Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin

Dimension: px
Commencer à balayer dès la page:

Download "Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin"

Transcription

1 Plan de la séance Traitement d images Partie 4: Restauration Thomas Oberlin Signaux et Communications, RT/ENSEEHT 1 ntroduction 2 Modélisation des dégradations Modèles de bruit Modèles de flous 3 Restauration par filtrage Filtrage linéaire Filtrage non-linéaire Filtrage adaptatif 4 Vers les problèmes inverses 1 / 28 2 / 28 Restauration d images Restauration d images Un des plus vieux problèmes en traitement d images, et toujours une étape de pré-traitement nécessaire pour beaucoup d applications Dans son processus d acquisition, une image peut subir des dégradations (mais également pendant sa transmission ou son enregistrement) Ces dégradations peuvent être dues 1 aux capteurs, à la transmission le flou causé par le système optique le bruit quantique, bruit de mesure, défauts de transmission la quantification, la compression 2 aux conditions de prise de vues flou de bougé perturbation atmosphérique Débruitage Déconvolution supprimer ou diminuer les effets d une telle détérioration : restauration 3 / 28 4 / 28

2 Plan de la séance Modélisation des dégradations En pratique, de nombreuses causes possibles de dégradations, dûes par exemple : 1 2 ntroduction Modélisation des dégradations Modèles de bruit Modèles de flous 3 Restauration par filtrage 4 Vers les problèmes inverses au milieu de mesure (atmosphère) au système optique (diffraction, défocalisation) au capteur (mouvement, diffusion, bruit) à la scène (sujet en mouvement) à la conversion (quantification, échantillonnage) à la transmission (compression) à la conservation (vieux films) Modèle simplifié : 3 types de dégradations bruit additif u = f0 + b bruit multiplicatif u = f0 b convolution u = f0? h 5 / 28 6 / 28 Bruit poivre et sel Bruit additif Définition Obtenu en insérant n pixels blancs et n pixels noirs aléatoirement dans une image Caractérisé par le pourcentage de pixels remplacés (rapport 2n/N ) 5% S écrit u = f0 + b où b est iid bi 15% dû à des défauts de transmission, de capteur 7 / 28 P 8 / 28

3 Bruit blanc gaussien Bruit quantique (ou poissonien, de grenaille) Bruit additif Gaussien iid Obtenu en ajoutant à chaque pixel une valeur aléatoire distribuée identiquement et indépendamment suivant une loi gaussienne : C est le bruit électronique, généré par la nature quantique de la lumière Pour une intensité moyenne, le nombre de photons observés sur une durée T est une variable aléatoire distribuée selon une loi de Poisson : Gσ,µ (x) = (x µ)2 1 e 2σ2 σ 2π P(k, T ) = (T )k e T k! ( : intensité moyenne, photons/s) Espérance et variance : T Par forte intensité (T 1), proche d un bruit Gaussien le modèle Poissonien est utilisé à faibles intensités (ex : miscroscopie à fluorescence) Attention! σ = 10 σ = 50 Le bruit quantique est présent en l absence de toute erreur de mesure C est un bruit multiplicatif Autre exemple de bruit multiplicatif : speckle (radar, imagerie ultrasonore) Alternatives : distributions Gamma, exponentielles (laser), Rayleigh (RMf), etc 11 / 28 9 / 28 Modèles de flous En pratique, comment estimer h? L image observée est dégradée par un filtre convolutif (en général passe-bas) : u = f0? h À partir de connaissances physiques (modélisation) : flou de bougé constant, turbulence atmosphérique, etc Directement sur l image dégradée, en sélectionnant une zone contenant des structures simples (par exemple, contour + zones lisses) où l on peut extrapoler l image originale f0 Par calibration En général, h est une caractéristique du système optique On mesure les dégradations pour des images de référence connues, ce qui permet d estimer h Cas particulier : h = Lδ Exemples : flou de focus flou de bougé (horizontal) h uniforme h = [ ] Plus généralement, h représente la réponse impulsionnelle d un système optique en entier 12 / 28 ci, on suppose h connu (ou estimé) Certaines méthodes réalisent conjointement l estimation de h et la restauration : on parle de déconvolution aveugle (h inconnu) ou myope (h paramétré de paramètres inconnus) 13 / 28

4 Plan de la séance Débruitage par filtrage passe-bas Pour diminuer le bruit, on peut utiliser un moyenneur local 1 ntroduction Exemple : bruit Gaussien, filtrage Gaussien : 2 Modélisation des dégradations 3 Restauration par filtrage Filtrage linéaire Filtrage non-linéaire Filtrage adaptatif 4 Vers les problèmes inverses Bruit gaussien filtrage gaussien Problème : floute l image! 14 / / 28 Déconvolution par réhaussement Utilisé pour réhausser les contours, réduire le flou, augmenter la netteté Exemple : ou Filtrage non-linéaire Filtrage médian : on choisit la valeur médianne dans un voisinage : g(x) = med{f (z) z S x } Filtrage géométrique : calcule une moyenne géométrique locale g(x) = ( z S x f (z) ) 1 Sx Filtrage moyen harmonique : calcule une moyenne harmonique locale g(x) = S x 1 f (z) z S x Flouté Réhaussé Problème : amplifie le bruit! Filtres max et min Filtre de point milieu 16 / / 28

5 llustrations Retrouvez qui est qui Filtrage inverse On observe une version dégradée u de l image f0 d après le modèle suivant : u = f0? h, On écrit en Fourier u = f 0 h Lorsque h (ξ) 6= 0 on a : f 0 (ξ) = filtrage inverse 21 / 28 Filtrage pseudo-inverse h (ξ) Flou gaussien 19 / 28 u (ξ) Filtrage de Wiener Si h possède des valeurs nulles (ou numériquement petites), on peut définir le pseudo-inverse 1 si h (ξ) > ε h (ξ) g (ξ) = 0 sinon On observe une version dégradée u de l image f0 d après le modèle suivant : u = f0? h + b, où h est une réponse impulsionnelle supposée connue, et b N (0, σ 2 ) On estime ensuite l image originale par f (ξ) = u (ξ)g (ξ) f 0 (ξ) Filtrage de Wiener (principe) On cherche f, une estimation de f0 de la forme f = u? g, qui minimise l erreur quadratique moyenne : h 2 i f = arg min E f0 f 2 f Hypothèse : f0 stationnaire Comment calculer g? exercice! Flou + bruit faible filtrage inverse 22 / 28 filtrage pseudo-inverse 23 / 28

6 mplémentation du filtre de Wiener En théorie : g (ξ) = h (ξ) h (ξ) 2 + N (ξ) S(ξ) Et en pratique, comment faire? Filtrage de Wiener llustration h est supposée connue (sinon on peut l estimer, cf section précédente) N est la DSP du bruit Pour un bruit blanc Gaussien de variance σ 2, N (ξ) = σ 2 Possibilité bruit non iid, mais il faut estimer sa DSP S est la DSP du signal On peut choisir S = u 2 σ 2 On peut se contenter de remplacer N /S par une fonction constante, ou circulaire croissante Limites du filtrage de Wiener : la plupart des images ne sont pas des signaux stationnaires! Dégradée Restaurée (Wiener) 26 / / 28 llustration (flou de bougé) Débruitage et déconvolution : des problèmes inverses Dans un cadre plus général, on s intéresse à un signal f0 dégradé par un opérateur linéaire H et un bruit additif : u = Hf0 + b Comment estimer f0 étant donné u? Plusieurs réponses : Dégradée Réponse naïve : f = H 1 u Si H n est pas inversible? nverse généralisé (Moore-Penrose, solution aux moindres carrés) : f = arg min ku Hf k22 = (H H ) 1 H u Restaurée (Wiener) Mais : instable Régularisation de Tychonov : f = arg min ku Hf k22 + λ kf k22 = (H H + λ ) 1 H u f Forme de g : Plus généralement : régulariser le problème, si possible en ajoutant de l information a priori sur f Cours de problèmes inverses l année prochaine 27 / 28 (1) f 28 / 28 (2)

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image Plan Licence Pro 1. Généralités 2. Types d Images 3. Numérisation Bases de traitement d images 4. Couleurs Alain Dieterlen 5. Introduction au traitement d Images 6. Dégradations d une image Groupe LAB.EL,

Plus en détail

Traitement d images. Chapitre I Prétraitements

Traitement d images. Chapitre I Prétraitements Traitement d images Chapitre I Prétraitements 1 2 Introduction Les prétraitements d une image consiste à effectuer des opérations visant à : améliorer sa qualité visuelle restaurer l image en éliminant

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Lissage et filtrage linéaire

Lissage et filtrage linéaire Lissage et filtrage linéaire TP de traitement d images :MMIS A Un système d enregistrement d image ne restitue pas l image de manière parfaite : des informations parasites apparaissent et viennent s ajouter

Plus en détail

TERI : Traitement et reconnaissance d'images

TERI : Traitement et reconnaissance d'images TERI : Traitement et reconnaissance d'images Cours Master 2 IAD Isabelle Bloch - ENST / Département Signal & Images Florence Tupin - ENST / Département Signal & Images Antoine Manzanera ENSTA / Unité d'électronique

Plus en détail

PSF et traitement de déconvolution sur les images 3D

PSF et traitement de déconvolution sur les images 3D PSF et traitement de déconvolution sur les images 3D Acquisition d une image 3D De l objet à l image visible L acquisition Émission de Fluorescence Z hv 2 hv 1 hv 2 Y X hv 2 Fluorescence dans un corps

Plus en détail

Approche inverse pour la restauration de l information cristallographique

Approche inverse pour la restauration de l information cristallographique Approche inverse pour la restauration de l information cristallographique Ferréol Soulez INSA CNDRI, Centre de Quantimétrie Lyon 1 1 / 19 Principe 2 / 19 Diffraction des rayon X Diffraction des rayons

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

RESTAURATION D IMAGES

RESTAURATION D IMAGES RESTAURATION D IMAGES Restauration d images (image restoration) La restauration est la suppression des dégradations subies par l image. 2 Restauration d images (image restoration) La restauration est la

Plus en détail

Transformations géométriques / Filtrage

Transformations géométriques / Filtrage Traitement / Plan Bibliographie Cours de traitement Elise Arnaud - Edmond Boyer Université Joseph Fourier Cours de traitement Alain Boucher Cours de traitement T Guyer Université de Chambéry Cours de traitement

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES

OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES Défis actuels Mégadonnées (big data) Square Kilometer Array Telescope : 300 To/s (100 Internet) 9 Robustesse Défis actuels Repérer les comportements suspects

Plus en détail

Modification des valeurs d une image

Modification des valeurs d une image Modification des valeurs d une image Pour l instant, nous avons vu surtout des transformations ponctuelles des pixels d une image Lire la valeur d un pixel la remplacer par une autre Il existe aussi des

Plus en détail

Bases du traitement des images. Détection de contours. Nicolas Thome. 19 octobre 2009. Plan Modélisation Filtrage Approches continues Post-Traitements

Bases du traitement des images. Détection de contours. Nicolas Thome. 19 octobre 2009. Plan Modélisation Filtrage Approches continues Post-Traitements Détection de contours Nicolas Thome 19 octobre 2009 1 / 61 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d'information Information de toute l'image résumée dans le contours

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

TP5 - Morphologie mathématique

TP5 - Morphologie mathématique TP5 - Morphologie mathématique Vincent Barra - Christophe Tilmant 5 novembre 2007 1 Partie théorique 1.1 Introduction La morphologie mathématique [1] est un outil mathématique permettant au départ d explorer

Plus en détail

Microscope confocal à balayage laser. Microscopie photonique. lumière Laser Objectif. Miroir dichroïque Source de. Filtre confocal.

Microscope confocal à balayage laser. Microscopie photonique. lumière Laser Objectif. Miroir dichroïque Source de. Filtre confocal. Microscope confocal à balayage laser Photo-détecteur Filtre confocal Plan image Image reconstruite point par point par balayage laser Miroir dichroïque Source de lumière Laser Objectif Obtention directe

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Cours de Traitement de l Image Licence 3

Cours de Traitement de l Image Licence 3 Cours de Traitement de l Image Licence 3 Jean-Luc Baril Université de Bourgogne - Dépt IEM Laboratoire LE2I - http://vision.u-bourgogne.fr barjl@u-bourgogne.fr http://www.u-bourgogne.fr/jl.baril Lena :

Plus en détail

Bases du traitement des images. Détection de contours

Bases du traitement des images. Détection de contours Détection de contours Dominique.Bereziat@lip6.fr Contributions: N. Thome, D. Béréziat, S. Dubuisson Octobre 2015 1 / 76 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Filtre de Wiener. Analyse en Composantes Principales

Filtre de Wiener. Analyse en Composantes Principales Filtre de Wiener Analyse en Composantes Principales Guillaume Obozinski LIGM/Ecole des Ponts - ParisTech Traitement de l information et vision artificielle Ecole des Ponts Filtre de Wiener Norbert Wiener

Plus en détail

TP Traitement d images

TP Traitement d images BOISSARD Benjamin BAROCHI Guillaume L3 ESI TP Traitement d images TP 1 : Histogramme et Binarisation TP 2 : Filtrage de bruit et de flou TP 3 : Détection de contours (méthodes linéaires) TP 4 : Segmentation

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

Vision industrielle Dispositif optique

Vision industrielle Dispositif optique Vision industrielle Dispositif optique Plan du cours L objectif La focale L ouverture La mise au point Qualité d image Choix de l objectif Cours de Vision Industrielle Nicolas Vandenbroucke 2 Constitution

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES. Frédéric Colas

COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES. Frédéric Colas SEPRO R O B O T I Q U E COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES Frédéric Colas ERT CEMODYNE (int. 1022) - ENSAM 8, Bd Louis XIV 59046 Lille Cedex barre@lille.ensam.fr

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun des s Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun Sébastien Harasse thèse Cifre LIS INPG/Duhamel le 7 décembre 2006 1 Système de surveillance des s Enregistreur

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

TP2 Opérations et filtres

TP2 Opérations et filtres TP2 Opérations et filtres 1. Opérations arithmétiques Mettre en place les fonctions Min et Max sur 2 images en niveaux de gris. Min() conserve entre 2 images les pixels de luminance minimum, Max() conserve

Plus en détail

Mesures à la limite quantique

Mesures à la limite quantique Mesures à la limite quantique ~ 3 ème ème cours ~ A. Heidmann Laboratoire Kastler Brossel Plan du troisième cours Mesures en continu, mesure de position Mesures en continu théorie de la photodétection

Plus en détail

Application et méthodologie d acquisition d images

Application et méthodologie d acquisition d images Application et méthodologie d acquisition d images Application industrielle et acquisition de l image 2 Imagerie industrielle est utilisée comme outil de contrôle et de gestion augmentation flexibilité

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Outils Mathématiques pour l informatique

Outils Mathématiques pour l informatique Outils Math. pour l info. - Licence 3 - IEM - Année 2015/2016 Université de Bourgogne Labo. Le2i, UMR-CNRS 5158 http://jl.baril.u-bourgogne.fr September 10, 2015 Cours outils Math. pour l info. - Licence

Plus en détail

Leçon N 8 Traitement des photos 4 ème

Leçon N 8 Traitement des photos 4 ème Leçon N 8 Traitement des photos 4 ème Partie Voyons maintenant quelques applications de GIMP 10 Renforcement de la netteté Aucun logiciel de retouche ne peut restituer une photo dont la netteté est très

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

EL5E13 Vision et traitement d'images embarqué. Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE

EL5E13 Vision et traitement d'images embarqué. Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE EL5E13 Vision et traitement d'images embarqué Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE Cours : 2 x 2h L image numérique Indexation & analyse d images TD : 2 x 2h L image numérique

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

BASES PHYSIQUES DE LA RADIOLOGIE. D. Mariano-Goulart Service de médecine nucléaire CHU de Montpellier.

BASES PHYSIQUES DE LA RADIOLOGIE. D. Mariano-Goulart Service de médecine nucléaire CHU de Montpellier. BASES PHYSQUES DE LA RADOLOGE D. Mariano-Goulart Service de médecine nucléaire CHU de Montpellier. PLAN DU COURS (5 heures) magerie de transmission par rayons X Le tube X et ses réglages L image de transmission

Plus en détail

Traitement des images!

Traitement des images! Traitement des images! Yves USSON! Reconnaissance des Formes et Microscopie Quantitative! Lab. TIMC UMR 5525 CNRS, Grenoble! Traitement d images - définition! Séquence d opérations ayant pour but :!! -

Plus en détail

Hiver 2013 IMN 259. Introduction à l analyse d images. Par Pierre-Marc Jodoin

Hiver 2013 IMN 259. Introduction à l analyse d images. Par Pierre-Marc Jodoin Hiver 2013 Analyse d images IMN 259 Introduction à l analyse d images Par Pierre-Marc Jodoin Où se situe l analyse d images? Traitement d images Imagerie Image Analyse d images/ Vision par ordinateur Infographie

Plus en détail

Restauration des images Saïd Ladjal

Restauration des images Saïd Ladjal Restauration des images Saïd Ladjal (ladjal@enst.fr) Position du problème Les images acquises subissent des dégradations. Ces dégradations sont dues, d une part au capteur et d autre part aux conditions

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Reconstitution de forces dynamiques stationnaires excitant un carter cylindre de moteur

Reconstitution de forces dynamiques stationnaires excitant un carter cylindre de moteur 16 Reconstitution de forces dynamiques stationnaires excitant un carter cylindre de moteur Q. Leclere, C. Pezerat, B. Laulagnet, Laboratoire Vibrations Acoustique, INSA Lyon, 20, avenue A. Einstein, 69100

Plus en détail

Arbres de décisions et forêts aléatoires.

Arbres de décisions et forêts aléatoires. Arbres de décisions et forêts aléatoires. Pierre Gaillard 7 janvier 2014 1 Plan 1 Arbre de décision 2 Les méthodes d ensembles et les forêts aléatoires 2 Introduction 3 Introduction Jeu de données (ex

Plus en détail

Vision 2D Identification / Localisation. Vision 3D : Mono-capteur et stéréovision. Mono-capteur. Stéréovision 2 capteurs G / D

Vision 2D Identification / Localisation. Vision 3D : Mono-capteur et stéréovision. Mono-capteur. Stéréovision 2 capteurs G / D Plan de l exposé Cours de Traitement d Images de Xavier Clady (rédigé par: X. Clady, C. Achard, J.Devars & M.Milgram) Introduction Exemple d application de l imagerie Élément de traitement du signal Rotation

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

L impact de deux strategies de compression dans le

L impact de deux strategies de compression dans le L impact de deux strategies de compression dans le problème stéréo Réunion scientifique, Imagerie stéréo et 3D GdR ISIS, 2011 G. Blanchet, A. Buades, B. Coll (Univ. Illes Balears), J.M. Morel, B. Rougé

Plus en détail

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36.

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36. Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Opérateur GENE_ACCE_SEISME 1 But Cet opérateur permet de générer des accélérogrammes sismiques artificiels pour des calculs dynamiques transitoires.

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Introduction au traitement d images Détection de contours et segmentation

Introduction au traitement d images Détection de contours et segmentation Introduction au traitement d images Détection de contours et segmentation Résumé : Ce document est une introduction au traitement d images s intéressant notamment à la détection de contours et à la segmentation.

Plus en détail

TECHNIQUES DE BASE IMAGERIE 2D. Yves BRINGER I.S.T.A.S.E. Université Jean Monnet

TECHNIQUES DE BASE IMAGERIE 2D. Yves BRINGER I.S.T.A.S.E. Université Jean Monnet TECHNIQUES DE BASE EN IMAGERIE 2D Yves BRINGER I.S.T.A.S.E. Université Jean Monnet 1 1. INTRODUCTION 2. ECLAIRAGE 3. TYPES D IMAGE 4. OPTIQUE 5. CAPTEUR 6. CALIBRAGE 7. UNITE DE TRAITEMENT 8. TRAITEMENT

Plus en détail

Python et traitement d images

Python et traitement d images Python et traitement d images L objectif de ce court document est de présenter quelques aspects simples du traitement d images sous Python, et de donner quelques pistes pour aller plus avant. Plusieurs

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

LE TRAITEMENT DES IMAGES CCD

LE TRAITEMENT DES IMAGES CCD LE TRAITEMENT DES IMAGES CCD EN ASTRONOMIE AMATEUR Pierre CRUZALEBES CIV - 190 rue Frédéric-Mistral - BP 97-06902 SOPHIA ANTIPOLIS CEDEX - Tél : 06.61.98.00.39 Association loi 1901 agréée Education Nationale,

Plus en détail

Traitement d images numériques en microscopie

Traitement d images numériques en microscopie Traitement d images numériques en microscopie Yves Usson Reconnaissance et Microscopie Quantitative, Laboratoire TIMC UMR5525 CNRS Institut d Ingénierie et d Information de Santé (IN3S), La Tronche Traitement

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Segmentation d image

Segmentation d image MÉMOIRE DE MASTER DE RECHERCHE «ARCHITECTURES LOGICIELLES DISTRIBUÉES» Segmentation d image Application aux documents anciens Thibault LELORE mai 2007 encadré par José MARTINEZ Frédéric BOUCHARA, Elisabeth

Plus en détail

Atelier de photométrie: Principe de mesure et prétraitements

Atelier de photométrie: Principe de mesure et prétraitements Pro/Am WETAL 2015-12 Novembre 2015 - Giron Atelier de photométrie: Principe de mesure et prétraitements Alexandre Santerne Marie Curie Fellow Instituto de Astrofísica e Ciências do Espaço Universidade

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

8TRD147: Animation et images par ordinateur

8TRD147: Animation et images par ordinateur 8TRD147: Animation et images par ordinateur Introduction au traitement numérique des images Y. Chiricota Département d informatique et de mathématique Université du Québec à Chicoutimi / Certaines des

Plus en détail

L expérience de Stern et Gerlach. ~ k3. Chapitre 8

L expérience de Stern et Gerlach. ~ k3. Chapitre 8 L expérience de Stern et Gerlach ~ k3 Chapitre 8 Quiz de bienvenue Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] On considère un aimant placé dans un champ magnétique homogène.

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail