DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3"

Transcription

1 DUT GEII - DUT 2 Alernance Travaux Praiques d Élecronique Séance n 3 Mercredi Décembre 203 Le bu du TP es de faire une synhèse des connaissances sur les circuis RC. Les compéences suivanes devron êre acquises à l issue de la séance : Compéences héoriques :. Résoluion d une équaion différenielle du premier ordre 2. Calcul du module e de l argumen d une foncion de ransfer du premier ordre Compéences praiques. Mesure d un déphasage 2. Mesure d une consane de emps (τ) 3. Mesure d un emps de réponse à 5% (r 5% ) 4. Déerminaion de la fréquence de coupure (f c ) 5. Tracé d un diagramme de Bode en gain e en phase Signal d aaque carré Le circui éudié es représené à la Figure. Le signal d enrée es carré e varie de 0 à E. On pose pour la suie : τ = R.C e R = 0 kω. R i v e () C v s () Figure Circui RC - Tension d enrée carrée

2 DUT Alernance. Parie héorique Pour la parie héorique, on considèrera que le signal d enrée es consan e de valeur E.. A parir de la loi des mailles, exprimer l équaion différenielle du premier ordre lian v e () e v s () 2. A parir de cee équaion différenielle, donnez l expression emporelle de la ension v s (). (On prendra comme condiion iniiale v s (0) = 0). 3. Tracez alors l évoluion emporelle de la ension de sorie (v s ()). 4. Que vau la ension de sorie à l insan = τ (v s (τ))? à l insan = 3τ (v s (3τ))? à l insan = 5τ (v s (5τ))?. Loi des mailles : v e () = R i()+v s (). Le couran dans le condensaeur es lié à la valeur du condensaeur e à la ension à ses bornes par la relaion suivane :i() = C dvs() d. Sachan que la ension d enrée vau E, l équaion différenielle de la ension de sorie es donc la suivane : E = R C dv s() + v s () d 2. La résoluion d une équaion différenielle se fai en 3 emps : (a) Régime permanen la ension de sorie es alors sabilisée ( dvs() d = 0), il sui : v s () = E (b) Soluion sans second membre la ension de sorie es soluion de l équaion suivane : R C dv s 2 () d + v s2 () = 0 v s2 () es donc de la forme suivane :v s2 () = A e (c) La soluion générale es donc la suivane : R C v s () = v s () + v s2 () = E + A e R C Il fau désormais prendre en compe la condiion iniiale ( = 0) pour déerminer la consane A : v s (0) = 0 = E + A e 0 R C = E + A D où : A = E. L expression de la ension aux bornes du condensaeur es donc la suivane : v s () = 0 = E E e R C = E( e R C ) = E( e τ ) 3. L allure de la ension aux bornes du condensaeur es représenée à la Figure Voici quelques valeurs remarquables : = τ : v s (τ) = E( e τ τ ) = E( e ) = 0,63 E = 3τ : v s (3τ) = E( e 3τ τ ) = E( e 3 ) = 0,95 E = 5τ : v s (5τ) = E( e 5τ τ ) = E( e 5 ) = 0,99 E Yaël Thiaux 2 Année 203/204

3 DUT Alernance v e (), v s () 0, 95.E E 0, 63.E τ 3τ 5τ.2 Parie praique Figure 2 Allure de la ension aux bornes du condensaeur La ension d enrée es carrée, de valeur maximale 2 V e de valeur moyenne V (E = 2V ).. Câblez le circui. 2. Réglez la fréquence de la ension d enrée de façon à visualiser une charge complèe e une décharge complèe à l écran de l oscilloscope. 3. Représenez l allure de la ension de sorie sur papier milliméré. 4. A parir de l allure de la ension de sorie, déerminez par la méhode de vore choix la valeur de la consane de emps du circui (τ). 5. En déduire la valeur du condensaeur? 6. Toujours à parir de l allure de la ension de sorie, déerminez la valeur du emps de réponse (r 5% ). 7. En connaissan l allure de la ension d enrée e de la ension de sorie, déerminez l allure de la ension aux bornes de la résisance. Conclure. 2 Signal d enrée sinusoïdal On s inéresse désormais au circui représené à la Figure 3. La ension d enrée es désormais sinusoïdale : v e () = V e 2sin(ω) () Le circui éan linéaire, la ension de sorie es elle aussi sinusoïdale : 2. Parie héorique. Rappelez l impédance complexe d un condensaeur (Z c ) v s () = V s 2sin(ω ϕ) (2) 2. Exprimez alors la foncion de ransfer (T ) lian la ension de sorie e la ension d enrée : T = V s V e (3) Yaël Thiaux 3 Année 203/204

4 DUT Alernance R i v e () C v s () Figure 3 Circui RC - Tension d enrée sinusoïdale 3. Mere alors cee foncion de ransfer sous la forme suivane : T = 4. Que représenen les consanes K e ω c? Donnez leurs valeurs. K + j. ω ω c (4) 5. Donnez la relaion lian la fréquence de coupure f c e la consane de emps τ du circui. Connaissan la valeur de τ, faire l applicaion numérique. 6. Exprimez le module ( T, appelé égalemen le gain) e l argumen (ϕ, appelé égalemen la phase) de la foncion de ransfer. 7. Que valen le module (en décimal e en db) e l argumen de la foncion de ransfer aux fréquences f c? 0.f c? fc 0? On rappelle que le module s exprime en db de la manière suivane : T db = 20 log 0 ( T ) (5) 8. Représenez alors le diagramme de Bode du gain e de la phase sur papier semi logarihmique.. Impédance complexe d un condensaeur :Z c = j C ω 2. La ension de sorie peu êre exprimée simplemen en uilisan un pon diviseur de ension : V s = V e 3. Foncion de ransfer : Z c Z c + R = V e j C ω j C ω + R = V e + j R C ω T = V s = V e + j R C ω = K + j. ω ω (6) c 4. D où :Gain saique K = e pulsaion de coupure ω c = τ 5. Fréquence de coupure : f c = ω c 2π = 2πτ = 59Hz Yaël Thiaux 4 Année 203/204

5 DUT Alernance 6. Module de la foncion de ransfer : Argumen de la foncion de ransfer : T = + j ω ω = c + j ω ω c = + ( ω ωc ) 2 ϕ(t ) = ϕ( + j ω ω ) = ϕ() ϕ( + j ω ) = 0 aan( ω ) = aan( ω ) c ω c ω c ω c 7. Module e phase pour 3 pulsaions remarquables : ω c ω 0 ω c 0 ω c T,0 2 0, , T db ϕ Diagramme de bode du cicrui RC à la Figure 4. Figure 4 Diagramme de bode du circui RC - f c = 59 Hz 2.2 Parie praique La ension d enrée es sinusoïdale, de valeur crêe à crêe 0 V e de valeur moyenne nulle. On souhaie réaliser le diagramme de Bode du module e de la phase de la foncion de ransfer.. Pour une fréquence allan de 00 Hz à 00 khz, racer le diagramme de Bode du module en db e de la phase. L ensemble des mesures doiven êre regroupées dans un seul e même ableau. 2. A parir de l allure des diagrammes de Bode, déerminer de quel ype de filre il s agi. Jusifiez vore réponse. 3. Toujours en vous basan sur vos mesures, déerminez la fréquence de coupure (f c ) du circui. Pourquoi parle--on de fréquence de coupure à -3 db? Que vau la phase pour cee fréquence? 4. Déerminez une méhode simple pour mesurer rapidemen la fréquence de coupure d un sysème. 5. Dans le cas d une ension d enrée sinusoïdale, quelle serai l allure de la ension de sorie si le sysème éai un inégraeur? Jusifiez vore réponse. Yaël Thiaux 5 Année 203/204

6 DUT Alernance 6. En déduire la gamme de fréquence pour laquelle nore circui réalise la foncion d inégraeur. Yaël Thiaux 6 Année 203/204

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1 PSI - 202/203 TD G - Correcion 7 Réponse indicielle d'un lre 4. Une simple loi des mailles perme d'obenir, avec i L oriené de l'enrée vers la sorie : s() = e() L di L d En remplaçan dans l'équaion diérenielle

Plus en détail

3) Action proportionnelle

3) Action proportionnelle /6 3 4 5 6 e sysème s 3/6 Un sysème dynamique, coninu, linéaire, invarian, monovariable es décri par une équaion différenielle linéaire, à coefficiens consans de la forme suivane : a n n d s d s ds...

Plus en détail

R 1 R 2 U C 1 C 2. V e. V s

R 1 R 2 U C 1 C 2. V e. V s G. Pinson : Physique Appliquée Foncion reard A3-TD/ A3-- Réseau déphaseur Dans le bu de consruire une commande reardée de hyrisors, on uilise un filre du second ordre afin d obenir à parir du réseau monophasé

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

1ère partie : Fonction retard + 5 V. Circuit I

1ère partie : Fonction retard + 5 V. Circuit I G. Pinson - Physique Appliquée Foncion Reard A23-TP / 1 A23- Eude d'un circui monosable Bu : on veu réaliser un disposiif logique généran une impulsion de sorie déclenchée par le fron monan d'une impulsion

Plus en détail

Traitement du signal

Traitement du signal Spé ψ 6- evoir n Traiemen du signal EXTAIT E E3A PSI Quesion 9 Analyse de l ALI enrée ( : v = par consrucion ; enrée ( : i = donc U v = I relaion enrée-sorie : l ALI es bouclé sur son enrée inverseuse

Plus en détail

Cours électronique. Chapitre 2: Dipôles en. Abdenour Lounis 1

Cours électronique. Chapitre 2: Dipôles en. Abdenour Lounis 1 Cours élecronique Chapire : Dipôles en régimes ransioires Abdenour Lounis 1 I- Rappels Relaions Couran-ension pour les dipôle passifs usuels: Resisance : Loi d Ohm U()=R. I() Inducances : U()= L.(dI/d)

Plus en détail

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED Durée 2h 25-10-2016 4PémeP Sc expr1,2 SCIENCES PHYSIQUES 0BDEVOIR DE CONTROLE N 1 PR: RIDHA BEN YAHMED NB : Chaque résula doi êre souligné. La claré, la précision de l explicaion renren en compe dans la

Plus en détail

Deuxième problème : Électrocinétique

Deuxième problème : Électrocinétique MP Physique-chimie. Devoir surveillé DS n - : corrigé Deuxième problème : Élecrocinéique A - égime sinusoïdal permanen xpression de l ampliude complexe de la ension u ( ) : // Z Nous obenons u par division

Plus en détail

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t)

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t) PSI - 03/04 TD G - Correcion 9 Tracé de réponses de lres 3 4 5 TD G - Correcion 5 Éude d'un lre acif. Noons pour commencer que ce monage conien une réroacion négaive. On supposera donc que l'ao foncionne

Plus en détail

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i +

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i + Le dipôle R série (2) Décharge du condensaeur Influence des grandeurs caracérisiques des composans (orrecion) ircui d éude On consiue le circui élecrique suivan. e circui perme de suivre la charge (posiion

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

BREVET DE TECHNICIEN SUPERIEUR SCIENCES PHYSIQUES. L'usage de la calculatrice est autorisé.

BREVET DE TECHNICIEN SUPERIEUR SCIENCES PHYSIQUES. L'usage de la calculatrice est autorisé. Repère : Session : 28 Durée : 4 H Page : /12 Coefficien : 4 BREVE DE ECHNICIEN SUPERIEUR ECHNIQUES PHYSIQUES POUR L INDUSRIE E LE LABORAOIRE SCIENCES PHYSIQUES L'usage de la calcularice es auorisé. Le

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

TP d informatique n 11 Intégration numérique d ODE

TP d informatique n 11 Intégration numérique d ODE Inégraion numérique d ODE PCSI 2018 2019 I Méhode d Euler La modélisaion d un grand nombre de problèmes ayan leur origine en géomérie, mécanique, physique, sciences de l ingénieur, chimie, biologie, économie

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire.

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire. TP COURS ELECTROCINETIQUE RDuperray Lycée FBUISSON PTSI AMPLIFICATEUR OPERATIONNEL: MONTAGES SUIVEURS Dans les monages suivans à AO, il y a une réroacion négaive, l AO foncionne donc en régime linéaire

Plus en détail

Aucune sortie définitive n est autorisée avant 12h

Aucune sortie définitive n est autorisée avant 12h PI 16/17 D 1 -- ysèmes linéaires (don élec PCI) - ALI (01/10/2016 4h) Exrai des Insrucions générales des concours Les candidas son inviés à porer une aenion pariculière à la rédacion : les copies illisibles

Plus en détail

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures

SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Minisère d éducaion e de Formaion D. R. E. Nabeul Lycée Secondaire Roue de la Plage SOLIMAN SCIENCES PHYSIQUES DEVOIR DE CONTRÔLE N 2 Durée : 2 heures Classe : 4 ème Mahs Dae : Novembre - 216 Prof : Jalel

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

A1 ) A2 ) C A3 ) A4 ) f = 8 Vs. 8 Vs. L'ampli OP. Page N 14 AOP_EX1. 8 Vs H(jw) = 20log(Vs/Ve) -20dB. Arg(Vs/Ve) log(Vs/Ve) Arg(Vs/Ve)

A1 ) A2 ) C A3 ) A4 ) f = 8 Vs. 8 Vs. L'ampli OP. Page N 14 AOP_EX1. 8 Vs H(jw) = 20log(Vs/Ve) -20dB. Arg(Vs/Ve) log(Vs/Ve) Arg(Vs/Ve) Exercices sur les srucures de base à Amplis OP A) Filres: Pour les exercices suivans, calculez la foncion de ransfer / = H(j) des monages suivans. Exprimez la foncion de ransfer sous la forme canonique

Plus en détail

Cours 2 AMCT TSI1 TSI2. Le Traitement du signal

Cours 2 AMCT TSI1 TSI2. Le Traitement du signal AMCT Analyser e Modéliser afin de caracériser le Condiionnemen e le pré Traiemen de l'informaion Cours Cycle 6 : Analyser e Modéliser afin de caracériser le Condiionnemen e le pré Traiemen de l'informaion

Plus en détail

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler La méhode d Euler Inrocion : ce documen doi êre lu de façon acive ; il ne fau pas se conener de le lire en disan «Ah ouais, compris...». Il fau réécrire les calculs sur une feuille à par pour bien voir

Plus en détail

La capacité C est de valeur suffisamment élevée pour que la tensionvc à ses bornes soit constante. Montrer que :

La capacité C est de valeur suffisamment élevée pour que la tensionvc à ses bornes soit constante. Montrer que : Exercices hacheurs à accumulaion e alimenaions à découpage I) Hacheurs à accumulaion a) On considère le monage suivan : Dans ce hacheur à accumulaion inducive, L es de valeur suffisammen élevée pour admere

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

Fonctions Electroniques Chapitre 1 Charge et décharge d un condensateur 1-1- Charge et décharge sans valeur initiale Charge de C à travers R

Fonctions Electroniques Chapitre 1 Charge et décharge d un condensateur 1-1- Charge et décharge sans valeur initiale Charge de C à travers R Foncions Elecroniques Chapire 1 Charge e décharge d un condensaeur 1-1- Charge e décharge sans valeur iniiale Soi le circui suivan où V E peu prendre 2 valeurs soi E soi V, le condensaeur C éan iniialemen

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

voie 1 L, r u 1 u 2 voie 2

voie 1 L, r u 1 u 2 voie 2 Exercices sur le dipôle (R,L) Eude expérimenale d une bobine (Asie 2004) 1 - Déerminaion expérimenale de l'inducance L de la bobine On réalise le circui élecrique représené ci-dessous (figure 1) comprenan

Plus en détail

SERIE N 2 CONDENSATEUR & DIPOLE RC

SERIE N 2 CONDENSATEUR & DIPOLE RC uab (V) SERIE N 2 CONDENSATEUR & DIPOLE RC EXERCICE 1 A l aide d un ordinaeur équipé d une care d acquisiion, le monage schémaisé ci-conre perme de suivre l évoluion de la ension u AB aux bornes d un condensaeur

Plus en détail

Partie Génie Électrique

Partie Génie Électrique Concours Naional Commun 2007 Concours Naional Commun 2007 Parie Génie Élecrique L éude qui va suivre es limiée à la chaîne de mise en roaion de la charge (êe de vissage). Où un variaeur de viesse, commande

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Cas d un dipôle RC. Le boîtier de celui- ci est de petite taille : 5 cm de large et 6 mm d'épaisseur. Sa masse est d'environ 30 g.

Cas d un dipôle RC. Le boîtier de celui- ci est de petite taille : 5 cm de large et 6 mm d'épaisseur. Sa masse est d'environ 30 g. Cas d un dipôle I. Un exemple d applicaion d un cricui : le pacemaker. Exrai de l inrocion suje bac Série S Réunion 2004 Nore cœur se conrace plus de 100 000 fois par jour. Il ba 24 h sur 24 pendan oue

Plus en détail

Elève Etude de PF3: Barrière InfraRouge EMETTEUR 1 AUTOMATISME DE PORTAIL

Elève Etude de PF3: Barrière InfraRouge EMETTEUR 1 AUTOMATISME DE PORTAIL Elève Eude de PF3: Barrière InfraRouge EMETTEUR 1 Baccalauréa STI Génie Elecronique Thème de consrucion élecronique AUTOMATISME DE PORTAIL 14H LYCEE A.CAMUS Session 2011 SEQUENCE n 3 PRE-REQUIS Mesures

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique I Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique Inroducion Lors du précéden TP, nous avons éudié une éape de la numérisaion d un : l éape d échanillonnage. Il ne s

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

On considère le montage suivant dans lequel depuis un temps très long, l interrupteur K 1 est ouvert et l interrupteur K 2 est fermé.

On considère le montage suivant dans lequel depuis un temps très long, l interrupteur K 1 est ouvert et l interrupteur K 2 est fermé. XI : HG T HG U ONNSTU On considère le monage suivan dans lequel depuis un emps rès long, l inerrupeur K es ouver e l inerrupeur K es fermé. kω v kω nf K v K V Figure. onner dans ces condiions le schéma

Plus en détail

Devoir de sciences physiques n 6 Classe de TS1 LES CALCULATRICES NE SONT PAS AUTORISEES. Partie Physique Principe d une minuterie (10 points) + C

Devoir de sciences physiques n 6 Classe de TS1 LES CALCULATRICES NE SONT PAS AUTORISEES. Partie Physique Principe d une minuterie (10 points) + C Devoir de sciences physiques n 6 lasse de TS1 LS ALULATIS N SONT PAS AUTOISS Parie Physique Principe d une minuerie (10 poins) 1. ÉTUD THÉOIQU D'UN DIPÔL SOUMIS À UN ÉHLON D TNSION. Le monage du circui

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION REGIME TRANSITOIRE D ORDRE 1

REPONSE DES CIRCUITS A UN ECHELON DE TENSION REGIME TRANSITOIRE D ORDRE 1 CICUITS ELECTIQUES. DUPEAY Lycée F. BUISSON PTSI EPONSE DES CICUITS A UN ECHELON DE TENSION EGIME TANSITOIE D ODE 1 «Une panne d élecricié laisse l aveugle indifféren» Grégoire Lacroix Dans les circuis

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

Devoir de synthèse n 1 CHIMIE

Devoir de synthèse n 1 CHIMIE Devoir de synhèse n 1 Exercice n 1 : (4 poins) CHIMIE On éudie la cinéique de la réacion enre l acide méhanoïque (HCOOH) e le penan-1-ol (CH 3 (CH ) 3 CH OH). Iniialemen, on réalise un mélange conenan

Plus en détail

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2)

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2) LYCÉE LA MARTINIÈRE MONPLAISIR LYON SCIENCES INDUSTRIELLES POUR L INGÉNIEUR CLASSE PRÉPARATOIRE M.P.S.I. ANNÉE 017-018 C : MODÉLISATION DES SYSTÈMES ASSERVIS TD 3 - Modélisaion e comporemen des sysèmes

Plus en détail

-L énoncé est à lire entièrement mais la plupart des questions sont indépendantes Exprimer «u» à l aide du théorème de Millman (0,5pts)

-L énoncé est à lire entièrement mais la plupart des questions sont indépendantes Exprimer «u» à l aide du théorème de Millman (0,5pts) DS Elecronique d'insrumenaion II (SP3 8-9) 1/1 Nom : Prénom : -Deoir sureillé "à rous" (durée imparie = 2h) -La calcularice es auorisée. -L énoncé es à lire enièremen mais la plupar des quesions son indépendanes.

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

Leçon n 12 : Analyse des circuits en régime transitoire

Leçon n 12 : Analyse des circuits en régime transitoire EECTOMAGNETISME Courans variables /3 eçon n : Analyse des circuis en régime ransioire. INTODUCTION Dans le bu de raier les signaux, les réseaux linéaires son souven soumis à des grandeurs élecriques d

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

ALIMENTATION D UNE MACHINE D ANALYSE SANGUINE

ALIMENTATION D UNE MACHINE D ANALYSE SANGUINE (Exrai concours CCP TSI 2008) ALIMENTATION D UNE MACHINE D ANALYSE SANGUINE CHAÎNE D INFORMATION ACQUERIR TRAITER COMMUNIQUER ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE CHAÎNE D ENERGIE ACTION Lycée Jules

Plus en détail

TP n 18 : étude par la simulation d'un moteur à courant continu.

TP n 18 : étude par la simulation d'un moteur à courant continu. TP n 18 : éude par la simulaion d'un moeur à couran coninu. Bu du TP : le bu de ce TP de seconde année es l'éude d'un moeur à couran coninu en uilisan un modèle du logiciel LTSPICE. On alimenera le moeur

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

T(p) = C(p). H(p) fonction de transfert de la chaîne directe en boucle ouverte. F( p) = V s ( p) V e ( p) fonction de transfert en boucle fermée.

T(p) = C(p). H(p) fonction de transfert de la chaîne directe en boucle ouverte. F( p) = V s ( p) V e ( p) fonction de transfert en boucle fermée. G. Pinson - Physique Appliquée Correceurs analogiques A22-P / A22 - Correceurs analogiques ère parie : correcion d'un sysème du er ordre Bu : corriger un sysème du premier ordre (simulé par un réseau RC)

Plus en détail

Collège Sadiki Devoir de contrôle n : 1 Sciences physiques. 4 ème Sc.Exp. Profs : Medyouni-Feki-Hrizi- Abid et Cherchari

Collège Sadiki Devoir de contrôle n : 1 Sciences physiques. 4 ème Sc.Exp. Profs : Medyouni-Feki-Hrizi- Abid et Cherchari Collège Sadiki Devoir de conrôle n : 1 Sciences physiques Dimanche : 09-11-2014 Durée : 2 heures 4 ème Sc.Exp Profs : Medyouni-Feki-Hrizi- Abid e Cherchari Chimie ( 9 ps) On éudie la cinéique de la réacion

Plus en détail

BACCALAUREAT TECHNOLOGIQUE SESSION 1998

BACCALAUREAT TECHNOLOGIQUE SESSION 1998 BACCALAUREA ECHNOLOGIQUE SESSION 1998 SERIE : SCIENCES E ECHNOLOGIES INDUSRIELLES SPECIALIE : GENIE ELECROECHNIQUE EPREUVE : PHYSIQUE APPLIQUEE Durée de l épreuve : 4 heures Coefficien : 7 Ce suje comprend

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Lycée KORBA Labo de Technologie N :... Classe : 1 S... DEVOIR DE SYNTHÈSE N 3 Technologie Durée : 2heures BRIDE À MÂCHOIRE

Lycée KORBA Labo de Technologie N :... Classe : 1 S... DEVOIR DE SYNTHÈSE N 3 Technologie Durée : 2heures BRIDE À MÂCHOIRE Nom & Prénom :... Nom :.................... N :... Classe : 1S.. Lycée KORBA Prénom :................. Labo de N :... Classe : 1 S... DEVOIR DE SYNTHÈSE N 3 Durée : 2heures 2008/2009 1) PRÉSENTATION DU

Plus en détail

Epreuve d électronique analogique N 2

Epreuve d électronique analogique N 2 Nom : Prénom : ECOLE POLYTECHNIQUE UNIVESITAIE DE NICE SOPHIA-ANTIPOLIS Cycle Iniial Polyech Première Année Année scolaire 2008/2009 Epreuve d élecronique analogique N 2 Mardi 24 Mars 2009 Durée : 1h30

Plus en détail

Fonction «Génération de signaux non sinusoïdaux»

Fonction «Génération de signaux non sinusoïdaux» Foncion «Généraion de signaux non sinusoïdaux» Générer un signal élecrique consise à produire des variaions de ension don les caracérisiques de forme, d ampliude e de fréquence son connues. Les signaux

Plus en détail

Fonction «Génération de signaux» 02/03/2009 Page 8

Fonction «Génération de signaux» 02/03/2009 Page 8 4. MONOSTABLE : à pores logiques CMOS Compléer les chronogrammes de la srucure ci-dessous : P1, P2 : Pores logiques ET de echnologie CMOS ; Alimenaion : Vcc = +10V. Seuil de pores : Vcc/2 R = 220 kω C

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

u M D 3 4. Donner deux manières de visualiser une image du courant i dans le moteur à courant continu (faire dans chaque cas un schéma du montage).

u M D 3 4. Donner deux manières de visualiser une image du courant i dans le moteur à courant continu (faire dans chaque cas un schéma du montage). BTS MAI 2 EXERCICES : planche 9 Exercice 1 : Enre la sorie du secondaire d un ransformaeur e l indui d un moeur à couran coninu, on place un pon de diodes (voir schéma). La valeur efficace de la ension

Plus en détail

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de Transformée de Lalace : résoluion d équaions différenielles linéaires Méhode Résoluion de l équaions différenielles du remier ordre : T ds ( ) + s( ) = Ke( ). d Transformaion de l équaion différenielle

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

Notions de cours sur les condensateurs

Notions de cours sur les condensateurs SP académie de Nanes nformaion e nergie Noions de cours sur les condensaeurs Généraliés. 1.1 onsiuion d un condensaeur. n condensaeur es consiué de deux conduceurs méalliques séparés par un isolan d épaisseur

Plus en détail

A14 - Filtrage Analogique

A14 - Filtrage Analogique G. Pinson - Physique Appliquée Filrage Analogique A4-TP / A4 - Filrage Analogique I- Foncion de ransfer en ension du circui à vide Le GBF délivre une ension sinusoïdale de fréquence comprise enre 50 e

Plus en détail

D.M : Résolution des équations différentielles Méthode d'euler

D.M : Résolution des équations différentielles Méthode d'euler D.M : Résoluion des équaions différenielles Méhode d'uler I - La méhode d'uler : les bases mahémaiques - définiion du nombre dérivée en un poin Soi y = f(x la foncion considérée (supposée coninue e dérivable

Plus en détail

Lorsqu une question comporte un résultat numérique à vérifier, ce résultat doit être considéré comme «vrai» si l égalité est vérifiée à ±2% Question 1

Lorsqu une question comporte un résultat numérique à vérifier, ce résultat doit être considéré comme «vrai» si l égalité est vérifiée à ±2% Question 1 Averissemen concernan l ensemble de l épreuve : Lorsqu une quesion compore un résula numérique à vérifier, ce résula doi êre considéré comme «vrai» si l égalié es vérifiée à ±2% LCTRICIT GNRAL SYSTMS LINAIRS

Plus en détail

Grandeurs sinusoïdales

Grandeurs sinusoïdales 9/0/06 I. Les différens ypes de signaux Signal variable Signal périodique Signal alernaif Signal sinusoïdal S Signal variable S Signal périodique S Smax -Smax Signal alernaif S Signal sinusoïdal Pourquoi

Plus en détail

Déplacement de la masse en fonction du temps

Déplacement de la masse en fonction du temps Capacié e inducance Dans cerains ouvrages anciens, l élecricié éai expliquée indirecemen par analogie avec les lois liés à la mécanique. Ces démarches didaciques on disparues pour laisser place à une analyse

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

FEUILLE D'EXERCICES : Condensateur en transitoire.

FEUILLE D'EXERCICES : Condensateur en transitoire. FUILL D'XRCICS : Condensaeur en ransioire. XRCIC.: Charge e décharge d un condensaeur avec une source de couran I0 C µ s Condiion iniiale : Uc = 0.. Donner l équaion de charge d un condensaeur à couran

Plus en détail

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION TP ELECTROMAGNETISME R.DUPERRAY Lycée F.BUISSON PTSI CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION PREMIERE PARTIE : CHAMP ELECTRIQUE D UN CONDENSATEUR OBJECTIFS Comprendre la opologie

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

SAMP Système asservi multi-physique Cours SAMP-1b Réponse temporelle. Cours SAMP-1b TSI1 TSI2. Réponse temporelle

SAMP Système asservi multi-physique Cours SAMP-1b Réponse temporelle. Cours SAMP-1b TSI1 TSI2. Réponse temporelle Cours Cours SAMP-1b TSI1 TSI2 Réponse emporelle X Période Idenificaion des sysèmes 1 2 3 4 5 Cycle 6 : Sysème asservi muli-physique Durée : 4 semaines X Dans le "cours SAMP1 Performances", on s'es inéressé

Plus en détail

RECEPTEUR RADIO (PARTIE N 1)

RECEPTEUR RADIO (PARTIE N 1) T.P-cours de Physique n 4 : LA DEMODULATION D AMPLITUDE ET LE RECEPTEUR RADIO (PARTIE N ) A. La nécessié de la démodulaion. Un récepeur radio peu recevoir par une anenne le signal modulé émis. Pour cela,

Plus en détail

TD n o 11 de Physique Électricité - Filtrage linéaire

TD n o 11 de Physique Électricité - Filtrage linéaire TD n o 11 de Physique Électricité - Filtrage linéaire Applications directes du cours 1 econnaissance de filtres À l aide d un raisonnement asymptotique (sans calcul), déterminer le type de filtre pour

Plus en détail

Travaux dirigés - L3 DIM Traitement Numérique du Signal

Travaux dirigés - L3 DIM Traitement Numérique du Signal Faculé des sciences e d ingénierie. Universié Paul Sabaier Travaux dirigés - L3 DIM Traiemen Numérique du Signal Exercice n o : Soi le signal x)=3 cos00 Π ). Calculez la valeur des échanillons de x) si

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

GELE3132. Théorie des circuits. Chapitre 4: Série de Fourier

GELE3132. Théorie des circuits. Chapitre 4: Série de Fourier GELE33 héorie des circuis Chapire 4: Série de Fourier Conenu du chapire Analyse sinusoïdale Série de Fourier Coefficiens de la série de Fourier Symérie Formes alernaives Specres Inroducion Ce chapire présene

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique c. Après avoir refai un enregisremen pour verses valeurs croissanes de résisance, on observe que la spirale compore de moins en moins de ours : un our correspond visiblemen à une oscillaion e le nombre

Plus en détail

MAT265 Équations différentielles Transformées de Laplace : résumé

MAT265 Équations différentielles Transformées de Laplace : résumé MAT65 Équaions différenielles Transformées de Laplace : résumé 1. La able de ransformées de Laplace : exemples d uilisaion michel.beaudin@esml.ca mars 19 Même si l on se limie aux É.D. à coefficiens consans,

Plus en détail

Régime transitoire des systèmes du 1 er ordre

Régime transitoire des systèmes du 1 er ordre Universié du Sud TOUON VA Insiu Universiaire de Technologie Génie lecrique e Informaique Indusrielle égime ransioire des sysèmes du 1 er ordre 1 Généraliés 2 ommande linéaire des sysèmes du 1 ordre 2.1

Plus en détail

v 6 v c v 4 v 5 A1 v 3

v 6 v c v 4 v 5 A1 v 3 G. Pinson : Physique Appliquée Généraeurs de signaux A25-TD/1 A25-1- Généraeur de signaux On considère le schéma du généraeur de signaux indiqué ci-dessous. Les A.Op son considérés comme parfais. Leur

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. CI-2-3 PRÉVOIR LES RÉPONSES TEMPO- RELLES ET FRÉQUENTIELLES D UN SYS- TÈME DU PREMIER OU SECOND ORDRE Objecifs A l issue de la

Plus en détail

Question no.1: (4 points) AUTOMNE Considérer le système en boucle fermée représenté à la figure ci-dessous :

Question no.1: (4 points) AUTOMNE Considérer le système en boucle fermée représenté à la figure ci-dessous : EXAMEN FINAL ELE3 Asservissemens d e 8 Quesion no.: 4 poins AUTOMNE Considérer le sysème en boule fermée représené à la figure i-dessous : + Ref K s +.5 s s - e Figure no. La réponse en fréquene du sysème

Plus en détail

TP 8 : Numérisation d un signal : quantification et traitement numérique

TP 8 : Numérisation d un signal : quantification et traitement numérique I Parie I : Élecroniue TP TP 8 : Numérisaion d un : uanificaion e raiemen numériue Inroducion Lors du précéden TP, nous avons éudié une éape de la numérisaion d un : l éape d échanillonnage. Il ne s agi

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Partie I - Étude des régimes permanents d une association de deux machines à courant continu

Partie I - Étude des régimes permanents d une association de deux machines à courant continu Les correceurs seron pariculièremen sensibles à la qualié de la rédacion de la copie ; noammen, il es recommandé de répondre de façon claire e concise aux quesions posées e de mere en évidence les résulas

Plus en détail