) est une suite croissante si et seulement si, pour tout entier n, u n + 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download ") est une suite croissante si et seulement si, pour tout entier n, u n + 1"

Transcription

1 1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement si, pour tout entier n, + 1 La suite ( est une suite décroissante si et seulement si, pour tout entier n, + 1 La suite ( est une suite constante si et seulement si, pour tout entier n, + 1 = > Suites arithmétiques Définitions Une suite u est la suite arithmétique de premier terme u 0 et de raison a si et seulement si : pour tout entier n, + 1 = + a pour tout entier n, + na pour tout entier n et tout entier p avec 0 p n, = u p + (n pa Propriété caractéristique 1, et + 1 sont trois termes consécutifs d une suite arithmétique si et seulement si : = 1 + u n + 1 Somme des (n + 1 premiers termes d une suite arithmétique n(n + 1 (n + 1(u n = et S n + u 1 + u + + = 0 + Nombre de termes (Premier terme + Dernier terme S n = 3> Suites géométriques Définitions Une suite u est la suite géométrique de premier terme u 0 (u 0 > 0 et de raison b (b > 0 si et seulement si : pour tout entier n, + 1 = b pour tout entier n, = b n u 0 pour tout entier n et tout entier p avec 0 p n, = b n p u p Propriété caractéristique 1, et + 1 sont trois termes consécutifs d une suite géométrique si et seulement si : ( = Somme des termes Si b b + b + + b n = bn b 1 Si b 1 S n + u = bn b 1 u Si b =1 S = u + u + + u = (n + 1u 0 n 0 1 n 0 Plus généralement : b Si b 1 S n = u p + u p = n p b u p = Nombre de termes 1 Premier terme b 1 b 1 Sens de variation et limites Si 0 < b < 1, alors la suite ( est décroissante et lim Si b > 1, alors la suite ( est croissante et lim n Æ + Si b = 1, la suite est constante b n = 0 (d où lim u n Æ + n Æ + n = 0 b n = + (d où lim = + n Æ + l essentiel 117

2 calculatrice = f(n + 1 = f( Exemple : u 0 = + 1 = + 1 Attention, les calculatrices TI donnent en fonction de 1 On tape : u 0 = = TI 8-8Stat-83-83plus On procède comme pour une fonction Puis on consulte la table de valeurs après l avoir paramétrée On peut utiliser la touche Taper : Enter + 1 Enter Enter Taper Y = etc Utiliser les lettres u (ou v qu on obtient en tapant de 7 (ou de 8 ANS Ans nmin : le rang du premier terme ; u(nmin : la valeur du premier terme Casio Graph qui reprend une chaîne de calculs Taper : EXE Ans + 1 EXE EXE etc Utilisation du mode «Seq» Utilisation du mode «Recur» Pour obtenir a n, taper sur F4 puis sur F Taper sur F5 (Rang pour paramétrer la table On lit les valeurs des termes de la suite dans la table de valeurs 118 Les suites numériques

3 Comment utiliser une suite annexe dont on connaît la nature? 1 Madame Dumont décide de verser, tous les 31 décembre, sur un compte en assurance-vie, rémunéré à 5 % à intérêts composés Elle a effectué le 1 er versement le 31 décembre 000 On note, pour tout entier naturel n, C n le capital, exprimé en euros, dont Mme Dumont dispose sur son compte assurance-vie le 1 er janvier de l année n 1 a Préciser la valeur de C 0 b Calculer C 1 c Écrire C n + 1 en fonction de C n On pose, pour tout entier n, a Montrer que ( est une suite géométrique de raison 1,05 dont on déterminera le premier terme b En déduire, puis C n en fonction de n c De quel capital disposera Mme Durand sur son compte assurance-vie le 1 er janvier 00? C 0 correspond au versement initial Le capital de chaque 1 er janvier est composé du capital précédent augmenté des intérêts et douveau versement effectué le 31 décembre 1 a C 0 est le montant du capital le 1 er janvier 001, donc C 0 = b Puisque les intérêts sont de 5 %, le coefficient multiplicateur est 1,05 C 1 = , = c C n + 1 1, La suite (C n n est ni géométrique, ni arithmétique On utilise alors une suite annexe dont on connaît la nature et qui permet de faire les calculs On utilise la définition fonctionnelle d une suite géométrique On remarque que : 00 = On n oublie pas de rédiger la réponse a , on en déduit Ce qui équivaut à : + 1 1, , = 1,05(C n (en effet = 1, = 1,05 La suite ( est donc la suite géométrique de raison 1,05 et de premier terme u 0 = C = b = ,05 n équivaut à C n = On en conclut C n = ,05 n c Le capital dont Mme Dumont disposera le 1 er janvier 00 correspond à C 19 C 19 = , = ,93 à 0,01 près Mme Dumont disposera donc le 1 er janvier 00 d un capital d un montant de ,93 119

4 Comment utiliser la somme des termes d une suite? Nous allons voir qu il existe plusieurs possibilités de démonstration pour résoudre un même problème Reprenons les données de l exercice précédent, concernant le compte assurance-vie de Mme Dumont On considère la suite géométrique (v n de raison 1,05 et de premier terme a Calculer v 1, puis v b Écrire v n en fonction de n c On note S n + v v n Écrire S n en fonction de n d Calculer S 19 e Expliquer pourquoi S 19 = C 19 On utilise les définitions des suites géométriques a v 1 1,05 = 1 575, v = v 1 1,05 = 1 653,75 b v n 1,05 n La somme des termes d une suite géométrique de raison b 1 est donnée par la formule : S n + u = bn u b 1 0 c S n + v v n 1,05 = n , = n ,05 1 0,05 = (1,05 n d On en déduit : S 19 = (1, = ,93 à 0,01 près e Le terme v n correspond à un montant de placé sur un compte rémunéré à 5 % à intérêts composés pendant n années v ; v ; v 017 ; etc v Le capital dont Mme Dumont disposera le 1 er janvier 00 est le capital acquis par la somme de tous ses versements Donc S 19 = C 19 Comment utiliser un tableur? On aurait pu aussi utiliser une calculatrice graphique 3 Reprenons à nouveau le même énoncé et utilisons les feuilles de calcul d un tableur a Rappeler la relation liant C n + 1 et C n b Ouvrir une feuille de calcul c Faire apparaître l évolution du capital sur le compte assurance-vie d À partir de quelle année le capital acquis dépasse-t-il ? 10 Les suites numériques

5 On construit une feuille de calcul qui peut évoluer, c est-à-dire une feuille où il est possible de changer le montant des versements et le taux d intérêt Dans la cellule B8, on tape : =D3 Dans la cellule B9, on utilise un adressage absolu pour le taux et le montant annuel des versements On étend la formule sur la colonne B On fait afficher les résultats sous la forme correcte en euros en allant dans format-nombre et en choisissant l option monétaire a On a vu dans l exercice 1 : C n + 1 1, b Les calculs effectués par le tableur permettent de donner directement les résultats cherchés On retrouve le résultat précédent : Le 1 er janvier 00, Mme Dumont disposera d un capital d un montant de ,93 On remarque aussi sur la feuille de calcul que le capital aura dépassé pour n = 14, soit le 1 er janvier

6 Comment gérer un emprunt et comment utiliser un tableur? 4 Sylvain a emprunté sur 6 ans la somme de au taux annuel de 6 % Il décide de rembourser chaque année pendant 5 ans et le solde à la fin de la sixième année On note C n le capital, exprimé en euros, restant à rembourser après la n-ième échéance On appelle (A n 1 n 10 la suite des amortissements du capital et (I n 1 n 10 la suite des intérêts versés a Préciser C 0 b Déterminer le montant des intérêts payés à la première échéance et en déduire C 1 c Trouver une relation liant C n + 1 et C n d Sur une feuille de calcul d un tableur, faire apparaître les différents montants I n, A n et C n e Quel sera le montant de la sixième échéance? f Sylvain trouve la dernière échéance trop élevée et décide de verser les 5 premières années Quel sera alors le montant de la dernière échéance? Les intérêts versés à la n-ième échéance sont les intérêts portant sur le capital restant dû après la (n 1-ième échéance, soit C n 1 Le montant du remboursement annuel de effectué l année n comprend les intérêts portant sur le capital restant dû et un amortissement du capital Le capital restant dû après la n-ième échéance est égal au capital restant dû l année précédente diminué de l amortissement de l année n a C 0 correspond au capital restant à rembourser sans qu il y ait eu de remboursement, donc au capital emprunté Donc C 0 = b Appelons I n le montant des intérêts versés l année n, pour n 1 On en déduit I n = 0,06 C n 1 Au cours de la première échéance, le montant des intérêts est donc : I 1 = 0, = 480 Notons I n l amortissement du capital effectué à la n-ième échéance On sait que I n + A n = 1 500, donc A n = I n On peut ainsi calculer l amortissement du capital à la première échéance : A 1 = 1 00 On en conclut C 1 = = c C n 1 A n 1 (1 500 I n 1 (1500 0,06 C n ,06 C n 1 = 1,06 C n Les suites numériques

7 La cellule C4 est un adressage absolu La cellule C6 est aussi un adressage absolu En effet le taux et le montant des échéances sont fixes d Construisons une feuille de calcul dans un tableur Dans la cellule D9 : =$C$6-C9 Dans la cellule E9 : =$C$6 Dans la cellule C9 : =B9*$C$4 Dans le cellule B10 : =F9 Dans la cellule F9 : =B9-D9 On a ensuite étendu les formules sur les lignes de 10 à 13 e Pour compléter la dernière ligne, on remplit les cellules B14, C14, D14 et F14 en étendant toujours la même formule Mais il faut changer la formule de la cellule E14 En effet le montant de la dernière cellule est la somme du capital restant dû et des intérêts dus sur ce capital restant Le tableau a été construit de façon à ce qu il puisse évoluer, c est-à-dire de façon à pouvoir changer les montants de l emprunt, du taux ou des annuités La dernière échéance sera donc de 385,18 f Changeons le montant des échéances La dernière échéance sera alors de 1787,64 13

Les suites numériques

Les suites numériques Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Suites numériques Rappels sur les suites (classe de 1ère)

Suites numériques Rappels sur les suites (classe de 1ère) Chapitre 01 Suites numériques Rappels sur les suites (classe de 1ère) I. Généralités sur les suites (classe de 1ère) 1.1) Définition Une suite numérique est une fonction u définie de N dans R, qui à tout

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

SENS DE VARIATION D UNE SUITE

SENS DE VARIATION D UNE SUITE 1 Les suites SENS DE VARIATION D UNE SUITE La suite (u n ) est croissante lorsque pour tout entier n, u n + 1 u n. La suite (u n ) est décroissante lorsque pour tout entier n, u n + 1 u n. La suite (u

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

Suites numériques. Quelques rappels

Suites numériques. Quelques rappels Suites numériques 1 Quelques rappels Trouver pour chacune des suites suivantes les termes manquants. Lesquelles sont des suites arithmétiques? (Préciser le premier terme et la raison) Lesquelles sont des

Plus en détail

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un

Plus en détail

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés Chapitre 1 - Suites I Suites géométriques I.1 Définition et propriétés TD 1 : Évolutions de populations Le premier janvier 2011, une ville A compte 350 000 habitants. A la même date, une ville B compte

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

Un peu de calculs financiers

Un peu de calculs financiers Un peu de calculs financiers 1. Les intérêts simples Intérêt : somme rapportée par le prêt d un capital. Il est proportionnel au montant de la somme prêtée et à la durée du prêt Période : le temps est

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

Algorithmique. I Définition

Algorithmique. I Définition Algorithmique I Définition Voici une définition du mot algorithme que l on peut trouver dans un dictionnaire : Ensemble de règles opératoires dont l application permet de résoudre un problème énoncé au

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

Le financement des investissements par emprunts

Le financement des investissements par emprunts Le financement des investissements par emprunts Définition Pour bien démarrer I) Les emprunts a) Remboursables par amortissements constants b) Remboursables par échéances constantes c) Conclusion sur les

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre 2005 1 Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite.

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 2007 2008

Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 2007 2008 Terminale STG Chapitre 6 : suites arithmétiques et géométriques. Page n 1 Dans la vitrine du magasin de monsieur suite, on peut voir écrit : " du premier au 4 décembre 006 votre prêt à,90 % pour faire

Plus en détail

Baccalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction

Baccalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction accalauréat STG - Mercatique - CFE - GSI Métropole 13 septembre 2012 Correction EXERCICE 1 4 points Selon un sondage réalisé sur un échantillon de personnes en France, 57 % des personnes interrogées sont

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

I Suites géométriques, maths fi (1 + α + α 2 + + α n )

I Suites géométriques, maths fi (1 + α + α 2 + + α n ) UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs

Plus en détail

52321 - Informatique 2. Tableur. Emploi usuel d un tableur 26.02.2007. Emploi usuel d un tableur Autres emplois Simulation Scénario Exercices

52321 - Informatique 2. Tableur. Emploi usuel d un tableur 26.02.2007. Emploi usuel d un tableur Autres emplois Simulation Scénario Exercices 52321 - Informatique 2 26.02.2007 Peter DAEHNE Emploi usuel d un tableur Autres emplois Simulation Peter DAEHNE -2- Emploi usuel d un tableur Créer des tableaux comprenant: des cellules contenant des valeurs

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences

S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières I - Généralités LES INTERETS COMPOSES 1) Définitions

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Baccalauréat général Antilles-Guyane

Baccalauréat général Antilles-Guyane Baccalauréat général Antilles-Guyane Mathématiques-informatique - série L - juin 2004 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices Les annexes 1 et 2 sont à rendre avec la

Plus en détail

Mathématiques Ch. 1 : Suites arithmétiques et géométriques

Mathématiques Ch. 1 : Suites arithmétiques et géométriques 1 - LYCÉE LOUIS PAYEN - BTS CGO Mathématiques Ch. 1 : Suites arithmétiques et géométriques Cours J-L NEULAT 1 Généralités sur les suites 1.1 Les différents modes de génération d une suite Un suite peut

Plus en détail

Chapitre 8 L évaluation des obligations. Plan

Chapitre 8 L évaluation des obligations. Plan Chapitre 8 L évaluation des obligations Plan Actualiser un titre à revenus fixes Obligations zéro coupon Obligations ordinaires A échéance identique, rendements identiques? Évolution du cours des obligations

Plus en détail

Chapitre 15 : Les techniques de financement

Chapitre 15 : Les techniques de financement Chapitre 15 : Les techniques de financement I. Les intérêts composés On utilise les intérêts composés au lieu des intérêts simples lorsque la durée d un placement ou d un emprunt dépasse un an. A. La valeur

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Tableau d amortissement et suite géométrique

Tableau d amortissement et suite géométrique Tableau d amortissement et suite géométrique ENONCE : Afin d être plus compétitive, une entreprise décide d emprunter 100 000 pour investir dans de nouvelles machines. Elle souhaite rembourser en 3 ans

Plus en détail

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES)

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) Depuis sa publication en 1973, la formule de Black et Scholes s est imposée comme la référence pour la valorisation

Plus en détail

Annuités. Administration Économique et Sociale. Mathématiques XA100M

Annuités. Administration Économique et Sociale. Mathématiques XA100M Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital

Plus en détail

Intérêts composés - Amortissements

Intérêts composés - Amortissements Intérêts composés - Amortissements Objectif : - Etudier et calculer les éléments d un placement à intérêts composés. - Effectuer un tableau d amortissement. I - Approche : Examinons la publicité suivante

Plus en détail

Prise en main d un tableur Open Office

Prise en main d un tableur Open Office Prise en main d un tableur Open Office 1 Présentation de l écran de travail Barre des menus Barre d outil Standard Barre de mise en forme Zone d édition des formules zone active Adresse de la zone active

Plus en détail

Lycée Louise Michel. Cours de Mathématiques. pour. les T STG D. Spécialité : Sciences et Techniques de la Gestion (STG)

Lycée Louise Michel. Cours de Mathématiques. pour. les T STG D. Spécialité : Sciences et Techniques de la Gestion (STG) Lycée Louise Michel Cours de Mathématiques pour les T STG D Spécialité : Sciences et Techniques de la Gestion (STG) Option : Communication et Gestion des Ressources Humaines (CGRH). Olivier LE CADET Année

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Chapitre 02 Suites arithmétiques et géométriques

Chapitre 02 Suites arithmétiques et géométriques Chapitre 02 Suites arithmétiques et géométriques Classe de terminale STMG APPRENTISSAGES PARALLELES : ALGORITHMIQUE : VARIABLES ET AFFECTATIONS, INSTRUCTIONS SIMPLES, BOUCLE «POUR» RAPPELS DE PREMIERE

Plus en détail

Calcul des intérêts d un prêt. Tableau d amortissement.

Calcul des intérêts d un prêt. Tableau d amortissement. Calcul des intérêts d un prêt Tableau d amortissement Version 100 du 28 septembre 2010 Soient C capital emprunté t le taux d intérêt mensuel T le taux annuel effectif global (TAEG) correspondant au taux

Plus en détail

Définition d une suite récurrente à l aide de la fonction ln

Définition d une suite récurrente à l aide de la fonction ln Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.

Plus en détail

GEOSI. Les intérêts et les Emprunts

GEOSI. Les intérêts et les Emprunts GEOSI Les intérêts et les Emprunts 1.Définition Lorsque qu une personne (prêteur) prête une somme à une autre personne (emprunteur) il est généralement convenu de rembourser, à l échéance, cet emprunt

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

SUITES ET SÉRIES GÉOMÉTRIQUES

SUITES ET SÉRIES GÉOMÉTRIQUES SUITES ET SÉRIES GÉOMÉTRIQUES Sommaire 1. Suites géométriques... 2 2. Exercice... 6 3. Application des suites géométriques aux mathématiques financières... 7 4. Vocabulaire... 7 5. Exercices :... 8 6.

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats.

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats. EXERCICES SUR LES EMPRUNTS INDIVIS Exercice 1 Pour financer l extension de son magasin, un responsable a contracté un emprunt remboursable, intérêts compris, sur 10 ans par annuités constantes. Voici le

Plus en détail

Calculs financiers (1) : intérêts simples, composés.

Calculs financiers (1) : intérêts simples, composés. Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

FONCTIONS FINANCIÈRES

FONCTIONS FINANCIÈRES FONCTIONS FINANCIÈRES Les fonctions financières d Excel permettent de calculer des mensualités, des taux d intérêts, des durées, etc. À chaque fois, il faudra faire très attention au niveau de la durée

Plus en détail

3. E n t r e r d e s d o n n é e s d a n s u n e f e u i l l e

3. E n t r e r d e s d o n n é e s d a n s u n e f e u i l l e 3. E n t r e r d e s d o n n é e s d a n s u n e f e u i l l e Ce document est disponible sur Internet à l adresse : http://perso.fundp.ac.be/~jmlamber Informations complémentaires : Jean-Marie.Lambert@fundp.ac.be

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

521321 - Informatique 2. Tableur. Emploi usuel d un tableur 29.02.2008

521321 - Informatique 2. Tableur. Emploi usuel d un tableur 29.02.2008 521321 - Informatique 2 29.02.2008 Peter DAEHNE Emploi usuel d un tableur Autres emplois Simulation Peter DAEHNE -2- Emploi usuel d un tableur Créer des tableaux comprenant: des cellules contenant des

Plus en détail

Références à une cellule dans EXCEL

Références à une cellule dans EXCEL Références à une cellule dans EXCEL Il existe, dans une formule, trois façons de faire référence à des cellules. Références relatives Lancez le logiciel Excel et choisissez la notation des coordonnées

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

TEST - Chapitre 3. La semaine prochaine. jeudi? vendredi?

TEST - Chapitre 3. La semaine prochaine. jeudi? vendredi? mathématiques 10e année le vendredi 9 mai 2014 Mme Barton TEST - Chapitre 3 La semaine prochaine jeudi? vendredi? maths 10e année Cours # 2 La géométrie, la mesure et les finances 10 Les finances Géométrie,

Plus en détail

T.D. 1. Licence 2, 2014 15 - Université Paris 8

T.D. 1. Licence 2, 2014 15 - Université Paris 8 Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?

Plus en détail

Chapitre II : Les emprunts indivis

Chapitre II : Les emprunts indivis Chapitre II : Les emprunts indivis I. Caractéristiques générales On appelle emprunt indivis, un contrat entre un et un seul prêteur et un et un seul emprunteur. Un tel emprunt fait l objet d un remboursement

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

L emprunt indivis - généralités

L emprunt indivis - généralités L emprunt indivis - généralités Les modalités de calcul d un échéancier de remboursement d un emprunt indivis forment un thème d étude des outils de gestion en BTS HR (partie mathématiques financières)

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants?

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants? EMPRUNT INDIVIS Objectifs : - Savoir calculer une annuité de remboursement constante ; - Dresser un tableau d amortissement d emprunt par annuités constantes ou par amortissements constants ; - Calculer

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Ma banque, mes emprunts et mes intérêts

Ma banque, mes emprunts et mes intérêts Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

BULLETIN OFFICIEL DE LA COMMUNE DE BESANÇON 2011-1034

BULLETIN OFFICIEL DE LA COMMUNE DE BESANÇON 2011-1034 BULLETIN OFFICIEL DE LA COMMUNE DE BESANÇON 2011-1034 17 - SAIEMB LOGEMENT - Réaménagement de 38 prêts contractés auprès de la Caisse des Dépôts et Consignations et garantis par la Mme SCHOELLER, Première

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème.

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. Valeur cible et solveur Atteindre une valeur cible Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. A l'aide d'un certain nombre

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 15 septembre 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Baccalauréat Mathématiques-informatique Polynésie juin 2007

Baccalauréat Mathématiques-informatique Polynésie juin 2007 Durée : 1 h 30 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices L annexe 1 est rendre avec la copie Baccalauréat Mathématiques-informatique Polynésie juin 2007 EXERCICE 1 10 points

Plus en détail

Statistiques 1 ; 2 ; 9 33 0 ; 1 ; 3 ; 5 ; 6 3 1 ; 1,5 ; 2 ; 3,5 4 57 ; 19 ; 23 36

Statistiques 1 ; 2 ; 9 33 0 ; 1 ; 3 ; 5 ; 6 3 1 ; 1,5 ; 2 ; 3,5 4 57 ; 19 ; 23 36 Vocabulaire Statistiques La moyenne de N nombres x 1, x 2,..., x n est égale au quotient de la somme de ces nombres par N : x= x 1 + x 2 +... + x n N L'équation réduite d'une droite (non parallèle à l'axe

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200 Suite arithmétique ENONCE : Une société de téléphonie mobile propose un nouveau forfait à partir du mois de janvier 2009. En janvier 2009, elle a enregistré 2000 abonnements souscrits pour ce forfait.

Plus en détail

Baccalauréat ST2S Antilles Guyane juin 2013 Correction

Baccalauréat ST2S Antilles Guyane juin 2013 Correction Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé

Plus en détail

Devoir commun de Mathématiques

Devoir commun de Mathématiques Exercice 1 3,5 points Le tableau suivant donne la répartition des internautes par continent pour les années 2001, 2002, 2003 et 2004 en millions d individus. Il est incomplet. Pour le remplir il faut utiliser

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

géométrique et u n = 3(2) n. Cela donne au total :

géométrique et u n = 3(2) n. Cela donne au total : Leçon N 2 : Les suites Rappels importants Il y a deux façons de décrire une suite On nous donne la fonction qui permet de fabriquer ces termes : u n = f (n), n N. Exemple : u n = n² n N, cela donne 0 ;

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences I - Définitions Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES INTERETS SIMPLES Capital ou principal

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

CALCULS DANS UN TABLEAU. La vocation première d'un tableur est de permettre la réalisation de calculs des plus simples aux plus complexes.

CALCULS DANS UN TABLEAU. La vocation première d'un tableur est de permettre la réalisation de calculs des plus simples aux plus complexes. CALCULS DANS UN TABLEAU GENERALITES La vocation première d'un tableur est de permettre la réalisation de calculs des plus simples aux plus complexes. Pour effectuer un calcul, il est nécessaire de déterminer

Plus en détail