Correction des exercices sur la nature ondulatoire de la lumière

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Correction des exercices sur la nature ondulatoire de la lumière"

Transcription

1 CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680 m est rouge.. La lumière progresse de l air das le verre. La deuxième loi de Descartes doe, pour la radiatio de logueur d ode : air. si i =.si r. Soit umériquemet :,0003 x si 48 =,53 x si r. D où si r =,0003 x si 48 /,53. Doc r = si - (,0003 x si48 /,53 ) = 9,. r = 9,. 3. Deuxième loi de Descartes doe, pour la radiatio de logueur d ode : air. si i =.si r. D où :,0003 x si 48 = x si 30,0. Doc : =,0003 x si 48 / si30 =,49. =,49 4. Ecart agulaire : = r r = 30,0 9, = 0,9 = 0,9 5. L idice de réfractio déped de la logueur d ode das le vide, doc de la fréquece. L idice déped de la célérité V ( = c / V ). Doc V déped de la fréquece : V = f( ) le verre étudié est u milieu dispersif. 6. D = i r et D = i r. Numériquemet: D = 48 9, = 8,9 et D = = 8. D = 8,9 D = 8 O peut coclure qu ue radiatio verte est plus déviée qu ue radiatio rouge. Correctio de l exercice Variatio de l idice e foctio de la logueur d ode. Quad la logueur d ode das le vide augmete, l idice de réfractio dimiue et vice-versa : l idice est ue foctio décroissate de la logueur d ode das le vide.. Cette relatio est cohérete avec l expériece car la foctio f( ) = A + / est bie ue foctio décroissate de.. A a pas d uité et est homogèe à ue logueur élevée au carré ( afi que le rapport / soit sas dimesio ). Doc o peut exprimer e m²..3. Si la relatio de Cauchy modélise bie les variatios de avec alors l idice doit être ue foctio affie de la variable x = / ( = A +. x d après Cauchy ). Il est doc judicieux de tracer le graphe = g ( / ) pour voir si effectivemet les poits expérimetaux sot bie aligés comme le suppose Cauchy. S il e est aisi, alors la costate A représete graphiquemet l ordoée à l origie de la droite expérimetale et la costate représete le coefficiet directeur de cette droite. Traços doc le graphe = g ( / ) et détermios so équatio avec u tableur. (m) 404,7 434,7 546, 576,9 579, 64,9 67,6 / (m - ) 6,057 E-06 5,90E-06 3,353E-06 3,0047E-06,989E-06,6448E-06,7E-06,540,536,56,55,54,53,5 i r r D D,545 = f(/ ²),540,535,530,55,50,55,50,505 = 4934,5x +,5098 R = 0,998 / ² (m²),500 0,000E+00,000E-06,000E-06 3,000E-06 4,000E-06 5,000E-06 6,000E-06 7,000E-06 O e déduit A 4, m² et,50

2 CORRECTION EXERCICES TS /5 CHAPITRE 3.a. Pour calculer, o utilise la relatio = c/ pour les logueurs d ode extrêmes 404,7 m et 67,6 m, e utilisat les uités iteratioales..b. Pour calculer les valeurs de V P, célérité de la lumière das le prisme pour les logueurs d ode extrêmes, o utilise la relatio de défiitio de l idice: = c/v P. soit: V P = c / où a les valeurs,540 et,5 correspodat aux radiatios extrêmes..c. Pour calculer la logueur d ode P des radiatios extrêmes das le prisme, o utilise la relatio P = V P / pour les valeurs de V P et précédemmet calculées e faisat e sorte de e pas predre des valeurs arrodies pour V P et. O calcule d abord P e m et o covertit le résultat e m, ce qui est préférable. Les résultats obteus comportet 4 chiffres sigificatifs. O obtiet aisi le tableau de valeurs ci-après : (m) 404,7 67,6 (Hz), , V P ( m.s - ), , P (m) 6,8 44,6 Remarque: o peut calculer P e foctio de et e combiat les relatios : P = V P / ; = c / et = c/ V P. E faisat le rapport membre à membre à membre des deux premières, o obtiet : O e déduit : P = / P / = V P / c = / Cette relatio présete l avatage de pouvoir calculer P directemet à partir des valeurs de et doées das le tableau sas passer par des valeurs itermédiaires qu il est écessaire de e pas arrodir, c est à dire de garder beaucoup plus que 4 chiffres sigificatifs. Correctio de l exercice 3 Des irisatios avec la lumière blache O éclaire ue fete de largeur a = 0,0 mm, avec ue lumière blache. La figure de diffractio obteue est observée sur u écra situé à la distace D =,5 m de la fete.. La lumière blache est l esemble de toutes les lumières moochromatiques dot les logueurs d ode das le vide sot comprises etre 400 m ( violet extrême ) et 800 m ( rouge extrême) eviro..a. 450 m : couleur bleue ; 590 m : couleur jaue-oragé ; 750 m : couleur rouge..b. Schéma de l expériece pour ue lumière moochromatique doée de logueur d ode das le vide. Pour obteir L, il faut exprimer doer deux expressios littérales de demi-largeur agulaire de la tache cetrale de diffractio : Première expressio tirée de la géométrie du motage : Das le triagle OHA rectagle e H, o peut écrire e cosidérat petit devat radia : ta (radia ) AH / OH L /D Deuxième expressio : loi de la diffractio «pour les petits agles». o /a E égalisat les deux expressios, o a : L /D o /a O e déduit l expressio de la largeur de la tache cetrale de diffractio pour ue logueur o : D où le tableau de valeurs de L : L o.d /a Logueur d ode das le vide o e m Couleur leu Jaue rouge L ( cm),,5,9 O A H

3 CORRECTION EXERCICES TS 3/5 CHAPITRE 3.c. et.d. o = 450 m bleu o = 450 m jaue oragé o = 450 m rouge irisatios L irisatios tache cetrale blache Ce sot doc les radiatios de plus courtes logueurs d ode qui ot les taches de diffractios les plus petites. 3. Iterprétatio de l allure de la figure de diffractio e l absece de filtre. Par simplificatio, o e raisoe que sur les taches cetrales e igorat les autres taches. Les taches cetrales correspodat à chaque radiatio de la lumière blache ot toutes même cetre. La zoe de superpositio totale de ces taches a pour dimesio celle de la tache bleue ( si l o suppose que le bleu correspod à la plus courte logueur d ode du spectre ). Doc sur cette zoe de largeur L o obtiet doc du blac dû à la superpositio de toutes les couleurs qui composet de la lumière blache Autour de la tache blache viet esuite de l oragé dot la tache a ue dimesio sesiblemet plus grade que le bleu, puis du rouge. D où le schéma d ue modélisatio simplifiée des irrisatios obteues : e partat du cetre o a successivemet du blac, du jaue et du rouge. blac jaue rouge O a égligé l ifluece des radiatios vertes. ie etedu das le phéomèes il faut teir de toutes les taches correspodat à chaque logueur d ode. Correctio de l exercice 4 : modèle odulatoire de la lumière. PREMIÈRE EXPÉRIENCE.. Le phéomèe mis e évidece das cette expériece est le phéomèe de diffractio. Par aalogie avec la diffractio des odes mécaiques, o peut dire que la lumière possède u caractère odulatoire.... L agle représete la demi-largeur agulaire de la tache cetrale de diffractio, c est à dire l écart agulaire etre le cetre de la tache cetrale et la première extictio, vu depuis la fete.... s exprime e radias (rad) ; logueur d ode das le vide s exprime e mètres (m) ; a largeur de la fete s exprime e mètres (m)...3. Plus la largeur a de la fete est petite, plus l écart agulaire est grad (cf. relatio ()), plus la largeur de la tache cetrale augmete..3. Das le triagle (AC), rectagle e o a : ta = D (radia) car l agle est supposé «faible» par l éocé. O e déduit : =.D (relatio () A C λ λ..d.4. E teat compte des relatios et =, o peut écrire : =. O e tire alors : a =.D a.d a Applicatio umérique : a = , =,0 0 4 m ; a =,0.0-4 m.

4 CORRECTION EXERCICES TS 4/5 CHAPITRE 3. DEUXIÈME EXPÉRIENCE.. La lumière émise par le laser est moochromatique. E effet d après l éocé, la radiatio laser est caractérisée par ue seule logueur d'ode das le vide = m. La moochromaticité de la source peut égalemet être justifiée par le détail doé das l éocé : obtetio d u poit lumieux de même couleur rouge que le faisceau icidet ce qui motre qu il y a pas de décompositio de la lumière laser par le prisme, ce qui doe la preuve expérimetale que la source laser est moochromatique. c 8 3, c =.. O e déduit : v =. Applicatio umérique : v = 9 0 = 4, Hz... No, car la fréquece de l ode lumieuse est idépedate du milieu de propagatio :elle caractérise uiquemet la source laser émettrice..3. Les logueurs d ode das le vide du spectre visible vot de 400 m (le violet) à 800 m (le rouge). Si < 400 m: domaie des ultraviolets et si > 800 m : domaie des ifrarouges O précise la fréquece lorsqu o doe la valeur de, car le verre état u milieu dispersif, la célérité V de la lumière das le verre déped de la fréquece : il e résulta que l idice de réfractio = c /V ( précisé au début de l éocé ) déped lui aussi de la fréquece ( c état ue costate )..4.. La logueur d ode das le verre est liée à la fréquece de l ode par la relatio : = V où V est la célérité de la lumière das le verre. De la relatio de défiitio de l idice = c/v, o tire V = c /. D où e c substituat l expressio de V das l expressio de, o obtiet : =. E teat compte du fait que. c/ = ( logueur d'ode das le vide ), o e déduit : = Applicatio umérique : = = 393 0,63 9 m = 390 m. La logueur d ode est pas caractéristique de la couleur de la radiatio laser ( qui, rappelos-le est détermiée uiquemet par la fréquece ou la logueur d ode das le vide ) : e effet la logueur d ode déped o seulemet de la fréquece car et dépedet de ) mais égalemet du milieu de propagatio ( le verre ) car déped aussi de la ature de ce milieu..5. O obtiet ue figure lumieuse colorée allat du violet au rouge (couleurs de l'arc e ciel) : c'est le spectre de la lumière blache..6. La déviatio D augmete quad la logueur d ode dimiue ( cf éocé ). Comme Rouge > leu o e déduit : D Rouge < D leu ( ce qui sigifie que les radiatios rouges sot mois déviées que les radiatios bleues ). La figure ciaprès met e évidece D Rouge et D leu c qui permet d idetifier clairemet les rayos rouge et bleu. déviatio D Rouge D leu écra Lumière blache i r r R rayo rouge prisme rayo bleu FIGURE N 3.7. Voir la mise e évidece des agles demadés..8. Appliquos la deuxième loi de Descartes e supposat que l idice de l air vaut eviro. Il viet :

5 CORRECTION EXERCICES TS 5/5 CHAPITRE 3 Pour la radiatio bleue de logueur d ode das le vide : si i = si r, ce qui doe = si i / si r Pour la radiatio rouge de logueur d ode das le vide R : si i = si r R, ce qui doe = si i / si r R Les agles de réfractio r et r R état différets, o e déduit que l idice pour la radiatio bleue est différet de l idice pour la radiatio rouge. O e coclut que l idice de réfractio déped de la logueur d ode das le vide de la radiatio qui le traverse..9. la deuxième loi de Descartes doe doc : pour la radiatio bleue : = si i / si r pour la radiatio rouge : R = si i / si r R La figure N 3 motre que r R > r doc que si r R > si r ( la foctio sius état croissate pour des agles iférieurs à 90 ). Il e résulte doc que R < car est iversemet proportioel à si r d après la deuxième loi de Descartes. Sachat que R > et que R < ( ce que l o viet de démotrer ), o e déduit que est ue foctio décroissate de, logueur d ode das le vide ( quad augmete l'idice dimiue et vice-versa )..0. L idice de réfractio état iversemet proportioel à la célérité de V de la lumière das le milieu, il e résulte d après la questio précédete que V est ue foctio croissate de. Doc, quad o passe du rouge au bleu, la logueur d ode dimiuat, la célérité V dimiue égalemet... a. A a pas de dimesio ( même dimesio que ) et a la dimesio du carré d ue logueur afi que le rapport / soit sas dimesio. b. La relatio de Cauchy ous motre que est ue foctio affie croissate de / car est ue costate positive ( o précisée par l éocé, veuillez m excuser! ). C est doc ue foctio décroissate de, coformémet aux observatios. c. Pour deux radiatios moochromatiques distictes de logueurs d ode das le vide et auxquelles correspodet respectivemet les idices et, la relatio de Cauchy s écrit : A et λ A λ O a doc u système liéaire de deux équatios à deux icoues A et. La résolutio de ce système ous doe doc : Applicatio umérique : A = - - et = ( - ). - L éocé ous doe : pour = m, =,63 et pour = 434 m, =,65. O e déduit : A =,63x -,65x x 434 =,600 ; = (,65-,63). =, d. O e déduit, e utilisat la formule de Cauchy, l idice pour la radiatio de logueur d ode das le vide = 768 m :,03.04 =, =,67

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

DM de Physique-Chimie n o 2 TS1 Ondes lumineuses (à rendre le vendredi 15 octobre 2010) Exercice I Nature de la lumière

DM de Physique-Chimie n o 2 TS1 Ondes lumineuses (à rendre le vendredi 15 octobre 2010) Exercice I Nature de la lumière M de Physique-Chimie o 2 TS Odes lumieuses (à redre le vedredi 5 octobre 200) Exercice I Nature de la lumière Le texte ci-dessous retrace succictemet l évolutio de quelques idées à propos de la ature de

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE Thème : PHENOMENES VIBRATOIRES hap : REFLEXION ET REFRATION DE LA LUMIERE 1) Itroductio : La lumière est de l éergie qui se propage sous forme de rayoemet. Das u milieu homogèe, liéaire, isotrope (mêmes

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

[d après CCP 2006, MP http ://ccp.scei-concours.fr]

[d après CCP 2006, MP http ://ccp.scei-concours.fr] Optique Prisme (*) [d après CCP 006, MP http ://ccp.scei-cocours.fr] U prisme, titué par u matériau trasparet, homogèe, isotrope, d idice 1 (λ D ) > 1 pour la radiatio λ D = 589, 3 m (valeur moyee du doublet

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

IUT Lannion Optique instrumentale

IUT Lannion Optique instrumentale IUT Laio Optique istrumetale Pla du cours Notios de base et défiitios Photométrie / Sources de lumière Les bases de l optique géométrique Gééralités sur les systèmes optiques Elémets à faces plaes Dioptres

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

Plan Granulométrie par diffusion de lumière

Plan Granulométrie par diffusion de lumière Pla Graulométrie par diffusio de lumière Structure des systèmes colloïdaux Diffusio de lumière par ue particule. Diffusio Rayleigh. Diffractio de Frauhofer.3 Diffusio de Mie 3 Applicatio : graulométrie

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Physique Générale IV Correction Séance 4

Physique Générale IV Correction Séance 4 Professeur L. Forró et T. Lasser avril Physique Géérale IV orrectio Séace Théorie simplifiée de la formatio d u arc-e-ciel : A i B D r () D F E 1. alcul de l agle de déviatio D du rayo icidet : O suit

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Utilisation de lentilles dans les conditions de Gauss

Utilisation de lentilles dans les conditions de Gauss IUT Sait Nazaire Départemet Mesures Physiques MP Semestre Utilisatio de letilles das les coditios de Gauss - Système optique cetré e coditios de Gauss Du fait de l étude préalable de la réfractio (letilles,

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

LENTILLES SYSTEME CENTRE

LENTILLES SYSTEME CENTRE LENTILLES SYSTEME CENTRE. Letilles mices Parmi toutes les letilles, il e existe u certai ombre qui peuvet être décrites par u modèle simple : il s agit des letilles mices. Ue letille mice est ue letille

Plus en détail

Physique Numérique TP4 Intégration Numérique

Physique Numérique TP4 Intégration Numérique Physique Numérique TP4 Victor Lavi Itroductio Das ce TP, o s itéresse aux méthodes umériques de calcul d itégrales. O étudiera plus précisémet la méthode des trapèzes, e ue et deux dimesios. Das u premier

Plus en détail

Lois de Snell - Descartes

Lois de Snell - Descartes Lois de ell - Descartes 1 - BUT DE LA MANPULATON La maipulatio cosiste à vérifier les lois de la réflexio et de la réfractio de ell-descartes (voir aexe, à la fi de ce chapitre) et à les utiliser pour

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

OMB-MAXI-Demi-finale-2010

OMB-MAXI-Demi-finale-2010 OM-MXI-Demi-fiale-00 ) Sas répose préformulée U carré a u périmètre de 0 cm ; quelle est so aire e cm? p= 4c 0 = 4c c= 0 cm ; = c = 0 = 900 cm ) Sas répose préformulée Quad o ajoute 7 au aturel o ul, o

Plus en détail

CH 7 LA DIFFRACTION ÉQUATIONS LIÉES AU CHAPITRE :

CH 7 LA DIFFRACTION ÉQUATIONS LIÉES AU CHAPITRE : CH 7 LA DIFFRACTION ÉQUATIONS LIÉES AU CHAPITRE : asi p dsi I I ax si d asi 7. LA DIFFRACTION PAR UNE FENTE 7. Questio : Variatio solutio Idiquez de quelle aière les odificatios suivates das u otage de

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n.

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n. Amérique du Nord Mai 1 Série ES Exercice U club de sport propose à ses adhérets deux types d aboemets : l aboemet de type A qui doe accès à toutes les istallatios sportives et l aboemet de type B qui,

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Cycle 4: Analyser, modéliser et étudier le comportement des Systèmes Linéaires Continus et Invariants

Cycle 4: Analyser, modéliser et étudier le comportement des Systèmes Linéaires Continus et Invariants Cycle 4: Aalyser, modéliser et étudier le comportemet des Systèmes Liéaires Cotius et Ivariats Chapitre 5 Prévoir et idetifier le comportemet des systèmes fodametaux du d ordre Modélisatio des SLCI Etude

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux.

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux. TS spécialité Cotrôle du mercredi 0 javier 016 (50 miutes) II. (4 poits) Démotrer que pour tout etier relatif, 1 et 1 sot premiers etre eux. Préom : Nom : Note :. / 0 Écrire très lisiblemet, sas rature

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative Activités metales u est la suite défiie pour tout etier aturel par u = + +. Calculer u 4. u est la suite défiie pour tout etier aturel o ul par u =. Calculer les trois premiers termes de la suite. u est

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués accalauréat tilles-guyae jui 2013 Scieces et techologies du desig et des arts appliqués EXERCICE 1 5 poits Questioaire à choix multiples : pour chaque questio ue seule des propositios est exacte ; aucue

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014 UNIVERSITE D ANGERS Mathematiques L. Devoir. Corrigé sur le web le 1/10/014 O traitera au choix l u des deux exercices ou. Exercice 1 : ci-dessous : Détermier la ature de chacue des 6 séries dot le terme

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Déviation de la lumière par un prisme Le Goniomètre PC* PC* - Physique. π π. = π. I Les relations fondamentales du prisme : A M I I.

Déviation de la lumière par un prisme Le Goniomètre PC* PC* - Physique. π π. = π. I Les relations fondamentales du prisme : A M I I. éviatio de la lumière par u prisme Le Goiomètre PC* I Les relatios fodametales du prisme : O se place das le pla d icidece d u rayo qui arrive par la face d etrée du prisme (les agles sot tous positifs).

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail