE TRIDIMENSIONNEL L'espae éel es de naue idimensionnelle, alos que les ouils usuels de fomaion d'une image son bidimensionnels. La pojeion es la fonion de passage du 3D au 2D. L'image

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Effet de la Conduction Pariétale sur les Echanges Thermiques dans une Enceinte Parallélépipédique (Chauffage Local)

Effet de la Conduction Pariétale sur les Echanges Thermiques dans une Enceinte Parallélépipédique (Chauffage Local) Re. nerg. Ren. : Phsiqe nergéiqe (998) 39-44 e de l Condcion Priéle sr les chnges hermiqes dns ne nceine Prlléléiédiqe (Chge ocl) R. Mehdoi, A. ohmi e R. ibi Cenre Uniersiire de Béchr, B.P. 47, 9, Béchr

Plus en détail

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE :

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : Afin de vous noer : - si vous avez oues les bonnes réponses à un QCM, vous avez poin, - si vous avez une erreur par eeple, une réponse que vous n avez pas

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

A. Notion d intégrale double

A. Notion d intégrale double UT ORSAY Mesures Physiques ntégrales doubles Calcul d aires et de volumes Cours du ème semestre A Notion d intégrale double A- omaine quarrable On suose que le lan est muni d un reère orthonormé ( O; i;

Plus en détail

N o 12-001-XIF au catalogue. Techniques d'enquête. Décembre 2004

N o 12-001-XIF au catalogue. Techniques d'enquête. Décembre 2004 N o 12-001-XIF au caalogue Techniques d'enquêe Décembre 2004 Commen obenir d aures renseignemens Toue demande de renseignemens au suje du résen rodui ou au suje de saisiques ou de services connees doi

Plus en détail

Cf. Document : Les différents modes de financement des entreprises

Cf. Document : Les différents modes de financement des entreprises / 7 3 e rtie : Les modes de finncement (à moyen et long terme) Cf. Document : Les différents modes de finncement des entrerises Cf. Fiche conseil.37 : Les modes de finncement des investissements - L utofinncement

Plus en détail

Lycée Pilote Innovant et International. Jaunay-Clan LP2I

Lycée Pilote Innovant et International. Jaunay-Clan LP2I Lyée Piloe Innoan e Inernaional Lyée Piloe Innoan e Inernaional de Jaunay-Clan LPI Effe Dopplons Lyée Piloe Innoan e Inernaional Effe Dopplons Résumé Mesurer une iesse peu s aérer ompliqué dans eraines

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

Stabilisation des systèmes bilinéaires fractionnaires

Stabilisation des systèmes bilinéaires fractionnaires Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Chapitre XI : Gaz réels

Chapitre XI : Gaz réels hite XI : Gz ées hite XI : Gz ées XI- : Intodution : L étude de omessiiité d un gz été fite en emie ieu OYLE (6) et MRIOE (676) et fut ométée u ous du XIX sièe de noueu eéimentteus : REGNL, NER, MG L omessiiité

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

3 Illusrios Iiérire de l bore 5 à l bore 6. PRÉSENTATION Le lc des Breoières de l ville de Joué-lèsTours qui s éed sur 40 hecres. Il offre ue grde vriéé de presios. Poi d que Poubelle LAC DES BRETONNIÈRES

Plus en détail

Transmission des prix le long de la chaîne d approvisionnement en bœuf canadien et incidence de l ESB

Transmission des prix le long de la chaîne d approvisionnement en bœuf canadien et incidence de l ESB N o -60-M u clogue N o 9 ISSN 707-0376 ISBN 978--00-90388-0 Documen de recherche Série de documens de rvil sur l'griculure e le milieu rurl Trnsmission des prix le long de l chîne d pprovisionnemen en

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

- PROBLEME D ELECTRONIQUE 2 -

- PROBLEME D ELECTRONIQUE 2 - - D ELECTRONIQUE - ENONCE : «Quelques alicaions d un circui ulilieur» Inroducion : on donne ci-dessous le schéa oncionnel d un circui ulilieur x () y () E E s () Pour un oéraeur ulilieur sans déau, la

Plus en détail

1-p. 1-p. 1-p. 1-p. On se propose d'utiliser ce canal pour transmettre le contenu d'une source binaire S.

1-p. 1-p. 1-p. 1-p. On se propose d'utiliser ce canal pour transmettre le contenu d'une source binaire S. EXERCICES EXERCICE On considère le canal à uatre entrées et cin sorties: A B C D - - - - A B E C D. Montrer ue ce canal est symétriue. 2. Calculer sa caacité. On se roose d'utiliser ce canal our transmettre

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I Chapire C1 Leçon C1 AMPLIFICATEU LINEAIE INTEGE (A.L.I) Monages Fondamenaux à base d A.L.I I. Uilisaion d un A.L.I en régime non linéaire : 1) Acivié praique : a) A l aide d une maquee fournie ou à parir

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

Calculs d incertitudes

Calculs d incertitudes Cluls d inertitudes Déinitions - Erreur solue - Inertitude solue Soit l vleur doptée près mesure de l grndeur A. On ppelle erreur solue l diérene entre l vleur vrie n et l vleur mesurée : Erreur solue

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Revue des méthodes de mesure de la productivité multifactorielle

Revue des méthodes de mesure de la productivité multifactorielle s De s s u o u e rl su ué b d e e m de n e d u hu omes éonomues des revenus e déenses du uébe es e rl e b ué d h re rd ou Édon 29 «Insu our msson de fournr des nformons ssues u soen f bles e obeves sur

Plus en détail

La détection synchrone : application

La détection synchrone : application La déecion synchrone : applicaion (Anglais: lock-in amplifier) La cigale chane U IN () Mais il y a du brui + beaucoup de brui. U OUT () Quelle es l'ampliude du chan de la cigale? Commen exraire le signal

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Réforme du Régime Belge de Pension Légale Basée sur la Longévité

Réforme du Régime Belge de Pension Légale Basée sur la Longévité éforme du égime Belge de Pension Légle Bsée sur l Longévié Pierre Devolder e Xvier Mréchl 2 ésumé. L méliorion consne de l espérnce de vie endue dns les prochines décennies ne mnquer ps d influencer l

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Exemple de problème sur le frottement. Exemple de problème sur le frottement. Exemple de problème sur le frottement

Exemple de problème sur le frottement. Exemple de problème sur le frottement. Exemple de problème sur le frottement Eemple de poblème u le ottement Vléie (60 Kg) et Ayéd (85 Kg), deu «t» d Hollywood, ont en plein tounge d une cène u ommet de l édiice le plu hut u monde (une oi teminé) à Dubi, Émit Abe Uni, à enion 800m

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

TD : Arbres Binaires de Recherche (A.B.R.)

TD : Arbres Binaires de Recherche (A.B.R.) TD : Arres Binires de eherhe (A.B..) Olivier ynud rynud@isim.fr http ://www.isim.fr/rynud ésumé Dns e Td nous proposons trois exeries. Le premier est onsré à l implémenttion du T.D.A. Ensemles dynmiques

Plus en détail

Aide pour le devoir maison n 1 de Terminale STG GSI (704)

Aide pour le devoir maison n 1 de Terminale STG GSI (704) Aide pour le devoir maison n 1 de Terminale STG GSI (704) Mahémaiques Nombre d'exercices : 4 exercices Noe : L'exercice 4 es une pure copie d'un exercice d'un devoir surveillé de l'an dernier. Cela ne

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

5.1) Déterminer la longueur du préfixe, les adresses réseau et broadcast pour les 7 réseaux. 5.3) Donner les 2 routes statiques.

5.1) Déterminer la longueur du préfixe, les adresses réseau et broadcast pour les 7 réseaux. 5.3) Donner les 2 routes statiques. STS SN IR 1 Sysèmes Informaisés Evaluaion 4 Durée: 1h5 11/2/215 1/4 1) Requêes SQL( 3 ps) 1.1) Afficher le ire e le nom de l'édieur des livres de l'aueur "WERBER". 1.2) Déerminer le prix du livre le moins

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chaitre 5 : Les lentilles et les instruments d otique E. (a) On a n,33, n 2,0cm et R 20 cm. En utilisant l équation 5.2, on obtient,33 0 cm + q,33 20 cm q 8,58 cm Le chat voit le oisson à 8,58

Plus en détail

Analyse de la mortalité infantile

Analyse de la mortalité infantile Cours «Anlyse e modèles démogrphiues» pr A.Avdeev 6/2/22 Universié Pris Pnhéon Sorbonne, Insiu de démogrphie I U P Cours d nlyse démogrphiuepr Alexndre Avdeev, niveu : Mser de démogrphie Chpire 3 Anlyse

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

Boucle à verrouillage de phase

Boucle à verrouillage de phase Chaitre 2 Boucle à verrouillage de hase Introduction La boucle à verrouillage de hase, que l on désignera ar la suite ar l acronyme anglais PLL (Phase Locked Loo), est un disositif largement utilisé dans

Plus en détail

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation Evaluaion sochasique des conras d éargne : agrégaion des raecoires de l acif & mesure de l erreur liée à l agrégaion - Oberlain NEUKAM-EUGUIA (Winer & Associés) - Frédéric PLANCHE (Universié Lyon Laboraoire

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4 LES CONIQUES Tle des mtières COURS ) Différentes pprohes des «oniques». pge ) Eqution fole d une onique.. pge 4 3) Axe fol de Γ. pge 6 4) Sommets de Γ. pge 6 5) Equtions rtésiennes réduites d une prole.

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Ruptures scolaires : du décrocheur au raccrocheur, une question de temps

Ruptures scolaires : du décrocheur au raccrocheur, une question de temps Ruptures scolaires : du décrocheur au raccrocheur, une question de temps I Constats et questionnements II Décrochage, contextualisation III Les dispositifs E2C IV Projet de stage et mission confiée V Méthodologie

Plus en détail

Aspect comptable de l affectation du résultat d une société en non collectif :

Aspect comptable de l affectation du résultat d une société en non collectif : Aspet omptle de l ffettion du résultt d une soiété en non olletif : Pour ppréhender l spet omptle de l ffettion du résultt d une soiété en non olletif, on v proéder à détérminer les éritures omptles de

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail

fnstallationétectrique W

fnstallationétectrique W Sommire du chpire fnsllionéecrique W Vous rouverez dns ce chpire des indicions concernn l'insllion élecrique de vore crvne. Les indicions concernen en priculier:. l sécurié. l'explicion de ermes echniques

Plus en détail

459,6nm 450nm,750nm qui

459,6nm 450nm,750nm qui Exercice : Travaux dirigés de l opique géomérique SVT 03,. T =,533.0-5 4 s, d où la fréquence : = A.N. : = 6,53.0 Hz T c c. 0 = c.t = =. A.N. : 0 459,6nm 0, 4596m f 3. Oui, cee radiaion es visible à l

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

N 1 2 2 L a R e v u e F r a n c o p h o n e d u M a n a g e m e n t d e P r o j e t 3 è m e t r i m e s t r e 2 0 1 3

N 1 2 2 L a R e v u e F r a n c o p h o n e d u M a n a g e m e n t d e P r o j e t 3 è m e t r i m e s t r e 2 0 1 3 La Cible F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T R E U I L C o m

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Automates temporisés

Automates temporisés Automtes temporisés introdution pr un néophyte Prtie I / II Mots et utomtes temporisés Merredi 30 otore 20002 ÉNS Lyon Jérôme DURAND-LOSE jerome.durnd-lose@ens-lyon.fr MC2 LIP - ÉNS Lyon Automtes temporisés

Plus en détail

Caractérisation de cellules solaires

Caractérisation de cellules solaires Caraérisaion de ellules solaires 1. Sruure e prinipe de fonionnemen d une ellule solaire [1] 1.1 Prinipe de fonionnemen Une ellule solaire es un omposan éleronique qui onverie la lumière du soleil en éleriié.

Plus en détail

Lumière et Atomes. Claude Cohen-Tannoudji. Année de la lumière Paris, 8 Janvier 2015

Lumière et Atomes. Claude Cohen-Tannoudji. Année de la lumière Paris, 8 Janvier 2015 Lumière et Atomes Claude Cohen-Tannoudji Année de la lumière Paris, 8 Janvier 2015 Lumière et Matière Quelques questions - Qu est-ce que la lumière et comment est-elle roduite? - Comment interagit-elle

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

- Rappels sur la résolution d une équation de la forme. " oeuil "

- Rappels sur la résolution d une équation de la forme.  oeuil - EE Thème N 6 : TRIGONOETRIE Equation () e que je dois savoir à la fin du thème : - Rappels sur la résolution d une équation de la forme a ou b b a - onnaître et utiliser dans le triangle rectangle des

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000 Enquêe MADDIF : Mulimoif Adpée à l Dynmique des comporemens de Déplcemen en Ile-de-Frnce ANNEXES André de Plm e Cédric Fonn Them Trnspor & Réseux Le 26 ocobre 2000 Lere de commnde N 99MT20 DRAST Minisère

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

ACCESSOIRES OXYGENOTHERAPIE ACCESSOIRES

ACCESSOIRES OXYGENOTHERAPIE ACCESSOIRES OXYGENOTHERAPIE HUMIDIFICATEURS IR médicl dministré u ptient pr voies respirtoires. Il se visse à l sortie d un déitmètre (à ille ou ien précliré) et s utilise vec de l eu stérile. Principles crctéristiques

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail