Réseaux neuronaux Perceptron Multi-Couche

Dimension: px
Commencer à balayer dès la page:

Download "Réseaux neuronaux Perceptron Multi-Couche"

Transcription

1 Réseaux neuronaux Réseaux neuronaux Perceptron MultiCouche Les fondements biologiques influx nerveux cortex : neurones neurone : ~ 4 entrées Jerzy Korczak, LSIIT, ULP jjk@dptinfo.ustrasbg.fr soma dendrites axone synapse J.Korczak, ULP J.Korczak, ULP 2 Neurone biologique Cortex : les couches et les cellules Signal: action potentielle (ang.spike) action potential mm neurones 3 km fil µm J.Korczak, ULP 3 J.Korczak, ULP 4 Modélisation de réseaux de neurones biologiques Modèle de cellule de Purkinje (Schutter 25) Neurones Populations de neurones Comportement Signaux Le modèle comporte: 32 équations différentielles! 82 modèles des canaux ioniques 92 paramètres d affinement description morphologique Molecules Canaux ionique Modéles J.Korczak, ULP 5 J.Korczak, ULP 6

2 Histoire Traitement de l'information dans le cerveau et l'ordinateur de von Neumann La modélisation du neurone [McCulloch, Pitts, 943] Le processus d apprentissage [Hebb, 949] PERCEPTRON [Rosenblatt,958962] Convergence d un algorithme itératif d adaptation de poids Limitations du PERPTRON [Minsky, Papert, 969] séparation linéaire Problème du OUexclusif () Machine de Bolzmann [Hopfield, 982] Rétropropagation MLP [Rumelhart, Parker, Le Cun, 985] Cartes topologiques autoadaptatives [Kohonen, 8s] Ordinateur de von Neumann calcul et mémoire séparés et centralisés programme = séquence d instr. exécution d'un sousprogramme à la fois un seul processeur très rapide Cerveau calcul et mémoire intégrés et distribués calcul = satisfaction de multiples contraintes combinaison simultanée de multiples sources d'information des centaines de milliards d'unités de calcul très lentes J.Korczak, ULP 7 J.Korczak, ULP 8 Caractéristiques des systèmes Séparation linéaire w k x > s w k x < s x? x2 Un ensemble d'exemples est linéairement séparable si il existe un classifieur linéaire qui peut tous les apprendre. Pour n entrées binaires, il existe 2 n vecteurs d'entrées possibles, et 2 2 n fonctions binaires. J.Korczak, ULP 9 J.Korczak, ULP Applications OCR : reconnaissance de caractères res par RN Reconnaissance des formes, classification Reconnaissance/synthèse de la parole Prévision et modélisation Diagnostic Compression de données Vision, robotique, commende de véhicule, contrôle adaptatif Nouvelles applications Recherche d informations dans le Web Extraction d information, veille technologique Multimédia (indexation) Data mining J.Korczak, ULP J.Korczak, ULP 2 2

3 n'importe Qu estce qu un réseau de neurones? Réseaux neuronaux : bonnes applications RN est un réseau d automates finis partiellement ou totalement connectés entre eux, en interaction locale ou globale. Il est entièrement caractérisé par son architecture et les fonctions de transition d état des neurones. Deux grands classes de RN : RN dont l apprentissage est supervisé Une méthode d apprentissage supervisé est une méthode qui utilise directement les connaissances d un expert et essaye de reproduire ces connaissances. RN dont l apprentissage est non supervisé Une méthode d apprentissage non supervisé est une méthode qui essaye de dériver des généralisations à partir des données, de segmenter l espace de données. J.Korczak, ULP 3 Des caractéristiques d une bonne application : Problèmes très difficiles à expliciter ou à formaliser On dispose d un ensemble d exemples Le problème fait intervenir des données bruitées Le problème peut évoluer Le problème nécessite une grande rapidité de traitement Il n existe pas de solutions technologiques courantes J.Korczak, ULP 4 Le Perceptron MultiCouche (MLP) Le MLP est composé de couches successives : une couche d entrée (où sont présentées les entrées), une ou plusieurs couches cachées, et une couche de sortie (où sont présentées les sorties calculées par le MLP). Réseau de neurones MLP Un réseau (suffisamment complexe) de neurones formels peut représenter quelle fonction booléenne ou n'importe quelle partition de R n. L apprentissage des MLP : algorithme de rétropropagation du gradient algorithme de gradient conjugué méthodes de second ordre, Les MLP sont des approximateurs universels. couche d entrée couches cachées couche de sortie J.Korczak, ULP 5 J.Korczak, ULP 6 Fonctionnement d un neurone Fonction d activation w Fonction d activation (ou de transfert) F Σ Fonction non linéaire choix typiques : fonction logistique, tangente hyperbolique F(x) = /(+e x ) F(x)= tanh(x) 2 w2 3 wi Σ 2 Entrées wk Σx i *w i Σ 3 Sorties propriétés importantes : continue, dérivable J.Korczak, ULP 7 J.Korczak, ULP 8 3

4 MLP : apprentissage Principe : Initialisation des poids à des valeurs aléatoires Présentation d un exemple Propagation des signaux dans le réseau Calcul des erreurs et propagation en sens rétrograde Modification des poids de connexions Défauts : Paramétrage Lenteur Choix de la topologie Arrêt de l apprentissage Critères classiques l erreur passe en dessous d un seuil borne sur le temps de calcul vitesse de progression Une technique de régularisation : arrêt prématuré (early stopping) éviter le surapprentissage on s arrête quand l erreur remonte sur l ensemble de validation J.Korczak, ULP 9 J.Korczak, ULP 2 Problème : la sortie désirée pour un neurone caché? Problème : la sortie désirée pour un neurone caché? dep/dwij = (dep/dσj)(dσj/dwij) =(dep/dσj) yi on pose δj= (dep/dσj), d où wij(t+) = wij(t) λ(t) δj yi xi Entrées oi wij tj: sortie désirée oi oj wjk xi σi σj σk f f f wij entrée tj Méthode de calcul : ) fonction de coût : E(t)=Σp(optp) 2 2) gradient total : w(t+) = w(t) λ(t) gradw (Ep(t)) 3) calculer dep/dwij mais δj= (dep/dσj)= Σk(dEp/dσk) (dσk/dσj)= Σk δk (dσk/dσj)= = Σk δk wjk (dyk/dσj) d où δj = 2(oj tj) f (σj) si neurone j en sortie δj = (Σk wij δk) f (σj) si neurone j en sortie J.Korczak, ULP 2 J.Korczak, ULP 22 Rétro tropropagation du gradient Exemple : Rétropropagation du gradient (GBP) Apprentissage x x 2 x 3... x n w o ij o 2 o 3 Vecteur yi= Σ w d entrée ij x i Fonction sigmoïde F(y)=/(+e ky)... o m t t 2 t 3 E=/2 Σ(t k o k ) 2... t m F (y) = F(y)(F(y)) (,) f(net k )=/(+e net k) net j =Σw ij o i o j =f(net j ) W ij =,5 δ k =(t k o k )f (net k ) f (net k )=o k (o k ) w jk (t+)=w jk (t)λδ k o j,5 J.Korczak, ULP 23 J.Korczak, ULP 24 4

5 Exemple : Rétropropagation du gradient (GBP) Apprentissage Apprentissage : les poids et le coefficient d apprentissage (,) δ h =f (net j ) Σδ k w kj x =,5*(,5)*,25*,625=,95 w hx =+,*,95*=,95 z,5 λ=, W ij = δ z =(.5)*,5*(.5)= =,25 w zx (t+)=+,*,25*= =,25,5 h J.Korczak, ULP 25 y w zx =,25 λ itération w zy =, w zh =,625,5 372 w hx =,95 3, 39 w hy = 4, (fails) w zbh =,95 f(net) =,573 J.Korczak, ULP 26 Exemple : Rétropropagation du gradient (GBP) Exemple : Rétropropagation du gradient (GBP) (,) 2,76 3,29,9,9.98 7, 7, * 7, * 2,76 * 7, Σxw = 4,34 2,76 3,29 7,,9,9,98 7, =/(+e Σx w ) =/(+e 4,34 ) =,98 J.Korczak, ULP 27 J.Korczak, ULP 28 Exemple : Rétropropagation du gradient (GBP) Axone : Exemple [ 3,29,9,9,98 2,76 7, 7, J.Korczak, ULP 29 J.Korczak, ULP 3 5

6 Axone : Exemple paramètres d apprentissage Axone : Exemple réseau appris J.Korczak, ULP 3 J.Korczak, ULP 32 Apprentissage : Mise à jour des poids et outils Mise à jour des poids Batch : après la présentation de tous les exemples calcul et stockage lourds si trop d exemples En ligne (online) : après chaque exemple besoin de tirer l exemple au hasard problèmes de convergence plus de 5 exemples Outils : Matlab, Axone, SNNS Choix du pas d apprentissage Pas d apprentissage : trop petit > convergence «lente» trop grand > risque d oscillations Heuristiques : ajuster le pas au fur et à mesure «à la main» «en fonction de la forme de la surface d erreur Approximations : Premier ordre : Inertie, SuperSAB, DeltaBarDelta, Rprop Second ordre : QuickProp, LevenbergMarquard J.Korczak, ULP 33 J.Korczak, ULP 34 Déplacement de l objectif d apprentissage Chaque neurone à l intérieur du réseau essaye en même temps d évoluer pour détecter une caractéristique du problème. Les neurones d une même couche ne communiquent pas entre eux. Effet «troupeau» (herd effect) Architecture en cascade : Cascade Correlation Extraction de règles r à partir de RN Connaissances acquises du RN sont encodées : L architecture du réseau Les fonctions d activation associées à chaque neurone Les poids des connexions Objectifs : Explication pour l utilisateur Vérification de logiciels, Débuggage Exploration de données Amélioration de la généralisation Induction de théories scientifiques Acquisition de connaissances J.Korczak, ULP 35 J.Korczak, ULP 36 6

7 Ave rag e Inten s ity o f e ac h ro ws Grey Sca le In te n si ty In te n si ty KnowledgeBased Artificial Netural Networks Networks [Shavlik, 993] Méthodes d extraction de règles à partir RN Théorie initiale du domaine Données Théorie finale du domaine Décompositionnelles KBANN SUBSET MofN Hybrides DEDEC TREPAN Insertion de règles dans le réseau Réseau initial Apprentissage Extraction de règles du réseau Réseau final Pédagogiques RULENEG BRAINNE VIA J.Korczak, ULP 37 J.Korczak, ULP 38 Optimisation de la topologie de PMC Authentification biométrique Approche empirique par «essaierreur» Approches ascendantes : cherche à augmenter le nombre de connexions et de neurones dans le réseau CascadeCorrelation [Fahlman, Lebiere, 99] Upstart [Frean, 99] Tiling [Mézard, Nadal, 989] Approches descendantes : cherche à élaguer les connexions et les neurones dans le réseau pendant l apprentissage [Weight Elimination, Weigend,99] après apprentissage [OBD, Brain Surgeon, Le Cun, 99] Approches évolutives : connexionisme génétique [Weight Elimination, Weigend,99] AGWin [Korczak, 998] Visage Filtre Trouver Trouver Inondation + de base Convolution Identité Voix Normalisation Apprentissage et Détection des yeux + Codage Reconnaissance Fréquence Effacer les silences Temps Normalisation Transformation de l ondelette + Codage C C C 2 C 3 C 4 C 5 C 6 C 7 C 9 C C C 2 C 3 C 4 C 5 Moment Vert Bleu Hue Saturation Intensité Réseau des Extraction neurones Base des données Apprentissage et Reconnaissance Réseau des neurones w w2 Décision Accepter, Rejeter J.Korczak, ULP 39 J.Korczak, ULP 4 Bibliographie Bishop C.M., Neural Networks for Pattern Recognition, Oxford Univ., 995. Haykin S., Neural Networks: A Comprehensive Foundation, PrenticeHall, 999. Rojas R., Neural Networks: A Systematic Introduction, Springer, 996. Kohonen T., SelfOrganizing Maps, Springer, 997. Hérault J., Jutten C., Réseaux neuronaux et Traitement du Signal, Hermès, 994. Masters T., Practical Neural Network Recipes in C++, Academic Press, 994. Online books : Usenet newsgroup : comp.ai.neuralnets FAQ : ftp://ftp.sas.com/pub/neural/faq.html Neuroprose : ftp://archive.cis.ohiostate.edu/pub/neuroprose J.Korczak, ULP 4 7

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail.

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail. العالي التعلیم وزارة والبحث العلمي BADJI MOKHTAR ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR ANNABA جامعة باجي مختار عنابة Faculté: Sciences de l'ingénieur Année : 2010 Département: Electronique MEMOIRE

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Abdeljelil Farhat Unité de recherche EAS-Mahdia Faculté des sciences économiques

Plus en détail

Druais Cédric École Polytechnique de Montréal. Résumé

Druais Cédric École Polytechnique de Montréal. Résumé Étude de load balancing par un réseau de neurones de types HME (Hierarchical Mixture of s). Druais Cédric École Polytechnique de Montréal Résumé Cet article tente d introduire le principe de load balancing

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI elhimdi@menara.ma 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN 1. DÉVELOPPEMENT D'APPLICATION (CONCEPTEUR ANALYSTE) 1.1 ARCHITECTURE MATÉRIELLE DU SYSTÈME INFORMATIQUE 1.1.1 Architecture d'un ordinateur Processeur,

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln. MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.fr Plan Introduction Généralités sur les systèmes de détection d intrusion

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

SudoClick Reconnaissance de grilles de sudoku pour téléphones portables

SudoClick Reconnaissance de grilles de sudoku pour téléphones portables SudoClick Reconnaissance de grilles de sudoku pour téléphones portables Patrick Anagnostaras 1 24 mai 2008 Department of Informatics - Master Project Report Département d Informatique - Departement für

Plus en détail

Les algorithmes de fouille de données

Les algorithmes de fouille de données Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Machines virtuelles Cours 1 : Introduction

Machines virtuelles Cours 1 : Introduction Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 pierre.letouzey@inria.fr PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Outils pour les réseaux de neurones et contenu du CD-Rom

Outils pour les réseaux de neurones et contenu du CD-Rom Outils pour les réseaux de neurones et contenu du CD-Rom Depuis le développement théorique des réseaux de neurones à la fin des années 1980-1990, plusieurs outils ont été mis à la disposition des utilisateurs.

Plus en détail

Depuis des années, les films de science fiction

Depuis des années, les films de science fiction Steffen Nissen Création d'un réseau de neurones c'est facile Ressources en ligne : Sur le CD vous trouverez les fi chiers codes décrits dans l'article ainsi que la bibliothèque. Depuis des années, les

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE MÉCANIQUE M.Ing. PAR CHERIF MAKREM

Plus en détail

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion L utilisation des réseaux de neurones artificiels en finance Philippe PAQUET Professeur de Gestion 2 Résumé Depuis le début de la décennie 1990, les réseaux de neurones artificiels habituellement utilisés

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones

Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones Javier Burroni - Carlos Sarraute { javier, carlos } @ coresecurity.com Core Security Technologies SSTIC

Plus en détail

Filière Informatique de gestion. Facturation par APDRG : prédiction des recettes des cas non codés

Filière Informatique de gestion. Facturation par APDRG : prédiction des recettes des cas non codés Travail de diplôme 2007 Filière Informatique de gestion Facturation par APDRG : prédiction des recettes des cas non codés PrediRec Etudiant : Mathieu Giotta Professeur : Henning Mueller www.hevs.ch SIMAV

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved.

Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved. Grégoire de Lassence 1 Grégoire de Lassence Responsable Pédagogie et Recherche Département Académique Tel : +33 1 60 62 12 19 gregoire.delassence@fra.sas.com http://www.sas.com/france/academic SAS dans

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

W I-FI SECURISE ARUBA. Performances/support de bornes radio

W I-FI SECURISE ARUBA. Performances/support de bornes radio ARUBA Performances/support de bornes radio Bande passante non cryptée : 1 Gbps-16 Gbps Bande passante cryptée : 200 Mbps-8 Gbps 6000-6100 256-512 APs 2400 48 APs 5000-5100 48-128-256 APs 800-4/800-16 04-16

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 1 Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 2 Introduction Pourquoi pair à pair? Utilisation de ressources

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure INTELLIGENCE NUMERIQUE Langage Java Mentions

Plus en détail

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL 2013 10 Nov

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL 2013 10 Nov 1 MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES Par C.CAVADORE ALCOR-SYSTEM WETAL 2013 10 Nov Pourquoi motoriser un télescope? 2 Pour compenser le mouvement de la terre (15 /h) Observation visuelle Les

Plus en détail

Réseaux grande distance

Réseaux grande distance Chapitre 5 Réseaux grande distance 5.1 Définition Les réseaux à grande distance (WAN) reposent sur une infrastructure très étendue, nécessitant des investissements très lourds. Contrairement aux réseaux

Plus en détail

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous :

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous : BASE BioArray Software Environment (BASE) est une base de données permettant de gérer l importante quantité de données générées par des analyses de bio-puces. BASE gère les informations biologiques, les

Plus en détail

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j ))

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j )) La logique oue dans les PME/PMI Application au dosage de l'eau dans les bétons P.Y. Glorennec INSA de Rennes/IRISA glorenne@irisa.fr C. Hérault Hydrostop christophe@hydrostop.fr V. Hulin Hydrostop vincent@hydrostop.fr

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly alexis.joly@inria.fr INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé

Plus en détail

DATA MINING EN ASSURANCE : Quelques Utilisations

DATA MINING EN ASSURANCE : Quelques Utilisations DATA MINING EN ASSURANCE : Quelques Utilisations Rédha TIR Inspecteur Central Direction des Grandes Entreprises (DGE) Ministères des Finances Tél. :+213 70 35 53 85 Fax : +213 94 19 43 E-mail :Redha_Tir@yahoo.com

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE.

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE. Plan Data mining (partie 2) Introduction 1. Les tâches du data mining 2. Le processus de data mining Master MIAGE - ENITE Spécialité ACSI 3. Les bases de l'analyse de données 4. Les modèles du data mining

Plus en détail

SQL Server 2014 Administration d'une base de données transactionnelle avec SQL Server Management Studio

SQL Server 2014 Administration d'une base de données transactionnelle avec SQL Server Management Studio Présentation 1. Introduction 13 2. Présentation de SQL Server 14 2.1 Qu'est-ce qu'un SGBDR? 15 2.2 Mode de fonctionnement client/serveur 16 2.3 Les plates-formes possibles 18 2.4 Les composants de SQL

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

A.3 Les méthodes : L applicabilité

A.3 Les méthodes : L applicabilité SOMMAIRE A. Première partie A.1 Ingénierie système : du besoin au système (produit/service) A.2 SDF, Maintenance et concepts sous-jacents A.3 Les méthodes : L applicabilité A.4 GMAO = GM + AO B. Deuxième

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut

Plus en détail

ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS

ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS B. Badri 1 ; M. Thomas 1 ; S. Sassi 2 (1) Department of Mechanical Engineering,

Plus en détail

Projet de programme pour l enseignement d exploration de la classe de 2 nde : Informatique et création numérique

Projet de programme pour l enseignement d exploration de la classe de 2 nde : Informatique et création numérique Projet de programme pour l enseignement d exploration de la classe de 2 nde : Informatique et création numérique 19 mai 2015 Préambule L informatique est tout à la fois une science et une technologie qui

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Circuits intégrés micro-ondes

Circuits intégrés micro-ondes Chapitre 7 Circuits intégrés micro-ondes Ce chapitre sert d introduction aux circuits intégrés micro-ondes. On y présentera les éléments de base (résistance, capacitance, inductance), ainsi que les transistors

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS

UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP20-9717 Pointe-à-Pitre Cedex CONTRAT 2010-201 LE MASTER NOM DU DOMAINE STS Mention : Mathématiques Implantation : Guadeloupe FICHES DESCRIPTIVES

Plus en détail

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses 6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation

Plus en détail

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est: Travaux Pratiques 3. IFT 1002/IFT 1005. Structure Interne des Ordinateurs. Département d'informatique et de génie logiciel. Université Laval. Hiver 2012. Prof : Bui Minh Duc. Tous les exercices sont indépendants.

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail