Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Dimension: px
Commencer à balayer dès la page:

Download "Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,"

Transcription

1 Non-linéarité

2 Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

3 Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

4 Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, c est-à-dire elles doivent être très différentes des fonctions affines. Donc de non-linéarité élevée

5 Définition Définition 1 On appelle non-linéarité d une fonction booléenne f à m variables et on le note nl(f ) la distance qui la sépare de l ensemble des fonctions affines à m variables: où d est la distance de Hamming. nl(f ) = min h affine d(f,h) Proposition 1 Soit f une fonction booléenne à m variables. Sa non-linéarité est égale à nl(f ) = m 1 1 sup v V m ( 1) x V m = m 1 1 sup v V m χ f (v) (f (x)+v x)

6 On veut montrer min h affine d(f,h) = m 1 1 sup v V m χ f (v) Preuve. La distance de f à une fonction affine h est égale à d(f,h) = d(f + h,0) = wt(f + h) si h(u) = u v + ɛ. = m 1 1 χ f +h(0) = m 1 1 ( 1) u = m 1 1 ( 1) u = m 1 ( 1) ɛ1 ( 1) u (f +h)(u) (f (u)+v u+ɛ) (f (u)+v u)

7 On a nl(f ) = m 1 1 sup v V m χ f (v) Proposition On a nl(f ) m 1 1 m/ Démonstration D après l égalité de Parseval ( χ f (u)) = m u F m la moyenne des ( χ f (u)) est de m. Le maximum des χ f (v) dépasse leur moyenne. Donc Et donc sup χ f (v) m/. v V m nl(f ) m 1 1 m/

8 Importance de la non-linéarité dans un contexte cryptographique Nous dirons qu il y a une corrélation entre une fonction booléenne f et une fonction linéaire l si d(f,l) est différente de m 1. N importe quelle fonction booléenne a une corrélation avec les fonctions linéaires car on vient de montrer que: Mais cette corrélation devrait être petite. maxd(f,l) m 1 m/ 1 L existence d approximations affines des fonctions booléennes impliquées dans un cryptosystème permettent dans divers situations (chiffrement par bloc, par flot) d établir des attaques sur ce système.

9 Système de chiffrement par blocs Nous avons vu qu une attaque possible sur un tel système est la cryptanalyse linéaire. La résistance face à cette attaque est d autant meilleure que la fonction booléenne vectorielle S : F m Fm Λ S = max α max β 0 possède un Λ S petit, où { # X F m α X + β S(X ) = 0 } m 1 ceci signifie que si S s écrit (S 1,...,S n ), où les S i sont des fonctions booléennes F m F, alors S présente la meilleure résistance à la cryptanalyse linéaire si et seulement si pour toutes les combinaisons linéaires f des fonctions S i, la fonction f (X ) est éloignée de la fonction affine α X i.e. si et seulement si toutes les fonctions f présentent la meilleure non-linéarité possible.

10 Système de chiffrement à flot Plaçons-nous maintenant dans le contexte d un système de chiffrement à flot. L importance du fait qu une fonction de combinaison utilisée dans un tel système soit hautement non linéaire est primordiale. Théorème 1 Soit f une fonction booléenne à m variables, utilisée pour combiner m registres à décalage à rétroaction linéaire. Supposons que f est résiliente d ordre t. Alors la fonction booléenne g dépendant de t + 1 variables qui se rapproche le plus de f est une fonction affine de la forme ɛ + i T où ɛ est un élément de F et où T désigne l ensemble des indices des variables dont dépend g, autrement dit les numéros des registres attaqués. x i La fonction g maximise Pr [f (X 1,..., X m ) = g (X i1,..., X it+1 )] où T = {i 1,...,i t+1 }

11 Preuve : Soit g une fonction booléenne dépendant de t + 1 variables x i, i T. La démonstration du théorème nécessite le résultat suivant : Lemme 1 Soient f une fonction booléenne à m variables, T un sous-ensemble de {1,...,m} de taille k, et y F k. Notons p(y,t ) la probabilité conditionnelle Pr [f (X ) = 1 i T, X i = y i ] Une fonction booléenne g est la plus proche de f, parmi toutes les fonctions dépendant des variables y i, i T, si et seulement si on a pour tout y F k : g (y) = 1 si p(y,t ) > 1 g (y) = 0 si p(y,t ) < 1 Si p(y,t ) = 1, alors on peut choisir indifféremment g (y) = 0 ou 1.

12 Démonstration du lemme : pour tout vecteur x de F m, on note x = (y, z), où y est le vecteur de Fk formé par les composantes x i, i T. Considérons une fonction g quelconque, qui dépend des k variables x i, i T. On a k Pr [f (Y, Z ) = g (Y )] = Pr [f (Y, Z ) = 1 Y = y] = d(f, g ) = m m k Ainsi, on a y g 1 ({1}) + y g 1 ({0}) p(y,t ) + Pr [f (Y, Z ) = 0 Y = y] y g 1 ({1}) y g 1 ({0}) y g 1 ({1}) y g 1 ({0}) (1 p(y,t )) p(y,t ) + (1 p(y,t ))

13 Ainsi, on a d(f, g ) = m m k p(y,t ) + (1 p(y,t )) y g 1 ({1}) y g 1 ({0}) et par conséquent cette distance est minimale si et seulement si pour p(y,t ) > 1 p(y,t ), on a y g 1 ({1}) pour p(y,t ) < 1 p(y,t ), on a y g 1 ({0}). c est-à-dire si pour p(y,t ) > 1, on a y g 1 ({1}), c est-à-dire g(y)=1 pour p(y,t ) < 1, on a y g 1 ({0}), c est-à-dire g(y)=0. ce qui clôt la démonstration du lemme.

14 Revenons au théorème : soit g une fonction à t +1 variables, si g est la fonction la plus proche de f, elle vérifie (par le lemme) g (x) = 1 si p(x,t ) > 1/ g (x) = 0 si p(x,t ) < 1/ Lorsque p(x,t ) = 1, on choisira de prendre g (x) = wt(x) (mod. ). Soit T un sous-ensemble de T de taille t. On note j l unique élément de T T. Comme f est résiliente d ordre t, on a pour tout x F t : 1 = Pr [f (X ) = 1 i T, X i = x i ] = Pr [f (X ) = 1 i T, X i = x i et X j = 0] pr [X j = 0] +Pr [f (X ) = 1 i T, X i = x i et X j = 1] pr [X j = 1] = 1 [p((x,0),t ) + p((x,1),t )]

15 Ainsi, pour tout u, v F t+1 et par le lemme précédent on a tels que d(u, v) = 1, on a p(u,t ) + p(v,t ) = 1 dans le cas où p(u,t ) 1 : g (u) + g (v) = 1, dans le cas où p(u,t ) = 1, on a p(v,t ) = 1 et donc, comme d(u, v) = 1: g (u) + g (v) wt(u) + wt(v) 1 (mod. ). Comme pour tous les u, v F t+1 on en déduit tels que d(u, v) = 1 on a g (u) + g (v) = 1, g (x) = g (0) + x i, i T

16 Ainsi, puisque la meilleure approximation de f par une fonction dépendant de t +1 variables est affine, l attaque par corrélation sur t +1 registres sera d autant moins efficace que la fonction f sera loin des fonctions affines, i.e. que la fonction f aura une grande non-linéarité. Les fonctions hautement non linéaires sont donc primordiales à la fois dans les systèmes de chiffrement itératifs par blocs, mais aussi dans les systèmes de chiffrement à flot.

17 Non-linéarité asymptotique On peut montrer que la plupart des fonctions booléennes ont une non-linéarité voisine de m 1 m/ 1 m log. Plus précisément Proposition 3 Si f est une fonctions booléenne, alors, presque sûrement lim m m 1 nl(f ) m/ 1 m log = 1

18 Non-linéarité asymptotique On peut montrer que la plupart des fonctions booléennes ont une non-linéarité voisine de m 1 m/ 1 m log. Plus précisément Proposition 3 Si f est une fonctions booléenne, alors, presque sûrement lim m m 1 nl(f ) m/ 1 m log = 1 La plupart des f 0 m 1 m 1 m log m 1 m 1

19 Caractérisations des fonctions hautement non linéaires Rappelons que nl(f ) = m 1 1 sup v V m χ f (v) m 1 1 m/ Les fonctions qui ont la plus haute non-linéarité vérifient χ f (u) = m/. Définition Les fonctions booléennes f à m variables vérifiant χ f (u) = m/ pour tout u F m sont appelées fonctions courbes.

20 Proposition 4 Soit f une fonction booléenne courbe à m variables. existe une fonction booléenne f : F m F telle que pour tout u F m Alors il on ait χ f (u) = m/ χ f (u) La fonction f est appelée la duale de f, et est également courbe. On a et χ f (u) = ±1 χ f = m/ χ f (u) = m/ χ f (u)

21 Degré Proposition 5 Les fonctions booléennes courbes n existent que dans le cas où le nombre de variables m est pair. De plus, si f est une telle fonction, on a si m 4, alors deg(f ) m/; si m =, alors deg(f ) = 1. Cela dépend d un lemme déjà vu: Lemme Si E est un sous-espace de F m f (v) = E f (u) E E, et f un fonction sur E, on a

22 Soit x u 1 Alors 1... xu m m un monôme à coefficient non nul de f et u = (u 1,...,u m ). 1 = f o (u) = f (v) = f (v) v u v E u où E u est un espace vectoriel de dimension wt(u). On a 1 = f (v) wt(u) m f (w) v E u w E u wt(u) 1 wt(u) m 1 w E u χ f (w) (mod. ) Puisque la fonction est courbe, soit f sa duale. Cela donne 1 wt(u) 1 wt(u) m 1 χ f (w) (mod. ) D où, en exprimant en fonction de f : 1 wt(u) 1 m 1 + wt(u) m w E u w E u f (w) (mod. ) Donc wt(u) m pour que cela soit vrai.

23 Proposition 6 Soit f une fonction booléenne à m variables. Alors f est courbe si et seulement si la fonction D a F m F x f (x + a) + f (x) est équilibrée pour tout vecteur non nul a de F m

24 Démonstration x ( 1) D a(f )(x) = x = x ( 1) f (x) ( 1) f (x+a) χ f (x)χ f (x + a) = (χ f χ f )(a) D autre part χ f χ f = ( χ f ). La fonction f est courbe si et seulement si ( χ f ) est la fonction constante égale à m. C est la transformée de Fourier de la fonction caractéristique de 0, à une constante près. Donc f est courbe si et seulement si x( 1) D a(f )(x) est nulle pour a 0, c est-à-dire si D a (f ) est équilibrée.

25 Classes de fonctions courbes. Si f est une fonction courbe à m variables, que φ est une permutation affine sur F m, et que h est une fonction booléenne affine sur Fm, alors la fonction f φ+h est courbe. On définit ainsi une notion de complétude pour les classes de fonctions courbes. Définition 3 Une classe C de fonctions courbes est dite complète si elle est stable par les transformations de la forme où φ est une permutation affine sur F m f f φ + h, et h une fonction booléenne affine sur F m. Si la classe C n est pas complète, on appelle complétée de C la classe obtenue en complétant C par l ensemble des fonctions obtenues à partir des fonctions de C a l aide de ce type de transformation.

26 Proposition 7 Soit f une fonction booléenne quadratique à m variables. Si f est courbe, alors elle est de la forme (ou peut être amenée par une des transformations exposées dans la définition précédente à une fonction de la forme): x 1 x m/+1 + x x m/+ + + x m/ x m Mais si on connaît bien les fonctions courbes quadratiques, on ne sait pas grand chose sur la caractérisation des fonctions courbes cubiques. Et de maniére générale, on ne connaît pas le nombre total de fonctions courbes.

27 Fonction courbes à 8 variables Un message du 31 décembre 007 de Philippe Langevin et de Gregor Leander: we finished the computation of the number of bent functions in 8 variables. We found bent functions that is approximatively Ceci est à comparer au nombre total de fonctions booléennes de degré au plus 4, en 8 variables: 1+ ( 8 1 ) +( 8 ) +( 8 3 ) +( 8 4 ) = 163

28 Dans la suite, f désignera toujours une fonction booléenne courbe à m variables. Considérons l espace vectoriel F m comme le produit direct F m/ F m/ s écrira donc comme un couple (u, v), avec u et v des élé- Un vecteur de F m ments de F m/.

29 Classe de Maiorana-MacFarland, Cette classe de fonctions booléennes courbes a été tout d abord étudiée par J.F. Dillon dans sa thèse. Définition 4 La classe M est l ensemble des fonctions booléennes courbes f qui s écrivent f (u, v) = u π(v) + h(v) où π est une permutation de F m/, u π(v) désigne le produit scalaire standard de u et de π(v), et h est une fonction booléenne à m/ variables.

30 On a χ f (a,b) = = = = (u,v) F m/ v F m/ v F m/ π(v)=a ( 1) a u ( 1) b v χ f (u, v) F m/ ( 1) b v ( 1) a u ( 1) (u π(v)+h(v)) u F m/ ( 1) b v ( 1) h(v) u F m/ ( 1) b v ( 1) h(v) m/ = ( 1) b π 1 (a)+h(π 1 (a)) m/ ( 1) u (a+π(v))

31 Classe D: cette classe a également été introduite par C. Carlet. Définition 5 La classe D est constituée des fonctions f de la forme f (u, v) = u π(v) + 1 E1 (u)1 E (v) où E 1 et E sont des sous-espaces vectoriels de F m/ F m/ tels que π(e ) = E 1., π une permutation de

32 Compromis Les critères cryptographiques sont incompatibles: Non linéarité maximale: χ f (u) = m/ Equilibre: χ f (0) = 0 Résilience d ordre t: χ f (u) = 0 pour wt(u) t De même pour le degré Degré maximal: m Degré d une fonction de non linéarité maximale: m/ Degré d une fonction résiliente d ordre t: m t 1 On essaye d obtenir des compromis.

33 Proposition 8 (Dobbertin) Soit f une fonction courbe normale sur F m/ c est-à-dire qui satisfasse l égalité f (x,0) = 0 pour tout x F m/ fonction équilibrée sur F m/. Alors la fonction est équilibrée et on a g (x, y) = { f (x, y) si y 0 h(x) sinon nl(g ) = m 1 m/ + nl(h) F m/,. Soit h une Démonstration On a χ g (a,b) = { χ f (a,b) + χ h (a) si a 0 0 sinon

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes de Hamming et les codes cycliques - Chapitre 6 (suite et fin)- Les codes de Hamming Principe La distance minimale d un code linéaire L est le plus petit nombre

Plus en détail

Rapport de TER Transformation de la matrice génératrice d un code quasi-cyclique. NARDEAU Nicolas, BENMOUSSA Wafa 2006-2007

Rapport de TER Transformation de la matrice génératrice d un code quasi-cyclique. NARDEAU Nicolas, BENMOUSSA Wafa 2006-2007 Rapport de TER Transformation de la matrice génératrice d un code quasi-cyclique NARDEAU Nicolas, BENMOUSSA Wafa 2006-2007 1 Table des matières 1 Codes Correcteurs 3 1.1 Préliminaires..................................

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Éléments d analyse convexe

Éléments d analyse convexe Éléments d analyse convexe Cours de M1 Mathématiques Fondamentales Université Paul Sabatier Pierre Maréchal Table des matières 1 Préliminaires 2 1.1 Notations et définitions élémentaires................

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Introduction à la théorie des codes

Introduction à la théorie des codes Introduction à la théorie des codes André Leroy Ces notes doivent servir aux étudiants comme support et ne remplacent pas le cours Section 1 Introduction Section 2 Théorie de l information Section 3 Distance

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

AUTOUR DU DÉCODAGE DES CODES DE BOSE, RAY-CHAUDHURI ET HOCQUENGHEM

AUTOUR DU DÉCODAGE DES CODES DE BOSE, RAY-CHAUDHURI ET HOCQUENGHEM AUTOUR DU DÉCODAGE DES CODES DE BOSE, RAY-CHAUDHURI ET HOCQUENGHEM PHILIPPE LANGEVIN Résumé. Au début des années soixante A. Hocquenghem (1959) et un an plus tard, R. C. Bose et D. K. Ray-Chaudhuri découvrent

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Chiffrement asymétrique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. CHIFFREMENT ASYMÉTRIQUE I.1. CHIFFREMENT À CLÉ PUBLIQUE Organisation de la section

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

ENONCE : Le chiffrement de Hill ( Niveau Terminale S spécialité)

ENONCE : Le chiffrement de Hill ( Niveau Terminale S spécialité) ENONCE : Le chiffrement de Hill ( Niveau Terminale S spécialité) Le mathématicien américain Lester Hill (1891-1961) a inventé une méthode de chiffrement à clé symétrique (secrète) par substitution polygraphique

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Eléments de théorie des corps finis.

Eléments de théorie des corps finis. Université de Rouen Agrégation de mathématiques 2005-2006 Eléments de théorie des corps finis. Application : les codes correcteurs. Nicolas Bruyère Table des matières I Les corps finis 1 1 Corps finis

Plus en détail

UN I V E R S I T É. Vincennes-Saint-Denis. Hieu Phan & Philippe Guillot. 11 octobre 2013

UN I V E R S I T É. Vincennes-Saint-Denis. Hieu Phan & Philippe Guillot. 11 octobre 2013 PARIS8 UN I V E R S I T É Vincennes-Saint-Denis UFR 6 MITSIC Mathématiques, Informatique, Technologies, Sciences de l Information et de la Communication Preuves de sécurité des schémas cryptographiques

Plus en détail

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice.

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice. Plan Codes Correcteurs d Erreurs Les codes cycliques November 12, 2008 1 2 Définition Division Euclidienne Un polynôme à coefficients dans F 2 est une fonction de la forme P(X ) = a 0 + a 1 X + a 2 X 2

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

DES CODES CORRECTEURS POUR SÉCURISER L INFORMATION NUMÉRIQUE

DES CODES CORRECTEURS POUR SÉCURISER L INFORMATION NUMÉRIQUE DES CODES CORRECTEURS POUR SÉCURISER L INFORMATION NUMÉRIQUE Vincent Herbert Inria Paris Rocquencourt 05-12-11 1 Quel est le sujet de cette thèse? Mes travaux portent sur les codes correcteurs d erreurs.

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail