2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

Dimension: px
Commencer à balayer dès la page:

Download "2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire"

Transcription

1 Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à un référentiel galiléen dans un champ électrique E(M, t) et un champ B(M, t) est F = q ( E + v B) (1) (force de Lorentz). Cette force comprend deux termes : une force électrique, F élec = q E, et une force magnétique, F mag = q v B. 1. Travail de la force magnétique La force magnétique ne travaille pas. Sa puissance est en effet nulle : P( F mag ) = F mag v = q ( v B) v = 0 (2) puisque v B est perpendiculaire à v. La force magnétique ne provoque pas de changement d énergie cinétique, donc de modification de la norme de la vitesse. En revanche, elle change sa direction. 2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Étudions l effet de la force magnétique sur une particule chargée plongée dans un champ magnétique uniforme stationnaire, mais sans champ électrique. On a Dans le repère de Frénet, m d v = q v B. (3) d v = dv u T + v2 R c u N, (4) où v est la norme de la vitesse, R c le rayon de courbure de la trajectoire, u T le vecteur unitaire tangent à la trajectoire dans le sens de celle-ci et u N est le vecteur normal à la trajectoire situé dans le plan osculateur et orienté vers le centre de courbure (donc R c 0). En projetant (3) sur u T, on obtient m dv = q (v u T B) u T = 0. (5) 72

2 On retrouve que v est constante. En projetant (3) sur B, on obtient que u N est orthogonal à B. Soit u = B/B. On peut écrire v sous la forme Puisque B est uniforme et stationnaire, m d v B = m d( v B) v = v u + v. (6) = m dv donc v = c te. Comme v 2 = v 2 + v2, on a aussi v = c te. On a En prenant la norme, on obtient puisque v B, donc le rayon de courbure B = 0, (7) m v2 R c u N = q v B. (8) m v 2 R c = q v B, (9) R c = q v B (10) m v 2 est constant. On obtient une trajectoire de rayon de courbure constant dont le centre de courbure C, défini par MC = R c u N, se déplace à la vitesse constante v selon la direction de B. Le champ magnétique étant orthogonal à u N, la trajectoire est une hélice d axe dirigé selon B. Dans le cas où v = 0, la trajectoire est un cercle de rayon R c dans un plan perpendiculaire à B. 3. Transformation des champs dans un changement de référentiels galiléens Soient R et R deux référentiels galiléens, v R /R la vitesse de R par rapport à R (c.-à-d. celle de O par rapport à R, car R et R ne tournent pas l un par rapport à l autre puisqu ils sont tous deux galiléens : ω R /R = 0), et v /R et v /R les vitesses d une charge ponctuelle q par rapport à R et R. En mécanique classique, la force subie par un point matériel est la même dans deux référentiels galiléens. La charge, quant à elle, ne dépend pas du référentiel. On a donc q ( E + v /R B) = q ( E + v /R B ), (11) où E et B sont les champs électrique et magnétique dans R, et E et B les mêmes dans R. Comme v /R = v /R + v R /R (car ω R /R = 0), Ceci étant vrai pour toute vitesse v /R, q ( E + v R /R B) + q v /R B = q E + q v /R B. (12) E = E + v R /R B, (13) B = B. (14) La première équation manifeste que le champ électrique E dans un référentiel dépend du champ magnétique B dans un autre référentiel. Dans la deuxième, en revanche, B ne dépend pas de E. Ces calculs ont été effectués en relativité galiléenne et ne sont plus valables lorsque les vitesses ne sont pas négligeables devant celle de la lumière. Il faut alors les mener dans le cadre de la relativité restreinte, ce qui modifie (13) et (14) et mène à une expression de B dépendant de B et E, symétrique de celle de E. 73

3 VII.b. Force de Laplace Considérons une portion de conducteur neutre se déplaçant à la vitesse w et parcourue par des courants. Différents types de porteurs de charge, référencés par un indice, se meuvent dans ce conducteur. Notons q la charge d un porteur, ν le nombre de porteurs de type par unité de volume, v leur vitesse par rapport au conducteur, et ρ la densité volumique de charge. La force magnétique exercée sur un porteur est q ( v + w) B. La force magnétique exercée sur tous les porteurs contenus dans un volume dτ est d F Lapl = ν dτ q ( v + w) B = ρ v B dτ + ρ w B dτ = j B dτ (force de Laplace). Pour un conducteur filiforme parcouru par un courant I, la force exercée sur une portion d l orientée dans le sens de I vaut (15) d F Lapl = I d l B. (16) 1. Force d interaction entre deux circuits rectilignes : définition de l ampère Considérons deux circuits filiformes rectilignes parallèles, C 1 et C 2, parcourus par des courants d intensités respectives I 1 et I 2. Notons u z un vecteur unitaire parallèle aux fils et orientons I 1 et I 2 dans le même sens. La force exercée par une portion d l 1 de C 1 située en P 1 sur une portion d l 2 de C 2 située en P 2 vaut La force exercée par C 1 tout entier sur d l 2 vaut d 2 F 1 2 = I 2 d l 2 d B P1 (P 2 ). (17) d F 1 2 = I 2 d l 2 B 1 (P 2 ) = I 2 dz u z µ 0 I 1 2 π ρ u φ, 1(P 2 ), (18) où ρ est la distance entre les fils et u φ, 1 (P 2 ) est la valeur en P 2 du vecteur u φ défini à partir de l axe C 1. On obtient d F 1 2 dz = µ 0 I 1 I 2 2 π ρ u ρ, 1(P 2 ). (19) La force entre C 1 et C 2 est donc attractive si I 1 et I 2 sont de même signe, et négative sinon. Si I 1 = I 2 = 1 A et ρ = 1 m, d F 1 2 = N u ρ, 1 (P 2 ). (20) dz C est d ailleurs la définition de l ampère : intensité parcourant deux fils infinis parallèles, distants d un mètre, produisant une force par unité de longueur d un des fils égale à N m Travail des forces exercées sur un conducteur Le travail de la force de Laplace exercée sur une portion de conducteur neutre se déplaçant de d r = w vaut δ 2 W Lapl = d F Lapl d r = ( j B) d r dτ. (21) 74

4 Ce travail n est généralement pas nul : il ne s agit donc pas du travail de la force magnétique! Pour clarifier ce point, reprenons le calcul du travail des forces électromagnétiques exercées sur un volume dτ de conducteur se déplaçant de d r. δ 2 W = ρ ( E + [ v + w] B) ( v + w) dτ Le terme = ( ) ρ v ( E + w B) dτ + ( ) ρ E w dτ + ([ ] ρ v B ) w dτ = j ( E + w B) dτ + ( j B) w dτ. (22) δ 2 W m = j ( E + w B) dτ (23) est le travail électromoteur, c.-à-d. le travail fourni au conducteur pour déplacer ses charges par rapport à lui-même ; sa source est ici le champ électromoteur E m = w B (24) engendré par le déplacement du conducteur dans le champ magnétique 1. Le champ électromoteur peut aussi être produit par une pile chimique 2 ou, nous le verrons au prochain chapitre, par un champ magnétique variable. Le deuxième terme de (22) est le travail de la force de Laplace ; il correspond au travail fourni au conducteur pour le déplacer et est égal à l opposé de la contribution des forces magnétiques au travail électromoteur. Pour un conducteur ohmique dans lequel régnait un champ E uniquement, on avait trouvé que la vitesse moyenne d un électron par rapport au réseau valait (cf. chapitre V, équation (39)) v = e τ c m E. (25) Dans un conducteur se déplaçant à la vitesse w dans un champ B, cette expression devient v = e τ c m ( E + ( v + w) B) e τ c m ( E + w B) (26) car la vitesse d un électron est très faible. On a donc (cf. chapitre V, équation (40)) j = γ ( E + w B). (27) Le travail électromoteur est donc entièrement dissipé par effet Joule dans le conducteur, une fois que les électrons ont atteint leur vitesse de croisière moyenne par rapport au conducteur. Pour un conducteur filiforme, le travail de la force de Laplace s écrit, δ 2 W Lapl = I (d l B) d r = I B (d r d l) = I B δ 2 Sc, (28) où l on a utilisé l invariance par permutation circulaire d un produit mixte, ( a b) c = ( b c) a( c a) b, (29) et δ 2 Sc = d r d l est la surface balayée par l élément d l quand il se déplace de d r. On obtient donc δ 2 W Lapl = I δ 2 Φ c, (30) 1. Rappelons que le seul champ électrostatique ne permet pas l établissement d un courant dans un circuit fermé. En effet, on a alors V A V B = R AB I, où R AB est la résistance d une portion AB de circuit. Pour un circuit fermé, A = B, donc 0 = R I, où la résistance totale du circuit, R, est différente de 0. On a donc I = δ 2 W est n est alors plus le travail des seules forces électromagnétiques. 75

5 où δ 2 Φ c = B δ 2 Sc est le flux de B coupé par d l. L intensité étant la même en tout point d un conducteur, dans l ARQS, le travail des forces de Laplace sur l ensemble du conducteur pendant est δw Lapl = I δφ c, (31) où δφ c est le flux coupé par le conducteur. 3. Énergie potentielle Réécrivons cette expression, dans le cas d un champ magnétique stationnaire, pour un circuit filiforme C(t) fermé et de constitution constante. La surface coupée δs c par le circuit n est pas fermée. Complétons-la par une surface S(t) s appuyant sur le circuit à l instant t et par une surface S(t + ) s appuyant sur le circuit à l instant t +. La surface S tot = δs c S(t) S(t + ) ainsi obtenue est fermée. L orientation de δs c et celle de S(t) déterminée par celle de C(t) sont soit toutes deux vers l extérieur de S tot, soit vers l intérieur. L orientation de S(t + ) déterminée par celle de C(t + ) est en sens opposé. On a donc ( ) B(t) ds = ± B(t) δ 2 Sc + B(t) ds B(t) ds, (32) S tot C(t) S(t) S(t+) où l orientation des surfaces est vers l extérieur dans et est cohérente avec celle de C S tot dans, et. Or C(t) S(t) S(t+) B(t) ds = 0 (33) S tot à un même instant, car div B = 0, donc B(t) δ 2 Sc = C(t) Le champ étant stationnaire, on obtient S(t+) B(t) ds S(t) B(t) d S. (34) δφ c = Φ(t + ) Φ(t) dφ, (35) où Φ(t) = B(t) ds et Φ(t + ) = B(t + ) ds sont les flux de B à travers C aux S(t) S(t+) instants t et t +. Si le champ est stationnaire, on a donc Si l intensité est elle aussi stationnaire, où δw Lapl = I dφ. (36) δw Lapl = de p, (37) E p = I Φ (38) est l énergie potentielle 3 d interaction entre la boucle et les sources du champ magnétique. Un équilibre stable correspondant à un minimum de potentiel, la boucle a tendance à se déplacer et à s orienter (en l absence d autres forces conservatives) de manière à maximiser le flux (règle du flux maximal). L équilibre stable n est bien sûr atteint que s il y a des forces dissipatives ; la boucle oscille sinon autour de la position d équilibre. 3. Attention, l expression de E p n inclut pas l énergie nécessaire pour conserver un courant stationnaire. 76

6 VII.c. Actions sur un dipôle magnétique Considérons un dipôle magnétique D de moment m, disons une boucle C rigide parcourue par un courant I stationnaire pour simplifier, placé dans un champ extérieur B ext. L énergie potentielle d interaction vaut E p (D ext) = I Φ = I B ext ds B ext I ds, (39) S S en supposant B ext uniforme à l échelle de la boucle. Or S I d S est le moment magnétique m de la boucle, donc l énergie d interaction entre un dipôle magnétique de moment m de norme constante et les sources du champ magnétique est E p (D ext) = m B ext. (40) Ce résultat, ainsi que ceux qui suivent, reste vrai pour une distribution volumique de courant localisée et stationnaire (dans le référentiel du dipôle, considéré comme un solide), par exemple un aimant. Pour un dipôle se comportant comme un solide, le travail des forces exercées sur lui pendant une durée, lorsqu un point C du dipôle subit une translation d r C et que le dipôle tourne d un angle orienté δα autour d un axe dirigé selon un vecteur unitaire u, vaut δw ext D = F ext D d r C + Γ (C) ext D δα, (41) où δα = δα u. En termes de vitesse de rotation ω D/R du dipôle par rapport à un référentiel galiléen R, δα = ω D/R. (42) La valeur de m B ne dépend que de la position du dipôle, par l intermédiaire de B, et de l orientation de m. On a donc δw = de p = d( m B) = d rc ( m B) + d ϑ, ϕ ( m B), (43) où ϑ est la «colatitude» de m, ϕ sa «longitude» 4 et les termes en indice des différentielles désignent les variables par rapport auxquelles la différentiation est effectuée. On a d rc ( m B) = grad C ( m B) d r C (44) et d ϑ, ϕ ( m B) = (d ϑ, ϕ m) B. (45) Or, pour toute fonction f, ses dérivées temporelles dans deux référentiels R et R sont reliées par d f d f = + ω R /R /R /R f, (46) donc ( d m ) /R = ω D/R m (47) puisque m est constant dans le référentiel R = D du dipôle. On a donc On en déduit que d ϑ, ϕ m (d m) /R = ω D/R m = δα m. (48) d ϑ, ϕ ( m B) = ( δα m) B = ( m B) δα. (49) 4. ϑ et ϕ sont deux des trois angles d Euler. Le troisième n intervient pas dans l expression de E p. 77

7 On obtient finalement que δw ext D = F ext D d r C + Γ (C) ext D δα = grad C ( m B) d r C + ( m B) δα, (50) d où, par identification, et F ext D = grad C ( m B) (51) Γ (C) ext D = m B. (52) 78

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Charge électrique loi de Coulomb

Charge électrique loi de Coulomb Champ électrique champ magnétique Charge électrique loi de Coulomb 1/ répulsion réciproque de deux charges < r 12 > Q 1 Q 2 Les deux charges Q 1 et Q 2 se repoussent mutuellement avec une force F 12 telle

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Notes du Cours de Mécanique 1 er semestre, année 2011/2012

Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Patrizia Vignolo Jean-Michel Chauveau Thibault Gayral Sommaire : Introduction

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

PHY 235 : T.D corrigés 2011. est plongée dans un champ uniforme orthogonal à, un cercle de rayon. Si

PHY 235 : T.D corrigés 2011. est plongée dans un champ uniforme orthogonal à, un cercle de rayon. Si PHY 235 : TD corrigés 2011 Force de Lorentz 29(M) Sachant que le flux du champ magnétique est conservatif, décrire (qualitativement) la trajectoire d une particule chargée dans un champ magnétique non

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Énergie électrique mise en jeu dans un dipôle

Énergie électrique mise en jeu dans un dipôle Énergie électrique mise en jeu dans un dipôle Exercice106 Une pile de torche de f.é.m. E = 4,5 V de résistance interne r = 1,5 Ω alimente une ampoule dont le filament a une résistance R = 4 Ω dans les

Plus en détail

Electricité et magnétisme - TD n 1 Loi de Coulomb

Electricité et magnétisme - TD n 1 Loi de Coulomb 1. Force électrique Electricité et magnétisme - TD n 1 Loi de Coulomb Calculer le rapport entre force gravitationnelle et électrique entre le proton et l électron dans l atome d hydrogène. Soit a 0 la

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX)

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) Le phénomène d induction électromagnétique peut être mis en évidence par les deux expériences simples suivantes.

Plus en détail

Conduction électrique

Conduction électrique Conduction éectrique. Courant éectrique.1. Intensité Dans a première partie de ce cours nous nous sommes intéressés aux charges éectriques immobies (éectrostatique). Or i existe des miieux avec des charges

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques Chapitre 5 Le champ magnétique 5.1 Introduction et historique Le domaine de l électrostatique est celui de l interaction entre charges immobiles et de ses effets. Nous allons compléter notre étude en nous

Plus en détail

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre Chapitre P 9 : Travail d une force constante et énergie Correction Dans le chapitre précédent, nous avons étudié l évolution temporelle de différents systèmes mécaniques en exploitant la seconde loi de

Plus en détail

Chapitre P12 : Le magnétisme

Chapitre P12 : Le magnétisme : ) Qu'est-ce que le champ magnétique? 1) Comment détecter un champ magnétique? Expérience : Voir fiche Expériences 1 et 2 En un lieu donné, une aiguille aimantée, pouvant tourner dans un plan horizontal,

Plus en détail

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale Hiver 2009 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction est le potentiel au centre du carré dans la figure suivante?

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Théorème d Ampère et applications

Théorème d Ampère et applications 6 Théorème d Ampère et applications 1 Théorème d Ampère Equivalent du théorème de Gauss pour l électrostatique. Permet de calculer des champs simplement en utilisant la symétrie des courants. Mais il faut

Plus en détail

THEORIE CLASSIQUE DES CHAMPS

THEORIE CLASSIQUE DES CHAMPS Paris 7 QA 421-422 1992 93 THEORIE CLASSIQUE DES CHAMPS EXAMEN, t 0 = mardi 7 septembre 1993, 8h 30 t = 4 heures Il n est pas totalement inutile de lire l énoncé : les questions sont en principe, et parfois

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

LE MAGNETISME DES AIMANTS ET DES COURANTS

LE MAGNETISME DES AIMANTS ET DES COURANTS LE MAGNETISME DES AIMANTS ET DES COURANTS 1. Les aimants Un aimant comporte toujours deux pôles appelés le pôle nord (N) et le pôle sud (S) situés, en général, à deux extrémités. Un aimant exerce une action

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 ère S - Livre du professeur Chapitre 15. Champs et forces. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono 1. Mots manquants a. scalaire b. aimants/courants c. aiguille aimantée d. électrostatique. e. uniforme/ parallèles. f. la verticale/la Terre g. gravitation/la

Plus en détail

Comment peut-on fabriquer un aimant qui fonctionne uniquement quand on le désire?

Comment peut-on fabriquer un aimant qui fonctionne uniquement quand on le désire? Comment peut-on fabriquer un aimant qui fonctionne uniquement quand on le désire? bikesnobnyc.blogspot.ca/212_2_1_archive.html Voyez la réponse à cette question dans ce chapitre. Quand Ørsted trouva qu

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel TABLE DES MATIERES I PREAMBULE : Objectif et Motivations CHAPITRE I : Cinématique du point matériel I.1 : Introduction I.2 : Cinématique à 1 dimension I.2.1 : Repérage du mobile I.2.2 : La vitesse moyenne

Plus en détail

Électromagnétisme. Chapitre 2. Approche locale du champ ( E, B)

Électromagnétisme. Chapitre 2. Approche locale du champ ( E, B) Électromagnétisme Chapitre 2 Approche locale du champ ( E, B) I Potentiel électrostatique Approche locale du champ ( E, B) Dans le premier chapitre, nous avons étudié les champs avec une approche globale,

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

Concours Centrale-Supélec 2005 7/12

Concours Centrale-Supélec 2005 7/12 Problème - type centrale Partie - Couplage des phénomènes de conduction thermique et électrique en régime linéaire. Étude d un réfrigérateur à effet Peltier Le but de cette partie est de montrer que, dans

Plus en détail

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours.

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours. PHY2723 Hiver 2015 Champs magnétiques statiques cgigault@uottawa.ca otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique

Plus en détail

CHAPITRE 14. CHAMP MAGNETIQUE

CHAPITRE 14. CHAMP MAGNETIQUE CHAPITRE 14. CHAMP MAGNETIQUE 1. Notion de champ Si en un endroit à la surface de la Terre une boussole s'oriente en pointant plus ou moins vers le nord, c'est qu'il existe à l'endroit où elle se trouve,

Plus en détail

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ 2 Champ et potentiel électrostatique Les e ets électriques peuvent être décrits par deux grandeurs que nous allons étudier dans ce chapitre : le champ électrostatique (grandeur vectorielle) et le potentiel

Plus en détail

Électrostatique et rayonnement

Électrostatique et rayonnement ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURS DE L AÉRONAUTIQUE ET DE L ESPACE DE TECHNIQUES AVANCÉES, DES TÉLECOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chap 8 - TEMPS & RELATIVITE RESTREINTE Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Chapitre 5 Les lois de la mécanique et ses outils

Chapitre 5 Les lois de la mécanique et ses outils DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cinématique du point

Cinématique du point Notes de Cours PS 91 Cinématique du point La cinématique du point est l étude du mouvement d un point matériel indépendamment des causes de ce mouvement. En pratique l approximation du point matériel peut

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 Optique 2 Mariano-Goulart QCM n 1 : A, C A. Vrai. Hz.m -1.s => B. Faux.. C. Vrai. L'équation donnée montre que l onde électrique

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

LE CHAMP MAGNETIQUE Table des matières

LE CHAMP MAGNETIQUE Table des matières LE CHAMP MAGNETQUE Table des matières NTRODUCTON :...2 MSE EN EVDENCE DU CHAMP MAGNETQUE :...2.1 Détection du champ magnétique avec une boussole :...2.2 Le champ magnétique :...3.2.1 Le vecteur champ magnétique

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Electromagnétique 4 (1 ère session)

Electromagnétique 4 (1 ère session) Licence SP Sem4 mardi 30 mai 2006 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée I. Equations locales : En intégrant les équations locales en considérant un régime

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

On justifiera toutes les réponses, même celles jugées «évidentes», avec précision.

On justifiera toutes les réponses, même celles jugées «évidentes», avec précision. DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: non autorisée durée: 4 heures Sujet Particule chargée dans le champ magnétique terrestre...3 I.Questions préliminaires...3 II.Particule chargée dans un champ

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15')

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15') NOM, PRENOM (en majuscules)..... SECTION (barrer la mention inutile) Biologie Géographie Géologie PHYS-F-205 Physique 2 Examen du 6 juin 2012 I. Théorie (20 points 1 heure 15') Justifiez toujours vos réponses.

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Avant-propos. Les auteurs. Partie I Signaux physiques 1

Avant-propos. Les auteurs. Partie I Signaux physiques 1 Avant-propos v Les auteurs vii Partie I Signaux physiques 1 1 Oscillateur harmonique 3 I Introduction, définitions.......................... 3 I.1 Exemple............................... 3 I.2 Caractérisation

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Sujet Centrale 2012 Physique Option MP

Sujet Centrale 2012 Physique Option MP I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel

Plus en détail

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Chapitre II : La force centripète

Chapitre II : La force centripète 33 Chapitre II : La force centripète = une force un peu particulière! 1. Explication 1 Il convient de savoir ce que ces deux termes expriment : force et centripète. Une force est, familièrement, la sensation

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

Action d un champ magnétique sur un courant

Action d un champ magnétique sur un courant Action d un champ magnétique sur un courant A. Forces de Lorentz et de Laplace Les expériences menées pour déterminer l action d un champ magnétique sur des particules montrent que : - un champ magnétique

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail