Logique et bases de données

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Logique et bases de données"

Transcription

1 Logique et bases de données Vision logique d une BD relationnelle Signification des règles logiques Le modèle DATALOG Evaluation des règles non récursives Signification et évaluation des règles récursives Négations G. Falquet Centre universitaire d informatique 1

2 BD comme interprétation Idée : relations de la BD <---> interprétations de symboles de prédicat Langage L(BD) correspondant à BD: schéma de relation R(A1, A2,, An) ---> symbole de prédicat r n-uplet (v 1,, v n ) de R ---> constantes v 1,, v n on ajoute les symboles de prédicat =,, <, >,, Interprétation I(BD) domaine d interprétation D est l union de toutes les valeurs d attributs qui apparaissent dans la base. {v i } interprétation de r : la relation R correspondant au schéma R(A1, A2,, An) G. Falquet Centre universitaire d informatique 2

3 Consistance et Requêtes Consistance La base est consistante si pour chaque contrainte C exprimée en L(BD), l interprétation de C selon I(BD) = vrai Requête La réponse à w(x 1, x 2,, x n ) est l ensemble des n-uplets (d 1, d 2,, d n ) qui rendent w vraie selon l interprétation I(BD) G. Falquet Centre universitaire d informatique 3

4 Base de donnée déductive Deux visions 1. Approche modèle On ajoute au langage des symboles de prédicats On ajoute aux données des formules (règles de déduction) On cherche un modèle de ces formules 2. Approche théorie de la preuve Les données sont des formules atomiques On ajoute des formules non-atomiques Répondre à une requête == trouver une preuve G. Falquet Centre universitaire d informatique 4

5 Exemple (th. preuve) // relation Projet(Nom, Etat) ==> projet(extra12, en-test) projet(sugus, pré-projet) projet(multics, pour-demain) // relation Travaille(Personne, Projet) ==> travaille(joe, sugus). travaille(jim, multics). travaille(alfred, extra12). G. Falquet Centre universitaire d informatique 5

6 Exemple (suite) // règles E P travaille(e, P) => occupé(e) E P travaille(e, P) /\ projet(p, pour-demain) => super-occupé(e) On peut prouver E P travaille(e, P) => occupé(e) SPEC ---> travaille(joe, sugus) => occupé(joe) travaille(joe, sugus) Modups ponens ---> occupe(joe) G. Falquet Centre universitaire d informatique 6

7 Exemple (suite) travaille(jim, multics) projet(multics, pour-demain) E P travaille(e, P) /\ projet(p, pour-demain) => super-occupé(e) -----> super-occupé(jim). G. Falquet Centre universitaire d informatique 7

8 Définition calculatoire Rappel: on n a pas d algorithme général de preuve! On se donne un algorithme qui détermine si un fait potentiel donné est vrai ou faux. C est comme ça qu est défini Prolog Problèmes Les faits potentiels pour lesquels on trouve une preuve ne sont pas tous les faits prouvables. Les faits calculés comme vrais ne forment pas forcément un modèle. MAIS on doit tout de même être capable de calculer les déductions (de manière efficace). G. Falquet Centre universitaire d informatique 8

9 Le modèle DATALOG Approche par la théorie des modèles On dispose d une BD formée de relations = la base de données extensionnelle (BDE). Un prédicat pour lequel on a une relation stockée dans la base extensionnelle est défini en extension. Interpréation(p(x, y, z)) := (x, y, z) P. Un prédicat défini par des règles logiques est défini en déduction. Sa relation fait partie de la base de donnée déduite (BDD). But: calculer les relations des prédicats déduits G. Falquet Centre universitaire d informatique 9

10 Expressivité de Datalog Datalog n admet pas n importe quelle formule : uniquement les clauses de Horn Sinon on ne pourrait pas trouver de modèles à tous les coups Datalog est plus expressif que l algèbre relationnelle G. Falquet Centre universitaire d informatique 10

11 Formules atomiques p(arg 1,, arg n ) Dénote la relation P associée à p restreinte en fonction des arguments. P.ex. assure(assure-tout-sa, C) dénote σ $1 = assure-tout-sa (Assure) assure(c, C) dénote σ $1 = $2 (Assure) (* les compagnies qui s auto-assurent *) G. Falquet Centre universitaire d informatique 11

12 Clauses de Horn p : q 1 & q 2 & & q n où p, q 1,, q n sont des formules atomiqes. p.ex. p(x, Y) : p(x, Z) & q(z, Y) En théorie des modèles il faudra trouver une interprétation qui rende la proposition suivante vraie: ( X)( Y)( Z) p(x, Z) & q(z, Y) => p(x, Y). G. Falquet Centre universitaire d informatique 12

13 Prédicats prédéfinis et règles sures Les prédicats prédéfinis sont: <,, >,, =,. Ils sont associés à des relations infinies Une règle n est pas sure si elle produit une relation infinie plusgrandque(x, Y) : X > Y Pour éviter cela toute variable doit être limitée, elle doit apparaitre au moins une fois dans un prédicat non prédéfini. plusgdsalaire(x, Y) : X > Y & Salaire(P, X) & Salaire(Q, Y). G. Falquet Centre universitaire d informatique 13

14 Relation correspondant à une règle Relation ayant pour attributs toutes les variables qui apparaissent dans la règle. C est la jointure des relations correspondant aux sous-buts de la règle, plus des sélections où il faut. (r) cousin(x, Y) : parent(x, Xp) & parent(y, Yp) & frere-et-ou-soeur(xp, Yp). a pour relation Cousin(X, Xp, Y, Yp) = Parent(X, Xp) Parent(Y, Yp) Frere-et-ousoeur(Xp, Yp). notation: EVAL-RULE(r, Parent, Parent, Frere-et-ou-soeur). G. Falquet Centre universitaire d informatique 14

15 Relation (suite) (r ) Frere-et-ou-soeur(X, Y) : parent(x, Z) & parent(y, Z) & X Y. EVAL-RULE(r, Parent, Parent) = Frere-et-ou-soeur(X, Y) = π X,Y σ X Y (Parent(X, Z) Parent(Y, Z)) (r ) impliqué(e, mega) : utilise(mega, P) & travaille(e, P) EVAL-RULE(r, Utilise, Travaille) = Imp(E, Q) = π E,Q (σ Q = mega (Utilise(Q, P))) Travaille(E, P). Il existe un algorithme pour passer de la règle à l expression. G. Falquet Centre universitaire d informatique 15

16 Evaluation des règles non récursives On a une dépendance de q vers p s il y a une règle de la forme p( ) : & q( ) & Un prédicat qui n appartient à aucun circuit du graphe de dépendance est dit non-récursif. Algorithme pour programme non récursif: 1. Ordonner les règles 2. Calculer la relation de chaque règle 3. Faire l union des relations correspondant au même prédicat. Les faits déduits peuvent être prouvés à partir des règles. Les relations calculées forment un modèle minimal pour les règles. G. Falquet Centre universitaire d informatique 16

17 Signification des règles récursives p(x, Y) : q(x, Y). p(x, Y) : p(x, Z) & q(z, Y). Problème: on n a plus d ordre d évaluation des règles. p q G. Falquet Centre universitaire d informatique 17

18 Dérivation de tous les faits possibles Soit R 1,, R n la base en extension et P 1,, P m la base à déduire. On définit EVAL(p i, R 1,, R n, P 1,, P m ) := union des expressions EVAL-RULE pour toutes les règles qui définissent p i. Algorithme répéter répéter pour i de 1 à m P i := EVAL(p i, R 1,, R n, P 1,, P m ) jusqu à ce que plus aucun P i ne bouge On dérive tous les faits déductibles car les P i s ne peuvent que grossir (par monotonicité de EVAL-RULE). Finalement on satisfera les équations P i = EVAL(p i, R 1,, R n, P 1,, P m ) G. Falquet Centre universitaire d informatique 18

19 Plus petit point fixe Etant donné un ensemble de relation R 1,, R n pour les prédicats BDE, un POINT FIXE des équations Datalog est une solution des équations correspondant à chaque prédicat BDD. La méthode ci-dessus calcule effectivement l unique point fixe minimal, c est aussi un modèle minimal contenant les relations BDE. Exemple: chemin(x, Y) : arc(x, Y). chemin(x, Y) :- chemin(x, Z) & chemin(z, Y). Equation: Ch(X, Y) = A(X, Y) π X,Y (Ch(X, Z) Ch(Z, Y)) G. Falquet Centre universitaire d informatique 19

20 Evaluation semi-naïve On remplace le calcul de la relation associée à chaque règle par l union des calculs effectués sur les delta des relations. EVAL-RULE(r, R 1,, R n, P 1,, P m ) devient EVAL-RULE-INCR(r, R 1,, R n,, P 1,, P m, P 1,, P m ) = n i = 1 EVAL-RULE( r, R, 1, R, n P, 1, P, i 1 P, i P, i + 1, P m ) EVAL-INCR(p, R 1,, R n,, P 1,, P m, P 1,, P m ) = r Def( p) EVAL-RULE-INCR( r, R, 1, R, n P, 1, P, i 1 P, i P, i + 1, P m ) G. Falquet Centre universitaire d informatique 20

21 Négations Problème: il n y a plus de plus petit point fixe P.ex. p(x) : r(x) & q(x). q(x) : r(x) & p(x). On a deux modèles minimaux qui sont des points fixes: 1. P = Ø, Q = {1}, R = {1}. 2. P = {1}, Q = Ø, R = {1}. G. Falquet Centre universitaire d informatique 21

22 Stratification Technique pour choisir un bon point fixe minimal parmi ceux qui existent. Un programme est stratifié si quand on a une règle p : q Il n y a pas de chemin de p à q dans le graphe de dépendance. Strate est une stratification si p : q Strate(p) > Strate(q) p : q Strate(p) Strate(q) G. Falquet Centre universitaire d informatique 22

23 Calcul par stratification Lemme 3.2 Si un programme logique a une stratification alors il est stratifié. (Si!) Les strates donnent un ordre d évaluation des prédicats. Lorsqu on a un sous-but q a satisfaire, la relation Q a déjà été calculée dans une strate inférieure. Il suffit alors de prendre son complément par rapport à DOM DOM. {,,,,,,, (, ) G. Falquet Centre universitaire d informatique 23

1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation

1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation Master STIC «Image Informatique et Ingénierie» Module Informatique Modèles de représentation - 10h CM Nadine Cullot Kokou Yétongnon nadine.cullot@u-bourgogne.fr kokou.yetongnon@u-bourgogne.fr 1ère partie

Plus en détail

Bases de données Cours 5 : Base de données déductives

Bases de données Cours 5 : Base de données déductives Cours 5 : ESIL Université de la méditerranée Odile.Papini@esil.univmed.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 Introduction 2 approche sémantique approche axiomatique

Plus en détail

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents)

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Numéro d anonymat: 1 Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Sauf mention contraire en caractères gras,

Plus en détail

Plan du cours de Programmation logique

Plan du cours de Programmation logique Plan du cours de Programmation logique 1 Introduction 2 3 Igor Stéphan 1/ 64 La logique comme langage de programmation Un langage de programmation logique est défini par : un langage des données Ω; et

Plus en détail

Contenu. ELFE - Cours 4. Datalog et l algèbre relationnelle. Exemple : schéma du TP5 BDD. Opérations de l algèbre relationnelle

Contenu. ELFE - Cours 4. Datalog et l algèbre relationnelle. Exemple : schéma du TP5 BDD. Opérations de l algèbre relationnelle Contenu ELFE - Cours 4 Requêtes relationnelles en Datalog Satisfaisabilité de formules booléennes en Datalog C. Kuttler Licence 3 informatique, Université Lille 24 janvier 2013 Requêtes relationnelles

Plus en détail

Logique informatique 2013-2014. Examen

Logique informatique 2013-2014. Examen Logique informatique 2013-2014. Examen 30 mai 2013. Durée 3h. Tous les documents sont autorisés. Seuls les résultats du cours peuvent être utilisés sans démonstration. Le barême et la longueur des solutions

Plus en détail

2A-SI 4 - Bases de Données 4.2 - Modèle relationnel

2A-SI 4 - Bases de Données 4.2 - Modèle relationnel 2A-SI 4-4.2 - Modèle relationnel Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Avec l aide du cours de Y. Bourda Généralités du «modèle relationnel» : Formalisé par CODD

Plus en détail

Bases de données déductives

Bases de données déductives Bases de données déductives par Mohand-Saïd HACID Maître de conférences en informatique à l université Lyon-I et Jacques KOULOUMDJIAN Docteur ès sciences Professeur d informatique à l INSA de Lyon 1. Bases

Plus en détail

Kit de survie sur les bases de données

Kit de survie sur les bases de données Kit de survie sur les bases de données Pour gérer un grand nombre de données un seul tableau peut s avérer insuffisant. On représente donc les informations sur différentes tables liées les unes aux autres

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Chapitre 3. Définitions récursives et induction structurelle

Chapitre 3. Définitions récursives et induction structurelle Chapitre 3 Définitions récursives et induction structurelle 114 Plan 1. Définitions récursives 2. Induction structurelle 3. Exemples Arbres Naturels Expressions arithmétiques Lectures conseillées : I MCS

Plus en détail

INFO-F-302 Informatique Fondamentale Logique du premier ordre

INFO-F-302 Informatique Fondamentale Logique du premier ordre INFO-F-302 Informatique Fondamentale Logique du premier ordre Prof. Emmanuel Filiot Exercice 1 1. Soit un langage L = (p, q, r, s, t, f, g) où p, q sont des prédicats unaires, r, s, t sont des prédicats

Plus en détail

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30 Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3

Plus en détail

Le langage Prolog. Structures de données. Les opérateurs (1) Les opérateurs (2) ! Déjà vu : objets atomiques (nombres et variables)

Le langage Prolog. Structures de données. Les opérateurs (1) Les opérateurs (2) ! Déjà vu : objets atomiques (nombres et variables) Le langage Prolog Structures de données! Structures de données! Opérateurs et expressions arithmétiques! Evaluation des expressions et prédicats de comparaison! La coupure et la négation! Les prédicats

Plus en détail

VIII. Interrogation de documents avec XQuery

VIII. Interrogation de documents avec XQuery VIII. Interrogation de documents avec XQuery 350 XQUERY? Est un langage d interrogation de données XML N est pas un dialecte XML Est un sur-ensemble de XPath 2.0 Utilise le même modèle de données (XDM)

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

Réalisabilité et extraction de programmes

Réalisabilité et extraction de programmes Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme

Plus en détail

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima Bases de données cours 2 Éléments d algèbre relationnelle Catalin Dima Qu est-ce qu une algèbre? Algèbre : ensemble de domaines et d opérations. Exemple : les nombres (naturels, réels, complexes). Leurs

Plus en détail

La logique. et son automatisation

La logique. et son automatisation Université de Fribourg Cours 2001 Méthodes mathématiques de l informatique C. Auderset La logique et son automatisation Première partie: Logique propositionnelle 1. Syntaxe et sémantique de la logique

Plus en détail

Modèle relationnel. Serge Abiteboul. April 3, 2009 INRIA. Serge Abiteboul (INRIA) Modèle relationnel April 3, 2009 1 / 39

Modèle relationnel. Serge Abiteboul. April 3, 2009 INRIA. Serge Abiteboul (INRIA) Modèle relationnel April 3, 2009 1 / 39 Modèle relationnel Serge Abiteboul INRIA April 3, 2009 Serge Abiteboul (INRIA) Modèle relationnel April 3, 2009 1 / 39 Introduction Modèle de bases de données : LDD (langage de définition de données) +

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Introduc)on à la logique Michel Rueher

Introduc)on à la logique Michel Rueher Introduc)on à la logique Michel Rueher SI3 Qu est ce que la logique? Etre Logique? Formaliser le raisonnement? Automatiser le raisonnement? Un art paradoxal? A quoi peut servir la logique? Formaliser le

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Programmation par contraintes Cours 3 : Programmation logique avec contraintes PLC

Programmation par contraintes Cours 3 : Programmation logique avec contraintes PLC Cours 3 : avec contraintes PLC ESIL Université de la méditerranée Odile.Papini@esil.univ-mrs.fr http://pages-perso.esil.univmed.fr/ papini/ Plan du cours 3 1 Introduction 2 3 4 Bibliographie Livres : K.

Plus en détail

Systèmes décisionnels et programmation avancée

Systèmes décisionnels et programmation avancée Systèmes décisionnels et programmation avancée M1 SIR Philippe Muller et Mustapha Mojahid, Matthieu Serrurier, Marie-Christine Scheix 2014-2015 Introduction structure du cours intervenants introduction

Plus en détail

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments.

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments. Relation binaire Un couple est une paire ordonnée d éléments. ex: les points (x,y) du plan de IN 2 ou de IR 2, les nom et prix d un produit, les instances d un objet en Java (à 2 attributs). 2. Relations,

Plus en détail

Logique et théorie des ensembles

Logique et théorie des ensembles Université de Metz Licence de Mathématiques 1ère année, 1er semestre Logique et théorie des ensembles par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2007/08 1 Contenu Chapitre

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Modèle relationnel Algèbre relationnelle

Modèle relationnel Algèbre relationnelle Modèle relationnel Algèbre relationnelle Modèle relationnel (Codd 1970) On considère D i où i = 1,2..n des ensembles, dits domaines Un domaine = ensemble de valeurs (ex. D1 : entiers sur 10 positions,

Plus en détail

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle Chapitre 4 : IV. Qu est-ce que l algèbre relationnelle? Une collections d opérations, chacune agissant sur une ou deux relations et produisant une relation en résultat. Un langage pour combiner ces opérations.

Plus en détail

Conception des bases de données relationnelles. Fabien De Marchi Faculté des Sciences et Technologies - Laboratoire LIRIS Université Lyon 1

Conception des bases de données relationnelles. Fabien De Marchi Faculté des Sciences et Technologies - Laboratoire LIRIS Université Lyon 1 Conception des bases de données relationnelles Fabien De Marchi Faculté des Sciences et Technologies - Laboratoire LIRIS Université Lyon 1 24 novembre 2009 2 Pré-requis : Structure du modèle relationnel

Plus en détail

Utilisation des tableaux sémantiques dans les logiques de description

Utilisation des tableaux sémantiques dans les logiques de description Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal bergerja@iro.umontreal.ca

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Introduction aux Systemes d Information et aux Bases de Données

Introduction aux Systemes d Information et aux Bases de Données Introduction aux Systemes d Information et aux Bases de Données L2 Informatique Serenella Cerrito Département d Informatique Évry 2014-2015 Plan du cours 1. Introduction, Motivations et Objectifs 2. Le

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Plan. Introduction aux Bases de Données. Algèbre relationnelle : introduction. Projection

Plan. Introduction aux Bases de Données. Algèbre relationnelle : introduction. Projection Plan Introduction aux Bases de Données L3 Céline Rouveirol 2010-2011 Chapitre 3 : Algèbre relationnelle Opérations spécifiques binaires Introduction aux Bases de Données 1 / 21 Algèbre relationnelle :

Plus en détail

Logique L2, phs / DS 2

Logique L2, phs / DS 2 Logique L2, phs / DS 2 Le 16 avril 2012 1. Pour chacun des énoncés suivants, donnez une analyse aussi complète que possible en termes de logique des prédicats ; c est-à-dire, spécifiez une clé de traduction

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

MI067. 1 Calcul des prédicats du premier ordre. P Manoury. Septembre 2011

MI067. 1 Calcul des prédicats du premier ordre. P Manoury. Septembre 2011 MI067 P Manoury Septembre 2011 1 Calcul des prédicats du premier ordre Le calcul des prédicats du premier ordre 1 organise symboliquement le monde en deux niveaux : 1. Le niveau des individus. Un individu

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Le modèle relationnel L algèbre relationnelle

Le modèle relationnel L algèbre relationnelle François Jacquenet Professeur d'informatique Faculté des Sciences Laboratoire Hubert Curien UMR CNRS 5516 18 rue Benoit Lauras 42000 Saint-Etienne Tél : 04 77 91 58 07 e-mail : Francois.Jacquenet@univ-st-etienne.fr

Plus en détail

Informatique en CPGE

Informatique en CPGE Informatique en CPGE L ingénieur doit maîtriser les concepts fondamentaux de l informatique pour : communiquer avec les informaticiens comprendre les questions de complexité algorithmique, de précision

Plus en détail

FSAB 1402 - Suggestions de lecture

FSAB 1402 - Suggestions de lecture FSAB 1402 - Suggestions de lecture 2006 Concepts, techniques and models of computer programming Cours 1 - Intro Chapitre 1 (sections 1.1, 1.2, 1.3, pages 1-3) Introduction aux concepts de base Chapitre

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

IFT3030 Base de données. Chapitre 7 Conception de bases de données. Plan du cours

IFT3030 Base de données. Chapitre 7 Conception de bases de données. Plan du cours IFT3030 Base de données Chapitre 7 Conception de bases de données Plan du cours Introduction Architecture Modèles de données Modèle relationnel Algèbre relationnelle SQL Conception Fonctions avancées avancés

Plus en détail

Bases de Données Cours de SRC 1. Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr

Bases de Données Cours de SRC 1. Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr Bases de Données Cours de SRC 1 Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr Objectifs du cours Analyser les besoins et modéliser les données d un système d information Mettre en œuvre des bases de données

Plus en détail

Chap. 4: Le modèle de données relationnel

Chap. 4: Le modèle de données relationnel Chap. 4: Le modèle de données relationnel Origine: E.F. Codd (1970). Modèle proche du modèle entité-association > présentation synthétique Intérêt (pour nous): - SGBD relationnels = tendance actuelle des

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

1 Introduction aux bases de données

1 Introduction aux bases de données 1 Introduction aux bases de données Qu'est-ce qu'un SGBD? quelles sont ses fonctions? Peut-on mémoriser tous les types de données? Business Object est-il un SGBD? Access? Citez trois logiciels de SGBD

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Bases de Données Relationnelles. L algèbre relationnelle

Bases de Données Relationnelles. L algèbre relationnelle Bases de Données Relationnelles L algèbre relationnelle Langages de manipulation Langages formels : base théorique solide Langages utilisateurs : version plus ergonomique Langages procéduraux : définissent

Plus en détail

Introduction au bases de données Partie - Modélisation de données 2 / 44

Introduction au bases de données Partie - Modélisation de données 2 / 44 M1104 - Introduction au bases de données Partie - Modélisation de données Analyse et Conception des Systèmes d Information Le modèle relationnel de Codd J. Christian Attiogbé Septembre 2008, maj 11/2009,

Plus en détail

Bases de Données. Plan

Bases de Données. Plan Université Mohammed V- Agdal Ecole Mohammadia d'ingénieurs Rabat Bases de Données Mr N.EL FADDOULI 2014-2015 Plan Généralités: Définition de Bases de Données Le modèle relationnel Algèbre relationnelle

Plus en détail

INFO-F-302, Cours d Informatique Fondamentale Logique pour l Informatique

INFO-F-302, Cours d Informatique Fondamentale Logique pour l Informatique 1- INFO-F-302 - / INFO-F-302, Cours d Informatique Fondamentale Logique pour l Informatique Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles Année académique

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Les nombres et l ordinateur

Les nombres et l ordinateur Introduction Flottants Propriétés Conclusion ENS Cachan 9 septembre 2014 Introduction Flottants Proprie te s Conclusion Ge ographie... Plan Introduction Flottants Propriétés Conclusion 1 Introduction 2

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

1 Introduction et installation

1 Introduction et installation TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

SGBD. Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm SGBD. Conception d'une base de données. Introduction aux bases de données

SGBD. Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm SGBD. Conception d'une base de données. Introduction aux bases de données bases de Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm Le Biblio Septembre 2013 http://creativecommons.org/licenses/by-sa/3.0/ Plan du cours bases de Le Biblio 1 bases de 2 3 4

Plus en détail

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application 1 Ordinateur Un

Plus en détail

Algèbre relationnelle

Algèbre relationnelle Algèbre relationnelle Concepts Descriptifs : Bilan RELATION ou TABLE ATTRIBUT ou COLONNE DOMAINE ou TYPE CLE CLE ETRANGERE Langages de manipulation Langages formels : base théorique solide Langages utilisateurs

Plus en détail

Grammaires d unification

Grammaires d unification Cours sur le traitement automatique des langues (IV) Violaine Prince Université de Montpellier 2 LIRMM-CNRS Grammaires d unification Grammaire catégorielle Grammaire syntagmatique généralisée (GPSG) Les

Plus en détail

Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC

Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC L ingénieur doit maîtriser les concepts fondamentaux de l informatique pour : communiquer avec les informaticiens comprendre les questions de complexité

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

INSUFFISANCE DE LA 3NF

INSUFFISANCE DE LA 3NF 156 INSUFFISANCE DE LA 3NF Exemple: Poste (Ville, Rue, Code) et DF={V,R C ; C V} Clés: VR, RC Relation en 3 NF Poste Ville Rue Code Paris St Michel 75005 Paris Champollion 75005 Redondance entre le code

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

L2: cours I4c Langages et automates

L2: cours I4c Langages et automates L2: cours I4c Langages et automates Olivier Togni, LE2I (038039)3887 olivier.togni@u-bourgogne.fr Modifié le 31 mai 2007 Sommaire Utiles pour compilation, interprétation,... 1. Langages rationnels 2. Langages

Plus en détail

Chapitre-4 Logique du 1er ordre - Syntaxe -

Chapitre-4 Logique du 1er ordre - Syntaxe - Chapitre-4 Logique du 1er ordre - Syntaxe - Plan 1- Introduction 2- Alphabet 3-Termes d'un langage 4- Formule de la logique du 1er ordre 5-Sous-formule d'une formule du 1er ordre 6- Arbre de décomposition

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

λ-calcul et typage Qu est-ce qu une fonction?

λ-calcul et typage Qu est-ce qu une fonction? λ-calcul et typage Nicolas Barnier, Pascal Brisset ENAC Avril 2009 Nicolas Barnier, Pascal Brisset (ENAC) λ-calcul et typage Avril 2009 1 / 1 Qu est-ce qu une fonction? Classiquement Pas de notation uniforme/standard

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Modèle relationnel, domaine, relation, attribut, schéma relationnel, clé primaire, clé étrangère, dépendance fonctionnelle, contrainte d'intégrité

Modèle relationnel, domaine, relation, attribut, schéma relationnel, clé primaire, clé étrangère, dépendance fonctionnelle, contrainte d'intégrité Propriétés Titre Type de ressource Niveau Matière Public Description Thème Objectifs Pré-requis B2i - Niveau B2i - Objectifs Le modèle relationnel Description Document de synthèse et base de données exemple

Plus en détail

Algèbre relationnelle

Algèbre relationnelle Algèbre relationnelle 1. Introduction L algèbre relationnelle est le support mathématique cohérent sur lequel repose le modèle relationnel. L algèbre relationnelle propose un ensemble d opérations élémentaires

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations SQL Requêtes simples BD4 AD, SB Licence MASS, Master ISIFAR, Paris-Diderot Février 2013 BD4 (Licence MASS, Master ISIFAR, Paris-Diderot) SQL 1/19 Février 2013 1 / 19 Outline 1 2 Requêtes mono-relation

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL. [GARD01] Chapitre XVII

CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL. [GARD01] Chapitre XVII CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL [GARD01] Chapitre XVII 27 CONCEPTION D'UN SCHEMA RELATIONNEL - Introduction 1. INTRODUCTION 1.1. Lien entre la base de données et le système d'information

Plus en détail

Feuille d exercices n 14 : corrigé

Feuille d exercices n 14 : corrigé Feuille d exercices n 4 : corrigé PTSI B Lycée Eiffel avril 3 Exercice (*) Commençons déjà par constater que la fonction nulle vérifie toutes les conditions de l exercice, il nous restera donc à regarder

Plus en détail

Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers.

Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers. Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs jean-michel.richer@univ-angers.fr 2015/2016 Travaux Dirigés 1 Représentation de l information En informatique,

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

Unité A Fonctions quadratiques

Unité A Fonctions quadratiques Unité A Fonctions quadratiques FONCTIONS QUADRATIQUES Dans cette unité, les élèves : tracent et décrivent des données de forme quadratique; déterminent le sommet, le domaine et l'image, l'axe de symétrie

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail