ANALYSE NUMERIQUE NON-LINEAIRE

Dimension: px
Commencer à balayer dès la page:

Download "ANALYSE NUMERIQUE NON-LINEAIRE"

Transcription

1 Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1

2

3 Tble des mtières Chpitre 1. Représenttion des nombres 5 Chpitre. Interpoltion et pproximtion 9 1. Interpoltion selon Lgrnge 9. Etude de l erreur d interpoltion L lgorithme de Newton 1 4. Approximtion hilbertienne Approximtion uniforme 19 Chpitre 3. Intégrtion et différentition numérique 1 1. Intégrtion pprochée 1. Etude de l erreur d intégrtion pprochée 4 3. L formule d intégrtion pprochée de Guss 6 4. Différentition numérique 7 Chpitre 4. Résolution numérique d équtions non-linéires dns R N Résolution numérique d une éqution d une vrible pr dichotomie ou regul flsi 31. Approximtions successives 3 3. Méthode de Newton 3 4. Méthode de plus grnde descente 3 Chpitre 5. Résolution numérique d équtions différentielles ordinires Le schém d Euler explicite ou implicite 34 3

4

5 CHAPITRE 1 Représenttion des nombres PROPOSITION 1.1. Soit β un entier donné (l bse). Alors tout nombre réel x R s écrit de l forme k x = ( 1) s j β j vec s {0, 1}, k Z, j N, 0 j β 1. Si on exige que k 0, lors l représenttion ci-dessus est unique. On écrit ussi j= (1.1) x = k k , Si β = 10, lors l représenttion (1.1) est exctement l représenttion décimle de x. Autres bses fréquentes: β = (représenttion binire), β = 8 ou β = 16 (représenttion hexdécimle). Pour les ordinteurs, on typiquement β =. Dns l écriture (1.1), déplcer l virgule d une position à droite (ou à guche) correspond à une multipliction (ou une division) pr β. Tout nombre x R dmet donc une unique représenttion sous l forme (1.) x = ( 1) s k, k 1 k k 3 β k vec s {0, 1}, k Z, j N, 0 j β 1, k 0. C est cette représenttion scientifique (ou: représenttion en virgule flottnte) que l on v utiliser dns l suite. Dns cette représenttion on ppelle s ou ( 1) s le signe, l suite k, k 1 k k 3... l mntisse et k Z l exposnt de x. Ces trois vribles crctérisent le nombre réel x Représenttion binire. Nombres mchine. Dns l représenttion binire (c.à.d. β = ) on s {0, 1}, k Z, j {0, 1} k = 1. ( j k), et Comme l mémoire d un ordinteur est limité, on ne peut coder qu un nombre fini de nombres réels. Ainsi, l mntisse d un nombre mchine est toujours une suite finie, et l ensemble des exposnts k est un ensemble fini. Pr exemple, vec b bits (binry 5

6 6 1. REPRÉSENTATION DES NOMBRES digits) on ne peut coder que b nombres réels. Pour l comptibilité entre ordinteurs, on utilise le stndrd IEEE (Institute of Electricl nd Electronics Engineers) suivnt Simple précision (3 bits). Avec 3 bits on peut coder 3 4, 9 millirds de nombres réels. Selon le stndrd IEEE on utilise 1 bit pour le signe 3 bits pour l mntisse, et 8 bits pour l exposnt k qui vrie entre 16 et 17. On remrque que pour un nombre réel non-nul, on toujours k = 1 et qu il suffit donc de coder les 3 bits de l mntisse qui suivent prés l virgule. L exposnt est déclé de 7 1 = 17. Pour les nombres mchine non-nuls on donc }{{} S 1, } {{ } MMM... MMM } {{ } EEEEEEEE. signe (1 bit) mntisse (3 bits) exposnt (8 bits) L exposnt vec l mntisse représente le nombre x = 0. L exposnt vec l mntisse représente l infini. Le plus petit nombre mchine positif, non-nul est 0 1, =1 16 1, On ppelle précision mchine le plus petit nombre mchine positif eps tel que 1 eps > 1 (ddition en virgule flottnte, c.à.d. le résultt 1 eps est de nouveu un nombre mchine). En simple précision, on En générl, on eps = 3 1, x y = (x y)(1 + r) pour deux nombres mchine x, y. Ici, x y est l multipliction excte, x y est l multipliction en virgule flottnte, et l erreur reltif r vérifie r eps Double précision (64 bits). Avec 64 bits on peut coder 64 1, nombres réels. Selon le stndrd IEEE on utilise 1 bit pour le signe 5 bits pour l mntisse, et 11 bits pour l exposnt k qui vrie entre 10 et 103. On remrque qu on toujours k = 1 et qu il suffit donc de coder les 5 bits de l mntisse qui suivent prés l virgule. L exposnt est déclé de 11 1 = 103. }{{} S 1, } {{ } MMM... MMM } {{ } EEEEEEEEEEE. signe (1 bit) mntisse (5 bits) exposnt (11 bits)

7 1. REPRÉSENTATION DES NOMBRES 7 Le plus petit nombre mchine positif, non-nulle est donc 0 1, =1 10. En double précision, on eps = 5,

8

9 CHAPITRE Interpoltion et pproximtion 1. Interpoltion selon Lgrnge On considère le problème d interpoltion polynômile suivnt: étnt donné x 0,..., x n R y 0,..., y n R (les noeuds) et (les bscisses), on cherche un polynôme p : R R de degré n tel que p(x i ) = y i pour tout 0 i n. Bien sur, u lieu de chercher un polynôme clssique de degré n, on peut ussi chercher un polynôme trigonométrique, une fonction spline (une fonction de clsse C qui est un polynôme pr morceux), un élément fini... l importnt étnt qu on cherche une fonction interpolnte dns un espce vectoriel donné et de dimension finie. Pr exemple, l espce R n [X] = {p : R R : p est polynôme de degré n} des polynômes de degré n est un espce de dimension n + 1. Une bse vectorielle est constitué des monômes x i (0 i n) et tout polynôme p R n [X] dmet une représenttion unique de l forme vec i R. p(x) = x + + n x n PROPOSITION.1. Etnt donné des noeuds x 0 < < x n, et étnt donné de bscisses y 0,..., y n R, il existe un et un seul polynôme p n R n [X] tel que p(x i ) = y i pour tout 0 i n. En d utres mots, le problème d interpoltion polynômile dmet une unique solution. PREMIÈRE DÉMONSTRATION DE LA PROPOSITION.1 (COMPLIQUÉE?) Si on représente les polynômes comme combinisons linéires de l bse vectorielle des monômes, lors le problème d interpoltion est le problème de montrer existence et unicité d une fmille de coefficients 0,..., n tel que p(x) = x+ + n x n vérifie p(x i ) = y i (0 i n). Ceci est équivlent à résoudre le système linéire x n x n 0 = y x n + + n x n n = y n, 9..

10 10. INTERPOLATION ET APPROXIMATION c.à.d. le système 1 x 0 x n 0 0 y 0 1 x 1 x n 1 1 y =... 1 x n xn n n y n Ce système dmet une unique solution ( 0, 1,..., n ) si et seulement si l mtrice de Vndermonde 1 x 0 x n 0 1 x 1 x n 1 A = x n xn n est inversible. Autrement dit, le problème d interpoltion dmet une unique solution si et seulement si det A 0. Pour clculer le determinnt det A, on constte que, en développnt pr exemple pr l dernière ligne, que det A = f (x 0,..., x n ) est un polynôme de degré n en l vrible x n. En remplçnt x n pr x j (vec 0 j n 1) on voit que f (x 0,..., x n 1, x j ) = 0, c.à.d. chque noeud x j (0 j n 1) est une rcine de ce polynôme. Ainsi f (x 0,, x n ) = C (x n x 0 ) (x n x n 1 ) pour une constnte C R. Cette constnte est le coefficient principl du polynôme f (x 0,..., x n ), et en revennt u développement de det A pr l dernière ligne, on voit que C = f (x 0,..., x n 1 ), le déterminnt de l mtrice de Vndermonde ssocié ux n noeuds x 0,..., x n 1. Pr récurrence, on trouve lors det A = (x j x i ), 0 i< j n et comme les noeuds sont tous distincts, det A 0. DEUXIÈME DÉMONSTRATION DE LA PROPOSITION.1 (PLUS ÉLÉGANTE?) L idée principle de l démonstrtion est d utiliser une utre bse vectorielle de l espce R n [X]. Pour tout i {0,..., n} on définit le polynôme n x x j l i (x) = (x R). j=0 j i x i x j Alors l i est un polynôme de degré n vec l propriété importnte que 0 si i j, l i (x j ) = 1 si i = j. En conséquence, l fmille (l i ) 0 i n est linéirement indépendnte. Mis comme l dimension de R n [X] est n+1, c.à.d. exctement le nombre d élement de cette fmille, on obtient que (l i ) 0 i n est une bse vectorielle de R n [X].

11 . ETUDE DE L ERREUR D INTERPOLATION 11 Existence d un polynôme d interpoltion. Il suffit mintennt de poser (.1) p n (x) = y i l i (x) (x R). Comme combinison linéire des l i, p n est un polynôme de degré n. En plus, p n (x j ) = y i l i (x j ) = y j pour tout 0 j n. Donc, le polynôme p n est un polynôme d interpoltion. D où l existence d un polynôme d interpoltion. Unicité. Soit p R n [X] un polynôme d interpoltion. Alors, comme (l i ) 0 i n est une bse vectorielle de R n [X], p(x) = z i l i (x) (x R) pour des z i R. Alors, quelque soit j {0,..., n}, z j = z i l i (x j ) (propriété des l i ) = p(x j ) = y j (p est polynôme d interpoltion), et donc p(x) = z i l i (x) = y i l i (x) = p n (x), où p n est le polynôme de (.1). D où l unicité. On ppelle le polynôme l i le i-iéme polynôme de Lgrnge. D près l Proposition.1 nous pouvons (et nous llons) prler du polynôme d interpoltion. L représenttion (.1) est l représenttion de Lgrnge du polynôme d interpoltion ssocié ux noeuds x i et ux bscisses y i. Cette représenttion est simple, mis il fut noter que pour clculer le i-iéme polynôme de Lgrnge il fut fire n dditions, n divisions et n multiplictions. Eventuellement on divise pr des nombres petits si les noeuds sont proches l un de l utre; ceci peut engendrer des erreurs d rrondis importnts. Dns l suite nous verrons d utres représenttions de ce polynôme, ou u moins d utres lgorithmes pour clculer p n (x) en un point x donné.. Etude de l erreur d interpoltion On suppose dns cette section que les bscisses y i = f (x i ) pour une fonction f : [, b] R donnée, et que les noeuds vérifient x 0 < < x n b.

12 1. INTERPOLATION ET APPROXIMATION PROPOSITION.. Soit p n le polynôme d interpoltion de Lgrnge ssocié ux noeuds x 0 < < x n b et ux bscisses f (x 0 ),..., f (x n ), où f C n+1 ([, b]) est une fonction donnée. Alors pour tout x [, b] il existe ξ x ], b[ tel que f (x) p n (x) = f (n+1) (ξ x ) (n + 1)! n (x x i ). DÉMONSTRATION. Pr définition du polynôme d interpoltion, f (x) p n (x) = 0 si x = x i pour un i {0,..., n}. On peut lors supposer que x x i pour tout i {0,..., n}. On pose Q(t) := p n (t) f (t) + f (x) p n(x) n (x x i ) Alors Q C n+1 ([, b]) et n (t x i ) (t [, b]). Q(x i ) = 0 pour tout i, et Q(x) = 0. Le théorème de Rolle implique que l dérivée Q s nnulle en n + 1 points distincts dns l intervlle ], b[. En ppliqunt le théorème de Rolle encore une fois, on voit que Q s nnulle en n points distincts dns l intervlle ], b[, et finlement, qu il existe ξ x ], b[ tel que Q (n+1) (ξ x ) = 0. L proposition s en déduit fcilement. COROLLAIRE.3. Soit f (n+1) := sup x [,b] f (n+1) (x). Alors f (x) p n (x) f (n+1) n (x x i ) (x [, b]). (n + 1)! L proposition et le corollire montrent que l erreur d interpoltion dépend ussi du choix des noeuds x i. En fit, f (x) p n (x) f (n+1) n sup (t x i ) (x [, b]). (n + 1)! t [,b] On verr plus loin qu un choix optiml est le choix des noeuds de Tchebychev, c.à.d., sur l intervlle [, b] = [ 1, 1], le choix des noeuds (i + 1)π x i = cos (0 i n). n + 3. L lgorithme de Newton L lgorithme de Newton est une méthode efficce pour clculer le polynôme d interpoltion ssocié à des noeuds x 0,..., x n donnés et à des bscisses y 0,..., y n donnés (on suppose toujours que x i x j si i j). Il est prticulierement prtique dns les situtions où on veut rjouter des noeuds. L idée est de représenter le polynôme d interpoltion dns l forme (.) p(x) = c 0 + c 1 (x x 0 ) + + c n (x x 0 ) (x x n 1 ) vec des coefficients c 0,..., c n à determiner. On remrque ici que les polynômes 1, x x 0,..., (x x 0 ) (x x n 1 ) forment une bse de l espce R n [X] (exercice!)

13 3. L ALGORITHME DE NEWTON 13 et que les coefficients c 0,..., c n existent et sont uniques. Dns l suite, pour tout i, j {0,..., n}, j i, on note p i, j = le polynôme d interpoltion de degré j ssocié ux noeuds x i j,..., x i et ux bscisses y i j,..., y i. Le polynôme que l on recherche est le polynôme p n,n. On note ensuite c i, j = le coefficient principl du polynôme p i, j, c.à.d. le coefficient correspondnt u monôme x j dns l représenttion p i, j (x) = c i, j x j + polynôme de degré < j. On rppelle que, étnt donné des noeuds x 0,..., x n et des bscisses y 0,..., y n, le polynôme d interpoltion p de degré n existe et est unique (Proposition.1). Ainsi, le coefficient principl est déterminé de mnière unique en fonction des noeuds et des bscisses. REMARQUE.4. Le coefficient principl du polynôme d interpoltion correspondnt ux noeuds x 0,..., x n et ux bscisses y 0,..., y n est dns l littérture ussi noté f [x 0,..., x n ] (l nottion vec le f s explique si les bscisses y 0,..., y n sont de l forme f (x 0 ),..., f (x n ) pour une fonction f donnée). Avec cette nottion, on urit c i, j = f [x i j,..., x i ]. LEMME.5. Soit p = p n,n le polynôme d interpoltion correspondnt ux noeuds x 0,..., x n et ux noeuds y 0,..., y n. On représente p dns l forme (.), c.à.d. p(x) = c 0 + c 1 (x x 0 ) + + c n (x x 0 ) (x x n 1 ) (x R). Alors c i = c i,i (le coefficient principl du polynôme p i,i ). DÉMONSTRATION. Exercice. Afin de clculer des coefficients c i, j, on note d bord que (.3) c i,0 = y i (0 i n). En fit, c i,0 est, pr définition, le coefficient principl du polynôme p i,0 de degré 0 (c.à.d. p i,0 est constnt!) tel que p i,0 (x i ) = y i. Ainsi, p i,0 (x) = y i = y i x 0, d où (.3). Afin de clculer les utres coefficients c i, j vec j 1 on utilise le lemme et le corollire suivnt. LEMME.6 (Différences divisées). Pour tout i, j {1,..., n} vec i j on p i, j (x) = p i, j 1(x)(x x i j ) p i 1, j 1 (x)(x x i ) x i x i j (x R).

14 14. INTERPOLATION ET APPROXIMATION DÉMONSTRATION. Soit q(x) := p i, j 1(x)(x x i j ) p i 1, j 1 (x)(x x i ) x i x i j (x R). Pr définition, p i, j 1 et p i 1, j 1 sont des polynômes de degré j 1. Ainsi, q est un polynôme de degré j. Ensuite, on clcul q(x i j ) = 0 p i 1, j 1(x i j )(x i j x i ) x i x i j = y i j, cr p i 1, j 1 (x i j ) = y i j pr définition de p i 1, j 1. De mnière similire q(x i ) = p i, j 1(x i )(x i x i j ) 0 x i x i j = y i, cr p i, j 1 (x i ) = y i pr définition de p i, j 1. Finlement, pour tout k vec i j < k < i on p i, j 1 (x k ) = y k et p i 1, j 1 (x k ) = y k. Ainsi, q(x k ) = p i, j 1(x k )(x k x i j ) p i 1, j 1 (x k )(x k x i ) x i x i j = y k(x k x i j ) y k (x k x i ) x i x i j = y k. On donc montré que q est un polynôme d interpoltion de degré j ssocié ux noeuds x i j,..., x i et ux bscisses y i j,..., y i. Pr unicité du polynôme d interpoltion, q = p i, j. COROLLAIRE.7 (Différences divisées). Pour tout i, j {1,..., n} vec i j on (.4) c i, j = c i, j 1 c i 1, j 1 x i x i j. DÉMONSTRATION. Conséquence directe du Lemme.6 et de l définition des c i, j. D près les équtions (.3) et (.4), on obtient le schém suivnt pour clculer successivement les c i, j (lgorithme de Newton): x 0 c 0,0 = y 0 x 1 c 1,0 = y 1 c 1,1 x c,0 = y c,1 c, x n 1 c n 1,0 = y n 1 c n 1,1 c n 1,... c n 1,n 1 x n c n,0 = y n c n,1 c n,... c n,n 1 c n,n On finlement p n,n (x) = c 0,0 + c 1,1 (x x 0 ) + + c n,n (x x 0 ) (x x n 1 ) (x R).

15 4. APPROXIMATION HILBERTIENNE 15 EXEMPLE.8. On cherche le polynôme d interpoltion de degré 3 ssocié ux noeuds x 0 = 1, x 1 = 0, x = 1, x 3 = 3 et ux bscisses y 0 = 1, y 1 = 1, y = 0, y 3 =. Avec l lgorithme de Newton on trouve x 0 = 1 x 1 = 0 x = 1 x 3 = 3 c 0,0 = y 0 = 1 c 1,0 = y 1 = 1 c 1,1 = c,0 = y = 0 c,1 = 1 c, = 3 c 3,0 = y 3 = c 3,1 = 1 c 3, = 0 c 3,3 = 3 8 Ici, on clculé successivement, colonne pr colonne, On trouve lors c 1,1 = c 1,0 c 0,0 x 1 x 0 = ( 1) =, c,1 = c,0 c 1,0 x x 1 = 0 ( 1) 1 0 c 3,1 = c 3,0 c,0 x 3 x = = 1, c, = c,1 c 1,1 x x 0 = 1, = 1 ( ) 1 ( 1) = 3, c 3, = c 3,1 c,1 x 3 x 1 = = 0 c 3,3 = c 3, c, x 3 x 0 = ( 1) = 3 8. p(x) = 1 (x ( 1)) + 3 (x ( 1)) (x 0) 3 (x ( 1)) (x 0) (x 1) 8 = 1 (x + 1) + 3 (x + 1) x 3 (x + 1) x (x 1) 8 = x + 3 x 3 8 x3, et il est fcile vérifier que c est effectivement le polynôme d interpoltion recherché. 4. Approximtion hilbertienne Soit I R un intervlle et soit w : I R une fonction continue positive (une fonction poids). On considère l espce C w (I) := { f C(I) : f (x) w(x) dx < }, I

16 16. INTERPOLATION ET APPROXIMATION où C(I) est l espce de toutes les fonctions continues de I dns R. L espce C w (I) ser muni du produit sclire, w donné pr f, g w := f (x)g(x)w(x) dx ( f, g C w (I)). I L norme ssociée à ce produit sclire est l norme w donnée pr f w := ( 1 f, f w = f (x) w(x) dx). Soit F C w (I) un sous-espce vectoriel de dimension finie, et soit f C w (I) une fonction donnée. Le probléme de l meilleure pproximtion de f pr un élément de F est le problème de trouver une fonction p F telle que f p w = inf q F f q w, c.à.d. de trouver une fonction p F telle que l distnce f p w soit minimle prmi toutes les distnces f q w (q F) Solution théorique. L proposition suivnte montre que le problème de l meilleure pproximtion de f dmet une unique solution. PROPOSITION.9. Soit E un espce vectoriel réel muni d un produit sclire,. Soit f E et soit F E un sous-espce vectoriel de dimension finie. Alors il existe un unique élément p F telle que f p = inf q F f q (ici: g := g, g ). Cet élément p est ppelé l projection orthogonle de f sur F. Il est crctérisée pr le fit que (.5) f p, q w = 0 pour tout q F. DÉMONSTRATION. On démontre d bord que p F est une meilleure pproximtion de f dns F si et seulement si l condition (.5) est vérifiée. En fit, p F est une meilleure pproximtion de f dns F si et seulement si p F et ce qui est équivlent à f p f q pour tout q F, f, p + p f, q + q pour tout q F. En remplçnt q F pr p + q F, ceci est équivlent à f p, q q pour tout q F. Ici, on remplce q pr tq (t R, t > 0), on divise pr t, et on fit t tendre vers 0 pour obtenir f p, q 0 pour tout q F. Finlement, en remplçnt q pr q, on obtient que p F est une meilleure pproximtion de f dns F si et seulement si l condition (.5) est vérifiée. Existence et unicité d une meilleure pproximtion. Soit (p i ) 0 i n une bse vectorielle de l espce F (on suppose donc qu il est de dimension n + 1. Alors tout élément p F s écrit de l forme p = n λ i p i vec des coefficients λ i R. En I

17 4. APPROXIMATION HILBERTIENNE 17 plus, come (p i ) est une bse vectorielle de F, l condition (.5) est équivlente à l condition (.6) f, p i = λ j p j, p i pour tout 0 i n, j=0 ce qui est un système linéire pour le vecteur (λ 0,..., λ n ). Ce système linéire dmet une unique solution (λ 0,..., λ n ) si et seulement si le système homogène µ j p j, p i = 0 pour tout 0 i n j=0 dmet (µ 0,..., µ n ) = (0,..., 0) comme seule solution. Mis ce système implique que 0 = µ i µ j p j, p i j=0 µ i p i, et donc µ i p i = 0. Comme l fmille (p i ) est linéirement indépendnte, on trouve (µ 0,..., µ n ) = (0,..., 0). L démonstrtion de l proposition précédente montre que p = n λ i p i est meilleure pproximtion de f dns F si et seulement si (λ 0,..., λ n ) est solution de (.6). Il suffit donc de choisir une bse vectorielle (p i ) de F est de résoudre le système linéire (.6). On remrque que ce système linéire devient prticulièrement simple à résoudre si (p i ) est une bse orthogonle de F, c.à.d. p i si i = j, p j, p i = 0 si i j. COROLLAIRE.10. Soit (p i ) 0 i n une bse orthogonle de F. Alors l meilleure pproximtion p de f dns F est donné pr f, p i p = p i p i. 4.. Le procédé d orthogonlistion de Grm-Schmidt. Soit E un espce vectoriel réel muni d un produit sclire,. Soit (e i ) i 0 E une fmille de vecteurs linéirement indépendnte. Alors le procédé suivnt permet de construire une fmille orthonormle (p i ) i 0. Procédé de Grm-Schmidt. On pose d bord ẽ 0 = e 0 p 0 = et ẽ0 ẽ 0.

18 18. INTERPOLATION ET APPROXIMATION Ensuite, pour tout i 1 on définit de mnière recursive i 1 ẽ i = e i e i, p j p j et p i = ẽi ẽ i. C est un exercice de montrer que pour tout i, j 0 on 1 si i = j, p i, p j = 0 si i j, j=0 c.à.d. que (p i ) est une fmille orthonormle. En plus, si (e i ) étit une bse vectorielle, lors (p i ) est une bse vectorielle normle Les polynômes orthogonux. Soit I R un intervlle quelconque, et soit w : I R une fonction poids (continue, strictement positive). On suppose que, quelque soit n N, x n w(x) dx est bsolument convergente. I Dns ce cs, l espce C w (I) contient tous les polynômes. En ppliqunt le procédé de Grm-Schmidt ux monômes e n (x) = x n (n 0), on obtient une fmille (p n ) n 0 de polynômes orthogonles. Intervlle Poids w(x) Polynômes [ 1, 1] 1 Legendre [0, [ e x Lguerre R e x Hermite 1 ] 1, 1[ 1 x Tchebychev. Pr exemple, pour les polynômes de Legendre, on obtient p 0 (x) = p 1 (x) = p (x) = LEMME.11. Les polynômes orthogonux vérifient () p n est un polynôme de degré n, (b) l fmille (p i ) 0 i n est une bse orthogonle de l espce R n [X], (c) I p n(x)q(x)w(x) dx = 0 pour tout polynôme q de degré < n. THÉORÈME.1. Le polynôme p n possède n rcines réelles. Elles sont simples et contenues dns l intérieur de l intervlle I..

19 DÉMONSTRATION. On peut écrire 5. APPROXIMATION UNIFORME 19 p n (x) = k (x r i ) m i r(x) i=1 où les r i sont des rcines réelles distincts de multiplicité m i, et le polynôme r n ps de rcines réelles (en prticulier, r un signe). Notons r i1,..., r is les rcines de p n situées à l intérieur de l intervlle I et de multplicités m iα impirs. Alors le polynôme q(x) = (x r i1 ) (x r is ) est un polynôme de degré s, toutes les rcines de q sont simples et contenues dns l intérieur de l intervlle I. En plus, le produit p n (x)q(x) ne chnge ps de signe et est non-nulle. Donc p n, q 0. D près le lemme précédent (plus précisément, Lemme.11 (c), on obtient donc que degré p n = degré q, c.à.d. que q est un polynôme de degré = n. 5. Approximtion uniforme Dns cette section, on suppose que I = [, b] est un intervlle compct. L espce C([, b]) de toutes les fonctions continues [, b] R muni de l norme f := sup x [,b] f (x) est un espce vectoriel normé. Etnt donnée une fonction f C([, b]), on considère de nouveu le problème de (meilleure) pproximtion, mis mintennt vec l norme à l plce de l norme hilbertienne w du prgrphe précédent. On rppelle le théorème suivnt. THÉORÈME.13 (Weierstrss). Pour toute fonction f C([, b]) il existe une suite (p n ) de polynômes telle que lim n f p n = 0.

20

21 CHAPITRE 3 Intégrtion et différentition numérique 1. Intégrtion pprochée Soit f : [, b] R une fonction continue donnée, [, b] R étnt un intervlle compcte. On considère le problème de clculer l intégrle I( f ) = f (x) dx. En générl on cherche à trouver une vleur pprochée de l intégrle sous l forme J( f ) = λ i f (x i ), où x 0 < < x n b sont des noeuds donnés (ou à choisir) et où les coefficients λ 0,..., λ n sont donnés (ou à choisir), tous les deux indépendnts de l fonction f. Supposons d bord que les noeuds x 0 < < x n b sont donnés. Comment choisir les coefficients λ 0,..., λ n de telle mnière que l erreur E( f ) = I( f ) J( f ) soit 0 pour une certine clsse de fonctions? Pr exemple, comment choisir les coefficients λ 0,..., λ n de telle mnière que l erreur E( f ) = 0 pour tout polynôme de degré inférieur ou égl à n? C.à.d. telle que l formule d intégrtion pprochée J( f ) soit excte pour tout polynôme de degré inférieur ou égl à n? THÉORÈME 3.1. Etnt donné des noeuds x 0 < < x n b, il existe une et une seule formule d intégrtion pprochée J( f ) = n λ i f (x i ) telle que l erreur E( f ) = I( f ) J( f ) = 0 pour tout polynôme f R n [X]. DÉMONSTRATION. Existence. On pose λ i = l i(x) dx, oú l i est le i-éme polynôme d interpoltion de Lgrnge ssocié ux noeuds x 0,..., x n. Alors, pour tout polynôme f R n [X] on f (x) = f (x i ) l i (x), 1

22 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE cr l interpoltion est excte pour tout polynôme de degré n. Donc, I( f ) = = = = f (x) dx f (x i ) l i (x) dx f (x i ) λ i f (x i ) = J( f ). l i (x) dx Unicité. Soient J( f ) = n λ i f (x i ) et J ( f ) = n λ i f (x i) deux formules d intégrtion pprochées qui sont exctes pour tous les polynômes f R n [X], c.à.d. J( f ) = λ i f (x i ) = I( f ) = λ i f (x i ) pour tout f R n [X]. Alors (λ i λ i) f (x i ) = 0 pour tout f R n [X]. En prticulier, en choississnt f = l i le i-ième polynôme d interpoltion de Lgrnge (qui l propriété que l i (x j ) = δ i j pour tout 1 i, j n), on trouve que d où l unicité. λ i = λ i, DÉFINITION 3.. Une formule d intégrtion pprochée est dite d ordre m si I( f ) = J( f ) pour tout polynôme f R m [X] et s il existe un polynôme f R m+1 [X] tel que I( f ) J( f ). D près le Théorème 3.1, étnt donné des noeuds x 0 < < x n b, il existe une et une seule formule d intégrtion pprochée d ordre m n. On verr que l ordre m peut être strictement supérieur à n. Pr contre, on remrque d bord que l ordre est toujours inférieur ou égl à n + 1. LEMME 3.3. Soient x 0 < < x n b des noeuds donnés et soit J( f ) = n λ i f (x i ) une méthode d intégrtion pprochée. Alors l ordre de cette méthode est inférieur ou égl à n + 1. DÉMONSTRATION. Soit f (x) = n (x x i ).

23 1. INTÉGRATION APPROCHÉE 3 Alors f est un polynôme positif, de degré n+, tel que f (x i ) = 0 pour tout 0 i n. Donc J( f ) = λ i f (x i ) = 0 < I( f ). Ainsi, l ordre de J est inférieur ou égl à n + 1. EXEMPLE 3.4 (Méthode des rectngles). On prend n = 0 et x 0 noeud, u milieu de l intervlle [, b]). Alors = +b (un seul et donc λ 0 = l 0 (x) dx = dx = b, J( f ) = (b ) f ( + b ). Cette formule d intégrtion pprochée est excte pour les polynômes constnts f R 0 [X] (Théorème 3.1), mis on ussi Pr contre, J(x) = (b ) + b J(x ( + b) ) = (b ) 4 = b b3 3 3 = I(x). = I(x ). Donc, l ordre de cette formule d intégrtion pprochée est m = 1. EXEMPLE 3.5 (Méthode des trpézes). On prend n = 1, x 0 =, x 1 = b (deux noeuds, ux extrémités de l intervlle [, b]). On et Donc, λ 0 = λ 1 = l 0 (x) dx = l 1 (x) dx = x b b dx = b x b dx = b. J( f ) = b ( f () + f (b)). Cette formule d intégrtion pprochée est excte pour les polynômes f R 1 [X] (Théorème 3.1), mis J(x ) I(x ). L ordre de cette formule d intégrtion pprochée est m = 1.

24 4 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE EXEMPLE 3.6 (Méthode de Simpson). On prend n =, x 0 =, x 1 = +b, et x = b (trois noeuds, ux extrémités et u milieu de l intervlle [, b]). On λ 0 = λ 1 = λ = l 0 (x) dx = b 6, l 1 (x) dx = 4 b 6, l (x) dx = b 6. Donc J( f ) = b ( f () + 4 f ( + b 6 ) + f (b)). L ordre de cette formule d intégrtion pprochée est m = 3.. Etude de l erreur d intégrtion pprochée On rppelle l version suivnte du théorème de Tylor, et ussi le théorème de l moyenne. où THÉORÈME 3.7 (Tylor). Soit f C n+1 ([, b]). Alors pour tout x [, b] on (x ) k f (x) = f (k) (x t) n + () + f (n+1) (t) dt, k! n! k=0 t si t 0, t + = 0 si t < 0. THÉORÈME 3.8 (Théorème de l moyenne). Soient f, g : [, b] R deux fonctions continues. On suppose que g(x) 0 pour tout x [, b]. Alors il existe un ξ [, b] tel que f (x)g(x) dx = f (ξ) g(x) dx. THÉORÈME 3.9. Soient x 0 < < x n b des noeuds donnés et soit J( f ) = n λ i f (x i ) une méthode d intégrtion pprochée d ordre m n. Soit K(t) = (x t) m + dx λ i (x i t) m + Alors, pour toute fonction f C (m+1) ([, b]) on E( f ) = I( f ) J( f ) = K(t) m! f (m+1) (t) dt, (t [, b]).

25 et si le noyu K est positif, lors. ETUDE DE L ERREUR D INTÉGRATION APPROCHÉE 5 E( f ) = f (m+1) (ξ) K(t) m! dt pour un ξ [, b]. DÉMONSTRATION. D près le Théorème de Tylor (Théorème 3.7), on m (x ) k f (x) = f (k) (x t) m + () + f (m+1) (t) dt. k! m! k=0 Comme J est d ordre m, on obtient donc E( f ) = E(x = = = (x t) m + m! (x t) m + m! (x t) m + dx K(t) m! f (m+1) (t) dt. f (m+1) (t) dt) f (m+1) (t) dt dx λ i (x i t) m + m! λ i (x i t) m +) f (m+1) (t) dt f (m+1) (t) dt L deuxième représenttion de l erreur est une conséquence directe de cette première représenttion et du théorème de l moyenne (Théorème 3.8). EXEMPLE 3.10 (L erreur dns l méthode des rectngles). Cette méthode est d ordre 1. Donc, ( E( f ) = (x t) + dx (b )( + b ) t) + ) f (t) dt = K(t) f (t) dt vec (t ) si t +b K(t) =, (t b) si t +b. Ainsi, comme le noyu K est positif et pr le théorème de l moyenne, E( f ) = f (b )3 (ξ) 4 pour un certin ξ [, b]. EXEMPLE 3.11 (L erreur dns l méthode de Simpson). Cette méthode est d ordre 3. Donc, E( f ) = K(t) 3! f (4) (t) dt

26 6 3. INTÉGRATION ET DIFFÉRENTIATION NUMÉRIQUE vec K(t) = = (x t) 3 + dx b 6 (b t) 3 (b+ 3t) 1 si t +b, ( t) 3 (b+ 3t) 1 si t +b. ( ( t) ( + b t) (b t) 3 ) + Ainsi, comme le noyu K est négtif, E( f ) = f (4) (b )5 (ξ) 880 pour un certin ξ [, b]. 3. L formule d intégrtion pprochée de Guss On rppelle du Lemme 3.3 que toute méthode d intégrtion pprochée est u plus d ordre n + 1. On peut lors se demnder s il existe une méthode d intégrtion pprochée qui est exctement d ordre m = n + 1. L réponse à cette question est oui, si on choisit bien les noeuds x 0,..., x n. THÉORÈME 3.1 (Guss). Soit [, b] = [ 1, 1], et soit n 0. Alors il existe des noeuds x 0 < < x n b et une méthode d intégrtion pprochée J( f ) = n λ i f (x i ) qui est d ordre n + 1. Plus précisément, il suffit de prendre comme noeuds les rcines du n + 1-ième polynôme de Legendre L n+1 et comme méthode d intégrtion pprochée celle du Théorème 3.1. DÉMONSTRATION. Soit L n+1 le n + 1-ième polynôme de Legendre. On rppelle que l suite des polynômes de Legendre est obtenue pr le procédé de Grm-Schmidt ppliqué à l suite des monômes, en utilisnt le produit sclire f, g = 1 f (x)g(x) dx. 1 Le polynôme L n+1 est un polynôme de degré n + 1 qui est orthogonl à tous les polynômes de degré n (Lemme.11). En plus, toutes les rcines de L n+1 sont simples et contenues dns l intervlle [ 1, 1] (Théorème.1) Soit mintennt p un polynôme de degré n + 1. Une division vec reste montre que p = q L n+1 + r

27 pour des polynômes de degré n. Alors I(p) = = = = = = p(x) dx q(x)l n+1 (x) dx + r(x) dx 4. DIFFÉRENTIATION NUMÉRIQUE r(x) dx (q et L n+1 sont orthogonux) λ i r(x i ) (J est d ordre m n) λ i q(x i )L n+1 (x i ) + λ i p(x i ) = J(p). λ i r(x i ) (x i sont rcines de L n+1 ) Comme p R n+1 [X] étit rbitrire, ceci montre que J est d ordre m n + 1. Pr le Lemme 3.3, m n + 1, et donc l ordre m = n Différentition numérique Etnt donné une fonction f C 1 ([, b]) et un point x [, b], on souhite clculer l dérivée L( f ) = f (x). On souhite clculer cette dérivée à l ide d une formule à deux noeuds Λ( f ) = λ 0 f () + λ 1 f (b), où λ 0, λ 1 sont des constntes. On veut que l formule Λ( f ) soit excte pour tous les polynômes de degré 1. On choississnt f (x) = 1 et f (x) = x on trouve lors les deux conditions et donc λ 0 = λ 1 = 1 b. Ainsi Λ( f ) = λ 0 + λ 1 = 0 λ 0 + λ 1 b = 1, et f (b) f (). b 4.1. Schém centré. Ici, on prend x = +b L( f ) = f ( +b, c.à.d. on souhite clculer l dérivée ) u milieu de l intervlle [, b]. Pr construction, l erreur E( f ) = L( f ) Λ( f ) = f ( + b f (b) f () ) b est nulle pour tout polynôme f de degré 1. Mis on voit fcilement que E(x ) = 0 ussi, et que E(x 3 ) 0. On dit que l méthode de différentition Λ( f ) est d ordre.

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Cours de Mathématiques PSI. Mathieu Gentès

Cours de Mathématiques PSI. Mathieu Gentès Cours de Mthémtiques PSI Ψ Mthieu Gentès Lycée Henri Bergson - Angers Année 2010-2011 Tble des mtières 0 Structures lgébriques 11 I Groupe................................................ 13 I.1 Définitions..........................................

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux Cours de Terminle S Lycée Cmille Pissrro 203-204 Sébstien Andrieux 7 juin 204 Tble des mtières I Cours de Terminle S 5 Risonnement pr récurrence 6 2 Suites et limites des suites 8 I Suite convergente,

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Mathématiques, Semestre S1

Mathématiques, Semestre S1 Polytech Pris-Sud PeiP1 2011/2012 Notes de cours Mthémtiques, Semestre S1 Filippo SANTAMBROGIO 2 Tble des mtières 1 Les fonctions dns R et leurs limites 7 1.1 Fonctions réelles d une vrible réelle.........................

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Progrmmes des clsses préprtoires ux Grndes Ecoles Filière : scientifique Voie : Mthémtiques et physique (MP) Discipline : Mthémtiques Seconde nnée Clsse préprtoire MP Progrmme de mthémtiques Tble des mtières

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Intégration, probabilités

Intégration, probabilités prép-greg 7-8 Intégrtion, probbilités Dns tous les exercices probbilistes, les vribles létoires sont supposées définies sur le même espce probbilisé (Ω, A, P). I Questions de cours L fonction t sin t t

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Cours d Analyse Mathématique II

Cours d Analyse Mathématique II Année 22-23 Cours d Anlyse Mthémtique II F. Bstin Prise de notes rédigée pr Alice Slmon. Avec l prticiption de : Nicols Ghye (schéms) Sndy Assent (relecture) Préfce Avertissement Ce texte résulte d une

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Mathématiques. Sup & Spé TSI Résumé de Cours. Christophe Caignaert. Lycée Colbert 59200 Tourcoing

Mathématiques. Sup & Spé TSI Résumé de Cours. Christophe Caignaert. Lycée Colbert 59200 Tourcoing Sup & Spé TSI Résumé de Cours j O Clcul élémentire de l courbure en un point birégulier i On considère l fonction ngulire ssociée ϕ qui est l ngle entre Ox et T, ϕ = d où, en prmétriques : cosϕ T : = sinϕ

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

IFT 615 : Devoir 4 Travail individuel

IFT 615 : Devoir 4 Travail individuel IFT 615 : Devoir 4 Trvil individuel Remise : 1 vril 01, 16h0 (u plus trd) 1. [ points] Dns le cours, nous vons vu différents types de problèmes d intelligence rtificielle insi que plusieurs solutions possibles

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Automates d arbres avec visibilité : rapport de stage de licence (L3)

Automates d arbres avec visibilité : rapport de stage de licence (L3) Automtes d rbres vec visibilité : rpport de stge de licence (L3) Nicols Perrin ENS de Lyon Mître de stge : Hubert Comon-Lundh - LSV, ENS Cchn Autre encdrnt : Florent Jcquemrd - LSV, ENS Cchn Résumé Mon

Plus en détail

Caractères et Glyphes

Caractères et Glyphes Crctères et Glyphes Le texte est obtenu pr l frppe u clvier des différents crctères désirés, crctères représentés à l écrn pr leur forme, les glyphes, représenttions des crctères. Ces crctères peuvent

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Intégrale curviligne et applications aux fonctions holomorphes

Intégrale curviligne et applications aux fonctions holomorphes Chpitre 2 Intérle curviline et pplictions ux fonctions holomorphes 2. Intérle curviline - Indice d un point pr rpport à un lcet 2.. Définitions et propriétés de bses Soit f : [, b] R! C une fonction, on

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures! SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Terminle S Vlère BONNET vlere.bonnet@gmil.com) 9 mi Lycée PONTUS DE TYARD rue des Gillrdons 7 CHALON SUR SAÔNE Tél. : ) 85 46 85 4 Fx : ) 85 46 85 59 FRANCE ii LYCÉE PONTUS DE TYARD

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x Préprtion à l orl Mines-Ponts - MP I) Soit f de clsse C sur [, + [, à vleurs dns R, vérifint f() = et f (t) = (f(t)) + t Montrer que f dmet une limite l + π en + 4 II) Soient A et B non nulles dns M 3

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z Nomres complexes Module et conjugué d'un nomre complexe Définition - Propriétés Un nomre complexe z s'écrit de fçon unique sous l forme + i ; IR, IR On dit que + i est l forme lgérique du nomre complexe

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail