ANALYSE NUMERIQUE NON-LINEAIRE

Dimension: px
Commencer à balayer dès la page:

Download "ANALYSE NUMERIQUE NON-LINEAIRE"

Transcription

1 Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1

2

3 Tble des mtières Chpitre 1. Représenttion des nombres 5 Chpitre. Interpoltion et pproximtion 9 1. Interpoltion selon Lgrnge 9. Etude de l erreur d interpoltion L lgorithme de Newton 1 4. Approximtion hilbertienne Approximtion uniforme 19 Chpitre 3. Intégrtion et différentition numérique 1 1. Intégrtion pprochée 1. Etude de l erreur d intégrtion pprochée 4 3. L formule d intégrtion pprochée de Guss 6 4. Différentition numérique 7 Chpitre 4. Résolution numérique d équtions non-linéires dns R N Résolution numérique d une éqution d une vrible pr dichotomie ou regul flsi 31. Approximtions successives 3 3. Méthode de Newton 3 4. Méthode de plus grnde descente 3 Chpitre 5. Résolution numérique d équtions différentielles ordinires Le schém d Euler explicite ou implicite 34 3

4

5 CHAPITRE 1 Représenttion des nombres PROPOSITION 1.1. Soit β un entier donné (l bse). Alors tout nombre réel x R s écrit de l forme k x = ( 1) s j β j vec s {0, 1}, k Z, j N, 0 j β 1. Si on exige que k 0, lors l représenttion ci-dessus est unique. On écrit ussi j= (1.1) x = k k , Si β = 10, lors l représenttion (1.1) est exctement l représenttion décimle de x. Autres bses fréquentes: β = (représenttion binire), β = 8 ou β = 16 (représenttion hexdécimle). Pour les ordinteurs, on typiquement β =. Dns l écriture (1.1), déplcer l virgule d une position à droite (ou à guche) correspond à une multipliction (ou une division) pr β. Tout nombre x R dmet donc une unique représenttion sous l forme (1.) x = ( 1) s k, k 1 k k 3 β k vec s {0, 1}, k Z, j N, 0 j β 1, k 0. C est cette représenttion scientifique (ou: représenttion en virgule flottnte) que l on v utiliser dns l suite. Dns cette représenttion on ppelle s ou ( 1) s le signe, l suite k, k 1 k k 3... l mntisse et k Z l exposnt de x. Ces trois vribles crctérisent le nombre réel x Représenttion binire. Nombres mchine. Dns l représenttion binire (c.à.d. β = ) on s {0, 1}, k Z, j {0, 1} k = 1. ( j k), et Comme l mémoire d un ordinteur est limité, on ne peut coder qu un nombre fini de nombres réels. Ainsi, l mntisse d un nombre mchine est toujours une suite finie, et l ensemble des exposnts k est un ensemble fini. Pr exemple, vec b bits (binry 5

6 6 1. REPRÉSENTATION DES NOMBRES digits) on ne peut coder que b nombres réels. Pour l comptibilité entre ordinteurs, on utilise le stndrd IEEE (Institute of Electricl nd Electronics Engineers) suivnt Simple précision (3 bits). Avec 3 bits on peut coder 3 4, 9 millirds de nombres réels. Selon le stndrd IEEE on utilise 1 bit pour le signe 3 bits pour l mntisse, et 8 bits pour l exposnt k qui vrie entre 16 et 17. On remrque que pour un nombre réel non-nul, on toujours k = 1 et qu il suffit donc de coder les 3 bits de l mntisse qui suivent prés l virgule. L exposnt est déclé de 7 1 = 17. Pour les nombres mchine non-nuls on donc }{{} S 1, } {{ } MMM... MMM } {{ } EEEEEEEE. signe (1 bit) mntisse (3 bits) exposnt (8 bits) L exposnt vec l mntisse représente le nombre x = 0. L exposnt vec l mntisse représente l infini. Le plus petit nombre mchine positif, non-nul est 0 1, =1 16 1, On ppelle précision mchine le plus petit nombre mchine positif eps tel que 1 eps > 1 (ddition en virgule flottnte, c.à.d. le résultt 1 eps est de nouveu un nombre mchine). En simple précision, on En générl, on eps = 3 1, x y = (x y)(1 + r) pour deux nombres mchine x, y. Ici, x y est l multipliction excte, x y est l multipliction en virgule flottnte, et l erreur reltif r vérifie r eps Double précision (64 bits). Avec 64 bits on peut coder 64 1, nombres réels. Selon le stndrd IEEE on utilise 1 bit pour le signe 5 bits pour l mntisse, et 11 bits pour l exposnt k qui vrie entre 10 et 103. On remrque qu on toujours k = 1 et qu il suffit donc de coder les 5 bits de l mntisse qui suivent prés l virgule. L exposnt est déclé de 11 1 = 103. }{{} S 1, } {{ } MMM... MMM } {{ } EEEEEEEEEEE. signe (1 bit) mntisse (5 bits) exposnt (11 bits)

7 1. REPRÉSENTATION DES NOMBRES 7 Le plus petit nombre mchine positif, non-nulle est donc 0 1, =1 10. En double précision, on eps = 5,

8

9 CHAPITRE Interpoltion et pproximtion 1. Interpoltion selon Lgrnge On considère le problème d interpoltion polynômile suivnt: étnt donné x 0,..., x n R y 0,..., y n R (les noeuds) et (les bscisses), on cherche un polynôme p : R R de degré n tel que p(x i ) = y i pour tout 0 i n. Bien sur, u lieu de chercher un polynôme clssique de degré n, on peut ussi chercher un polynôme trigonométrique, une fonction spline (une fonction de clsse C qui est un polynôme pr morceux), un élément fini... l importnt étnt qu on cherche une fonction interpolnte dns un espce vectoriel donné et de dimension finie. Pr exemple, l espce R n [X] = {p : R R : p est polynôme de degré n} des polynômes de degré n est un espce de dimension n + 1. Une bse vectorielle est constitué des monômes x i (0 i n) et tout polynôme p R n [X] dmet une représenttion unique de l forme vec i R. p(x) = x + + n x n PROPOSITION.1. Etnt donné des noeuds x 0 < < x n, et étnt donné de bscisses y 0,..., y n R, il existe un et un seul polynôme p n R n [X] tel que p(x i ) = y i pour tout 0 i n. En d utres mots, le problème d interpoltion polynômile dmet une unique solution. PREMIÈRE DÉMONSTRATION DE LA PROPOSITION.1 (COMPLIQUÉE?) Si on représente les polynômes comme combinisons linéires de l bse vectorielle des monômes, lors le problème d interpoltion est le problème de montrer existence et unicité d une fmille de coefficients 0,..., n tel que p(x) = x+ + n x n vérifie p(x i ) = y i (0 i n). Ceci est équivlent à résoudre le système linéire x n x n 0 = y x n + + n x n n = y n, 9..

10 10. INTERPOLATION ET APPROXIMATION c.à.d. le système 1 x 0 x n 0 0 y 0 1 x 1 x n 1 1 y =... 1 x n xn n n y n Ce système dmet une unique solution ( 0, 1,..., n ) si et seulement si l mtrice de Vndermonde 1 x 0 x n 0 1 x 1 x n 1 A = x n xn n est inversible. Autrement dit, le problème d interpoltion dmet une unique solution si et seulement si det A 0. Pour clculer le determinnt det A, on constte que, en développnt pr exemple pr l dernière ligne, que det A = f (x 0,..., x n ) est un polynôme de degré n en l vrible x n. En remplçnt x n pr x j (vec 0 j n 1) on voit que f (x 0,..., x n 1, x j ) = 0, c.à.d. chque noeud x j (0 j n 1) est une rcine de ce polynôme. Ainsi f (x 0,, x n ) = C (x n x 0 ) (x n x n 1 ) pour une constnte C R. Cette constnte est le coefficient principl du polynôme f (x 0,..., x n ), et en revennt u développement de det A pr l dernière ligne, on voit que C = f (x 0,..., x n 1 ), le déterminnt de l mtrice de Vndermonde ssocié ux n noeuds x 0,..., x n 1. Pr récurrence, on trouve lors det A = (x j x i ), 0 i< j n et comme les noeuds sont tous distincts, det A 0. DEUXIÈME DÉMONSTRATION DE LA PROPOSITION.1 (PLUS ÉLÉGANTE?) L idée principle de l démonstrtion est d utiliser une utre bse vectorielle de l espce R n [X]. Pour tout i {0,..., n} on définit le polynôme n x x j l i (x) = (x R). j=0 j i x i x j Alors l i est un polynôme de degré n vec l propriété importnte que 0 si i j, l i (x j ) = 1 si i = j. En conséquence, l fmille (l i ) 0 i n est linéirement indépendnte. Mis comme l dimension de R n [X] est n+1, c.à.d. exctement le nombre d élement de cette fmille, on obtient que (l i ) 0 i n est une bse vectorielle de R n [X].

11 . ETUDE DE L ERREUR D INTERPOLATION 11 Existence d un polynôme d interpoltion. Il suffit mintennt de poser (.1) p n (x) = y i l i (x) (x R). Comme combinison linéire des l i, p n est un polynôme de degré n. En plus, p n (x j ) = y i l i (x j ) = y j pour tout 0 j n. Donc, le polynôme p n est un polynôme d interpoltion. D où l existence d un polynôme d interpoltion. Unicité. Soit p R n [X] un polynôme d interpoltion. Alors, comme (l i ) 0 i n est une bse vectorielle de R n [X], p(x) = z i l i (x) (x R) pour des z i R. Alors, quelque soit j {0,..., n}, z j = z i l i (x j ) (propriété des l i ) = p(x j ) = y j (p est polynôme d interpoltion), et donc p(x) = z i l i (x) = y i l i (x) = p n (x), où p n est le polynôme de (.1). D où l unicité. On ppelle le polynôme l i le i-iéme polynôme de Lgrnge. D près l Proposition.1 nous pouvons (et nous llons) prler du polynôme d interpoltion. L représenttion (.1) est l représenttion de Lgrnge du polynôme d interpoltion ssocié ux noeuds x i et ux bscisses y i. Cette représenttion est simple, mis il fut noter que pour clculer le i-iéme polynôme de Lgrnge il fut fire n dditions, n divisions et n multiplictions. Eventuellement on divise pr des nombres petits si les noeuds sont proches l un de l utre; ceci peut engendrer des erreurs d rrondis importnts. Dns l suite nous verrons d utres représenttions de ce polynôme, ou u moins d utres lgorithmes pour clculer p n (x) en un point x donné.. Etude de l erreur d interpoltion On suppose dns cette section que les bscisses y i = f (x i ) pour une fonction f : [, b] R donnée, et que les noeuds vérifient x 0 < < x n b.

12 1. INTERPOLATION ET APPROXIMATION PROPOSITION.. Soit p n le polynôme d interpoltion de Lgrnge ssocié ux noeuds x 0 < < x n b et ux bscisses f (x 0 ),..., f (x n ), où f C n+1 ([, b]) est une fonction donnée. Alors pour tout x [, b] il existe ξ x ], b[ tel que f (x) p n (x) = f (n+1) (ξ x ) (n + 1)! n (x x i ). DÉMONSTRATION. Pr définition du polynôme d interpoltion, f (x) p n (x) = 0 si x = x i pour un i {0,..., n}. On peut lors supposer que x x i pour tout i {0,..., n}. On pose Q(t) := p n (t) f (t) + f (x) p n(x) n (x x i ) Alors Q C n+1 ([, b]) et n (t x i ) (t [, b]). Q(x i ) = 0 pour tout i, et Q(x) = 0. Le théorème de Rolle implique que l dérivée Q s nnulle en n + 1 points distincts dns l intervlle ], b[. En ppliqunt le théorème de Rolle encore une fois, on voit que Q s nnulle en n points distincts dns l intervlle ], b[, et finlement, qu il existe ξ x ], b[ tel que Q (n+1) (ξ x ) = 0. L proposition s en déduit fcilement. COROLLAIRE.3. Soit f (n+1) := sup x [,b] f (n+1) (x). Alors f (x) p n (x) f (n+1) n (x x i ) (x [, b]). (n + 1)! L proposition et le corollire montrent que l erreur d interpoltion dépend ussi du choix des noeuds x i. En fit, f (x) p n (x) f (n+1) n sup (t x i ) (x [, b]). (n + 1)! t [,b] On verr plus loin qu un choix optiml est le choix des noeuds de Tchebychev, c.à.d., sur l intervlle [, b] = [ 1, 1], le choix des noeuds (i + 1)π x i = cos (0 i n). n + 3. L lgorithme de Newton L lgorithme de Newton est une méthode efficce pour clculer le polynôme d interpoltion ssocié à des noeuds x 0,..., x n donnés et à des bscisses y 0,..., y n donnés (on suppose toujours que x i x j si i j). Il est prticulierement prtique dns les situtions où on veut rjouter des noeuds. L idée est de représenter le polynôme d interpoltion dns l forme (.) p(x) = c 0 + c 1 (x x 0 ) + + c n (x x 0 ) (x x n 1 ) vec des coefficients c 0,..., c n à determiner. On remrque ici que les polynômes 1, x x 0,..., (x x 0 ) (x x n 1 ) forment une bse de l espce R n [X] (exercice!)

13 3. L ALGORITHME DE NEWTON 13 et que les coefficients c 0,..., c n existent et sont uniques. Dns l suite, pour tout i, j {0,..., n}, j i, on note p i, j = le polynôme d interpoltion de degré j ssocié ux noeuds x i j,..., x i et ux bscisses y i j,..., y i. Le polynôme que l on recherche est le polynôme p n,n. On note ensuite c i, j = le coefficient principl du polynôme p i, j, c.à.d. le coefficient correspondnt u monôme x j dns l représenttion p i, j (x) = c i, j x j + polynôme de degré < j. On rppelle que, étnt donné des noeuds x 0,..., x n et des bscisses y 0,..., y n, le polynôme d interpoltion p de degré n existe et est unique (Proposition.1). Ainsi, le coefficient principl est déterminé de mnière unique en fonction des noeuds et des bscisses. REMARQUE.4. Le coefficient principl du polynôme d interpoltion correspondnt ux noeuds x 0,..., x n et ux bscisses y 0,..., y n est dns l littérture ussi noté f [x 0,..., x n ] (l nottion vec le f s explique si les bscisses y 0,..., y n sont de l forme f (x 0 ),..., f (x n ) pour une fonction f donnée). Avec cette nottion, on urit c i, j = f [x i j,..., x i ]. LEMME.5. Soit p = p n,n le polynôme d interpoltion correspondnt ux noeuds x 0,..., x n et ux noeuds y 0,..., y n. On représente p dns l forme (.), c.à.d. p(x) = c 0 + c 1 (x x 0 ) + + c n (x x 0 ) (x x n 1 ) (x R). Alors c i = c i,i (le coefficient principl du polynôme p i,i ). DÉMONSTRATION. Exercice. Afin de clculer des coefficients c i, j, on note d bord que (.3) c i,0 = y i (0 i n). En fit, c i,0 est, pr définition, le coefficient principl du polynôme p i,0 de degré 0 (c.à.d. p i,0 est constnt!) tel que p i,0 (x i ) = y i. Ainsi, p i,0 (x) = y i = y i x 0, d où (.3). Afin de clculer les utres coefficients c i, j vec j 1 on utilise le lemme et le corollire suivnt. LEMME.6 (Différences divisées). Pour tout i, j {1,..., n} vec i j on p i, j (x) = p i, j 1(x)(x x i j ) p i 1, j 1 (x)(x x i ) x i x i j (x R).

14 14. INTERPOLATION ET APPROXIMATION DÉMONSTRATION. Soit q(x) := p i, j 1(x)(x x i j ) p i 1, j 1 (x)(x x i ) x i x i j (x R). Pr définition, p i, j 1 et p i 1, j 1 sont des polynômes de degré j 1. Ainsi, q est un polynôme de degré j. Ensuite, on clcul q(x i j ) = 0 p i 1, j 1(x i j )(x i j x i ) x i x i j = y i j, cr p i 1, j 1 (x i j ) = y i j pr définition de p i 1, j 1. De mnière similire q(x i ) = p i, j 1(x i )(x i x i j ) 0 x i x i j = y i, cr p i, j 1 (x i ) = y i pr définition de p i, j 1. Finlement, pour tout k vec i j < k < i on p i, j 1 (x k ) = y k et p i 1, j 1 (x k ) = y k. Ainsi, q(x k ) = p i, j 1(x k )(x k x i j ) p i 1, j 1 (x k )(x k x i ) x i x i j = y k(x k x i j ) y k (x k x i ) x i x i j = y k. On donc montré que q est un polynôme d interpoltion de degré j ssocié ux noeuds x i j,..., x i et ux bscisses y i j,..., y i. Pr unicité du polynôme d interpoltion, q = p i, j. COROLLAIRE.7 (Différences divisées). Pour tout i, j {1,..., n} vec i j on (.4) c i, j = c i, j 1 c i 1, j 1 x i x i j. DÉMONSTRATION. Conséquence directe du Lemme.6 et de l définition des c i, j. D près les équtions (.3) et (.4), on obtient le schém suivnt pour clculer successivement les c i, j (lgorithme de Newton): x 0 c 0,0 = y 0 x 1 c 1,0 = y 1 c 1,1 x c,0 = y c,1 c, x n 1 c n 1,0 = y n 1 c n 1,1 c n 1,... c n 1,n 1 x n c n,0 = y n c n,1 c n,... c n,n 1 c n,n On finlement p n,n (x) = c 0,0 + c 1,1 (x x 0 ) + + c n,n (x x 0 ) (x x n 1 ) (x R).

15 4. APPROXIMATION HILBERTIENNE 15 EXEMPLE.8. On cherche le polynôme d interpoltion de degré 3 ssocié ux noeuds x 0 = 1, x 1 = 0, x = 1, x 3 = 3 et ux bscisses y 0 = 1, y 1 = 1, y = 0, y 3 =. Avec l lgorithme de Newton on trouve x 0 = 1 x 1 = 0 x = 1 x 3 = 3 c 0,0 = y 0 = 1 c 1,0 = y 1 = 1 c 1,1 = c,0 = y = 0 c,1 = 1 c, = 3 c 3,0 = y 3 = c 3,1 = 1 c 3, = 0 c 3,3 = 3 8 Ici, on clculé successivement, colonne pr colonne, On trouve lors c 1,1 = c 1,0 c 0,0 x 1 x 0 = ( 1) =, c,1 = c,0 c 1,0 x x 1 = 0 ( 1) 1 0 c 3,1 = c 3,0 c,0 x 3 x = = 1, c, = c,1 c 1,1 x x 0 = 1, = 1 ( ) 1 ( 1) = 3, c 3, = c 3,1 c,1 x 3 x 1 = = 0 c 3,3 = c 3, c, x 3 x 0 = ( 1) = 3 8. p(x) = 1 (x ( 1)) + 3 (x ( 1)) (x 0) 3 (x ( 1)) (x 0) (x 1) 8 = 1 (x + 1) + 3 (x + 1) x 3 (x + 1) x (x 1) 8 = x + 3 x 3 8 x3, et il est fcile vérifier que c est effectivement le polynôme d interpoltion recherché. 4. Approximtion hilbertienne Soit I R un intervlle et soit w : I R une fonction continue positive (une fonction poids). On considère l espce C w (I) := { f C(I) : f (x) w(x) dx < }, I

16 16. INTERPOLATION ET APPROXIMATION où C(I) est l espce de toutes les fonctions continues de I dns R. L espce C w (I) ser muni du produit sclire, w donné pr f, g w := f (x)g(x)w(x) dx ( f, g C w (I)). I L norme ssociée à ce produit sclire est l norme w donnée pr f w := ( 1 f, f w = f (x) w(x) dx). Soit F C w (I) un sous-espce vectoriel de dimension finie, et soit f C w (I) une fonction donnée. Le probléme de l meilleure pproximtion de f pr un élément de F est le problème de trouver une fonction p F telle que f p w = inf q F f q w, c.à.d. de trouver une fonction p F telle que l distnce f p w soit minimle prmi toutes les distnces f q w (q F) Solution théorique. L proposition suivnte montre que le problème de l meilleure pproximtion de f dmet une unique solution. PROPOSITION.9. Soit E un espce vectoriel réel muni d un produit sclire,. Soit f E et soit F E un sous-espce vectoriel de dimension finie. Alors il existe un unique élément p F telle que f p = inf q F f q (ici: g := g, g ). Cet élément p est ppelé l projection orthogonle de f sur F. Il est crctérisée pr le fit que (.5) f p, q w = 0 pour tout q F. DÉMONSTRATION. On démontre d bord que p F est une meilleure pproximtion de f dns F si et seulement si l condition (.5) est vérifiée. En fit, p F est une meilleure pproximtion de f dns F si et seulement si p F et ce qui est équivlent à f p f q pour tout q F, f, p + p f, q + q pour tout q F. En remplçnt q F pr p + q F, ceci est équivlent à f p, q q pour tout q F. Ici, on remplce q pr tq (t R, t > 0), on divise pr t, et on fit t tendre vers 0 pour obtenir f p, q 0 pour tout q F. Finlement, en remplçnt q pr q, on obtient que p F est une meilleure pproximtion de f dns F si et seulement si l condition (.5) est vérifiée. Existence et unicité d une meilleure pproximtion. Soit (p i ) 0 i n une bse vectorielle de l espce F (on suppose donc qu il est de dimension n + 1. Alors tout élément p F s écrit de l forme p = n λ i p i vec des coefficients λ i R. En I

17 4. APPROXIMATION HILBERTIENNE 17 plus, come (p i ) est une bse vectorielle de F, l condition (.5) est équivlente à l condition (.6) f, p i = λ j p j, p i pour tout 0 i n, j=0 ce qui est un système linéire pour le vecteur (λ 0,..., λ n ). Ce système linéire dmet une unique solution (λ 0,..., λ n ) si et seulement si le système homogène µ j p j, p i = 0 pour tout 0 i n j=0 dmet (µ 0,..., µ n ) = (0,..., 0) comme seule solution. Mis ce système implique que 0 = µ i µ j p j, p i j=0 µ i p i, et donc µ i p i = 0. Comme l fmille (p i ) est linéirement indépendnte, on trouve (µ 0,..., µ n ) = (0,..., 0). L démonstrtion de l proposition précédente montre que p = n λ i p i est meilleure pproximtion de f dns F si et seulement si (λ 0,..., λ n ) est solution de (.6). Il suffit donc de choisir une bse vectorielle (p i ) de F est de résoudre le système linéire (.6). On remrque que ce système linéire devient prticulièrement simple à résoudre si (p i ) est une bse orthogonle de F, c.à.d. p i si i = j, p j, p i = 0 si i j. COROLLAIRE.10. Soit (p i ) 0 i n une bse orthogonle de F. Alors l meilleure pproximtion p de f dns F est donné pr f, p i p = p i p i. 4.. Le procédé d orthogonlistion de Grm-Schmidt. Soit E un espce vectoriel réel muni d un produit sclire,. Soit (e i ) i 0 E une fmille de vecteurs linéirement indépendnte. Alors le procédé suivnt permet de construire une fmille orthonormle (p i ) i 0. Procédé de Grm-Schmidt. On pose d bord ẽ 0 = e 0 p 0 = et ẽ0 ẽ 0.

18 18. INTERPOLATION ET APPROXIMATION Ensuite, pour tout i 1 on définit de mnière recursive i 1 ẽ i = e i e i, p j p j et p i = ẽi ẽ i. C est un exercice de montrer que pour tout i, j 0 on 1 si i = j, p i, p j = 0 si i j, j=0 c.à.d. que (p i ) est une fmille orthonormle. En plus, si (e i ) étit une bse vectorielle, lors (p i ) est une bse vectorielle normle Les polynômes orthogonux. Soit I R un intervlle quelconque, et soit w : I R une fonction poids (continue, strictement positive). On suppose que, quelque soit n N, x n w(x) dx est bsolument convergente. I Dns ce cs, l espce C w (I) contient tous les polynômes. En ppliqunt le procédé de Grm-Schmidt ux monômes e n (x) = x n (n 0), on obtient une fmille (p n ) n 0 de polynômes orthogonles. Intervlle Poids w(x) Polynômes [ 1, 1] 1 Legendre [0, [ e x Lguerre R e x Hermite 1 ] 1, 1[ 1 x Tchebychev. Pr exemple, pour les polynômes de Legendre, on obtient p 0 (x) = p 1 (x) = p (x) = LEMME.11. Les polynômes orthogonux vérifient () p n est un polynôme de degré n, (b) l fmille (p i ) 0 i n est une bse orthogonle de l espce R n [X], (c) I p n(x)q(x)w(x) dx = 0 pour tout polynôme q de degré < n. THÉORÈME.1. Le polynôme p n possède n rcines réelles. Elles sont simples et contenues dns l intérieur de l intervlle I..

19 DÉMONSTRATION. On peut écrire 5. APPROXIMATION UNIFORME 19 p n (x) = k (x r i ) m i r(x) i=1 où les r i sont des rcines réelles distincts de multiplicité m i, et le polynôme r n ps de rcines réelles (en prticulier, r un signe). Notons r i1,..., r is les rcines de p n situées à l intérieur de l intervlle I et de multplicités m iα impirs. Alors le polynôme q(x) = (x r i1 ) (x r is ) est un polynôme de degré s, toutes les rcines de q sont simples et contenues dns l intérieur de l intervlle I. En plus, le produit p n (x)q(x) ne chnge ps de signe et est non-nulle. Donc p n, q 0. D près le lemme précédent (plus précisément, Lemme.11 (c), on obtient donc que degré p n = degré q, c.à.d. que q est un polynôme de degré = n. 5. Approximtion uniforme Dns cette section, on suppose que I = [, b] est un intervlle compct. L espce C([, b]) de toutes les fonctions continues [, b] R muni de l norme f := sup x [,b] f (x) est un espce vectoriel normé. Etnt donnée une fonction f C([, b]), on considère de nouveu le problème de (meilleure) pproximtion, mis mintennt vec l norme à l plce de l norme hilbertienne w du prgrphe précédent. On rppelle le théorème suivnt. THÉORÈME.13 (Weierstrss). Pour toute fonction f C([, b]) il existe une suite (p n ) de polynômes telle que lim n f p n = 0.

20

21 CHAPITRE 3 Intégrtion et différentition numérique 1. Intégrtion pprochée Soit f : [, b] R une fonction continue donnée, [, b] R étnt un intervlle compcte. On considère le problème de clculer l intégrle I( f ) = f (x) dx. En générl on cherche à trouver une vleur pprochée de l intégrle sous l forme J( f ) = λ i f (x i ), où x 0 < < x n b sont des noeuds donnés (ou à choisir) et où les coefficients λ 0,..., λ n sont donnés (ou à choisir), tous les deux indépendnts de l fonction f. Supposons d bord que les noeuds x 0 < < x n b sont donnés. Comment choisir les coefficients λ 0,..., λ n de telle mnière que l erreur E( f ) = I( f ) J( f ) soit 0 pour une certine clsse de fonctions? Pr exemple, comment choisir les coefficients λ 0,..., λ n de telle mnière que l erreur E( f ) = 0 pour tout polynôme de degré inférieur ou égl à n? C.à.d. telle que l formule d intégrtion pprochée J( f ) soit excte pour tout polynôme de degré inférieur ou égl à n? THÉORÈME 3.1. Etnt donné des noeuds x 0 < < x n b, il existe une et une seule formule d intégrtion pprochée J( f ) = n λ i f (x i ) telle que l erreur E( f ) = I( f ) J( f ) = 0 pour tout polynôme f R n [X]. DÉMONSTRATION. Existence. On pose λ i = l i(x) dx, oú l i est le i-éme polynôme d interpoltion de Lgrnge ssocié ux noeuds x 0,..., x n. Alors, pour tout polynôme f R n [X] on f (x) = f (x i ) l i (x), 1

22 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE cr l interpoltion est excte pour tout polynôme de degré n. Donc, I( f ) = = = = f (x) dx f (x i ) l i (x) dx f (x i ) λ i f (x i ) = J( f ). l i (x) dx Unicité. Soient J( f ) = n λ i f (x i ) et J ( f ) = n λ i f (x i) deux formules d intégrtion pprochées qui sont exctes pour tous les polynômes f R n [X], c.à.d. J( f ) = λ i f (x i ) = I( f ) = λ i f (x i ) pour tout f R n [X]. Alors (λ i λ i) f (x i ) = 0 pour tout f R n [X]. En prticulier, en choississnt f = l i le i-ième polynôme d interpoltion de Lgrnge (qui l propriété que l i (x j ) = δ i j pour tout 1 i, j n), on trouve que d où l unicité. λ i = λ i, DÉFINITION 3.. Une formule d intégrtion pprochée est dite d ordre m si I( f ) = J( f ) pour tout polynôme f R m [X] et s il existe un polynôme f R m+1 [X] tel que I( f ) J( f ). D près le Théorème 3.1, étnt donné des noeuds x 0 < < x n b, il existe une et une seule formule d intégrtion pprochée d ordre m n. On verr que l ordre m peut être strictement supérieur à n. Pr contre, on remrque d bord que l ordre est toujours inférieur ou égl à n + 1. LEMME 3.3. Soient x 0 < < x n b des noeuds donnés et soit J( f ) = n λ i f (x i ) une méthode d intégrtion pprochée. Alors l ordre de cette méthode est inférieur ou égl à n + 1. DÉMONSTRATION. Soit f (x) = n (x x i ).

23 1. INTÉGRATION APPROCHÉE 3 Alors f est un polynôme positif, de degré n+, tel que f (x i ) = 0 pour tout 0 i n. Donc J( f ) = λ i f (x i ) = 0 < I( f ). Ainsi, l ordre de J est inférieur ou égl à n + 1. EXEMPLE 3.4 (Méthode des rectngles). On prend n = 0 et x 0 noeud, u milieu de l intervlle [, b]). Alors = +b (un seul et donc λ 0 = l 0 (x) dx = dx = b, J( f ) = (b ) f ( + b ). Cette formule d intégrtion pprochée est excte pour les polynômes constnts f R 0 [X] (Théorème 3.1), mis on ussi Pr contre, J(x) = (b ) + b J(x ( + b) ) = (b ) 4 = b b3 3 3 = I(x). = I(x ). Donc, l ordre de cette formule d intégrtion pprochée est m = 1. EXEMPLE 3.5 (Méthode des trpézes). On prend n = 1, x 0 =, x 1 = b (deux noeuds, ux extrémités de l intervlle [, b]). On et Donc, λ 0 = λ 1 = l 0 (x) dx = l 1 (x) dx = x b b dx = b x b dx = b. J( f ) = b ( f () + f (b)). Cette formule d intégrtion pprochée est excte pour les polynômes f R 1 [X] (Théorème 3.1), mis J(x ) I(x ). L ordre de cette formule d intégrtion pprochée est m = 1.

24 4 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE EXEMPLE 3.6 (Méthode de Simpson). On prend n =, x 0 =, x 1 = +b, et x = b (trois noeuds, ux extrémités et u milieu de l intervlle [, b]). On λ 0 = λ 1 = λ = l 0 (x) dx = b 6, l 1 (x) dx = 4 b 6, l (x) dx = b 6. Donc J( f ) = b ( f () + 4 f ( + b 6 ) + f (b)). L ordre de cette formule d intégrtion pprochée est m = 3.. Etude de l erreur d intégrtion pprochée On rppelle l version suivnte du théorème de Tylor, et ussi le théorème de l moyenne. où THÉORÈME 3.7 (Tylor). Soit f C n+1 ([, b]). Alors pour tout x [, b] on (x ) k f (x) = f (k) (x t) n + () + f (n+1) (t) dt, k! n! k=0 t si t 0, t + = 0 si t < 0. THÉORÈME 3.8 (Théorème de l moyenne). Soient f, g : [, b] R deux fonctions continues. On suppose que g(x) 0 pour tout x [, b]. Alors il existe un ξ [, b] tel que f (x)g(x) dx = f (ξ) g(x) dx. THÉORÈME 3.9. Soient x 0 < < x n b des noeuds donnés et soit J( f ) = n λ i f (x i ) une méthode d intégrtion pprochée d ordre m n. Soit K(t) = (x t) m + dx λ i (x i t) m + Alors, pour toute fonction f C (m+1) ([, b]) on E( f ) = I( f ) J( f ) = K(t) m! f (m+1) (t) dt, (t [, b]).

25 et si le noyu K est positif, lors. ETUDE DE L ERREUR D INTÉGRATION APPROCHÉE 5 E( f ) = f (m+1) (ξ) K(t) m! dt pour un ξ [, b]. DÉMONSTRATION. D près le Théorème de Tylor (Théorème 3.7), on m (x ) k f (x) = f (k) (x t) m + () + f (m+1) (t) dt. k! m! k=0 Comme J est d ordre m, on obtient donc E( f ) = E(x = = = (x t) m + m! (x t) m + m! (x t) m + dx K(t) m! f (m+1) (t) dt. f (m+1) (t) dt) f (m+1) (t) dt dx λ i (x i t) m + m! λ i (x i t) m +) f (m+1) (t) dt f (m+1) (t) dt L deuxième représenttion de l erreur est une conséquence directe de cette première représenttion et du théorème de l moyenne (Théorème 3.8). EXEMPLE 3.10 (L erreur dns l méthode des rectngles). Cette méthode est d ordre 1. Donc, ( E( f ) = (x t) + dx (b )( + b ) t) + ) f (t) dt = K(t) f (t) dt vec (t ) si t +b K(t) =, (t b) si t +b. Ainsi, comme le noyu K est positif et pr le théorème de l moyenne, E( f ) = f (b )3 (ξ) 4 pour un certin ξ [, b]. EXEMPLE 3.11 (L erreur dns l méthode de Simpson). Cette méthode est d ordre 3. Donc, E( f ) = K(t) 3! f (4) (t) dt

26 6 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE vec K(t) = = (x t) 3 + dx b 6 (b t) 3 (b+ 3t) 1 si t +b, ( t) 3 (b+ 3t) 1 si t +b. ( ( t) ( + b t) (b t) 3 ) + Ainsi, comme le noyu K est négtif, E( f ) = f (4) (b )5 (ξ) 880 pour un certin ξ [, b]. 3. L formule d intégrtion pprochée de Guss On rppelle du Lemme 3.3 que toute méthode d intégrtion pprochée est u plus d ordre n + 1. On peut lors se demnder s il existe une méthode d intégrtion pprochée qui est exctement d ordre m = n + 1. L réponse à cette question est oui, si on choisit bien les noeuds x 0,..., x n. THÉORÈME 3.1 (Guss). Soit [, b] = [ 1, 1], et soit n 0. Alors il existe des noeuds x 0 < < x n b et une méthode d intégrtion pprochée J( f ) = n λ i f (x i ) qui est d ordre n + 1. Plus précisément, il suffit de prendre comme noeuds les rcines du n + 1-ième polynôme de Legendre L n+1 et comme méthode d intégrtion pprochée celle du Théorème 3.1. DÉMONSTRATION. Soit L n+1 le n + 1-ième polynôme de Legendre. On rppelle que l suite des polynômes de Legendre est obtenue pr le procédé de Grm-Schmidt ppliqué à l suite des monômes, en utilisnt le produit sclire f, g = 1 f (x)g(x) dx. 1 Le polynôme L n+1 est un polynôme de degré n + 1 qui est orthogonl à tous les polynômes de degré n (Lemme.11). En plus, toutes les rcines de L n+1 sont simples et contenues dns l intervlle [ 1, 1] (Théorème.1) Soit mintennt p un polynôme de degré n + 1. Une division vec reste montre que p = q L n+1 + r

27 pour des polynômes de degré n. Alors I(p) = = = = = = p(x) dx q(x)l n+1 (x) dx + r(x) dx 4. DIFFÉRENTIATION NUMÉRIQUE r(x) dx (q et L n+1 sont orthogonux) λ i r(x i ) (J est d ordre m n) λ i q(x i )L n+1 (x i ) + λ i p(x i ) = J(p). λ i r(x i ) (x i sont rcines de L n+1 ) Comme p R n+1 [X] étit rbitrire, ceci montre que J est d ordre m n + 1. Pr le Lemme 3.3, m n + 1, et donc l ordre m = n Différentition numérique Etnt donné une fonction f C 1 ([, b]) et un point x [, b], on souhite clculer l dérivée L( f ) = f (x). On souhite clculer cette dérivée à l ide d une formule à deux noeuds Λ( f ) = λ 0 f () + λ 1 f (b), où λ 0, λ 1 sont des constntes. On veut que l formule Λ( f ) soit excte pour tous les polynômes de degré 1. On choississnt f (x) = 1 et f (x) = x on trouve lors les deux conditions et donc λ 0 = λ 1 = 1 b. Ainsi Λ( f ) = λ 0 + λ 1 = 0 λ 0 + λ 1 b = 1, et f (b) f (). b 4.1. Schém centré. Ici, on prend x = +b L( f ) = f ( +b, c.à.d. on souhite clculer l dérivée ) u milieu de l intervlle [, b]. Pr construction, l erreur E( f ) = L( f ) Λ( f ) = f ( + b f (b) f () ) b est nulle pour tout polynôme f de degré 1. Mis on voit fcilement que E(x ) = 0 ussi, et que E(x 3 ) 0. On dit que l méthode de différentition Λ( f ) est d ordre.

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Magister en : Génie Mécanique

Magister en : Génie Mécanique الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure République Algérienne Démocrtique et Populire Ministère de l enseignement supérieur et de l recherche scientifique Université Mentouri de Constntine Fculté des sciences et sciences de l ingénieur Déprtement

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement.

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement. Fibilité, sécurité et enfichge intégrl éprouvés Tous les connecteurs sont équipés de dispositifs de verrouillge ntirrchement. 100% stekerbr Qu est-ce qu une instlltion 100 % enfichble? Mtériel fourni en

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006

Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006 Régression multiple : principes et eemples d ppliction Dominique Lffly UMR 5 603 CNRS Université de Pu et des Pys de l Adour Octobre 006 Destiné à de futurs thémticiens, notmment géogrphes, le présent

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Introduction à la modélisation et à la vérication p. 1/8

Introduction à la modélisation et à la vérication p. 1/8 Introduction à l modélistion et à l vériction Appliction ux systèmes temporisés Ptrici Bouyer LSV CNRS & ENS de Cchn Introduction à l modélistion et à l vériction p. 1/8 Modélistion & Vériction Introduction

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail