Statistiques. Objectifs du chapitre. Énigme du chapitre.

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques. Objectifs du chapitre. Énigme du chapitre."

Transcription

1 Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à 32. Une série statistique étant donnée (sous forme de liste ou de tableau ou par une représentation graphique) : déterminer une valeur médiane de cette série et en donner la signification ; déterminer des valeurs pour les premier et troisième quartile et en donner la signification ; détermine son étendue. Exprimer et exploiter les résultats des mesures d une grandeur.

2 I/ Moyenne simple et moyenne pondérée Définition (Moyenne simple) La moyenne d une série est donnée par la formule : somme de toutes les valeurs nombre de valeurs La moyenne M des cinq valeurs : est : M = 12 ; 5 ; 7 ; 3 ; = 8,4. Définition (Moyenne pondérée) La moyenne pondérée d une série est donnée par la formule : somme des produits de chaque valeur par son coefficient. somme des coefficients On donne le tableau de notes affectés des coefficients suivant : La moyenne M est : Note Coefficient M = = 9,875. Remarque La différence entre une moyenne (dite simple) et une moyenne pondérée, et que cette dernière a été calculée en additionnant des valeurs dont chacune a une importance différente, donnée par un coefficient. Faire les exercices 1 2 3

3 II/ Médiane Activité A. Caisses dans un supermarché On a recensé le nombre de caisses dans chaques supermarché d une grande ville. 15 ; 38 ; 9 ; 3 ; 42 ; 8 ; 14 ; 21 ; 4 ; 16 ; Combien de supermarchés sont implantés dans cette commune? 2. Ranger les nombres de caisses par ordre croissant. 3. On décide de partager les supermarchés en deux groupes de même effectif tels que dans le premier groupe, on trouve les supermarchés proposant le moins de caisses et dans le deuxième groupe, ceux ayant le plus de caisses. (a) Combien de supermarchés trouvera-t-on dans chaque groupe? (b) Indiquer le nombre de caisses de chaque supermarché du premier groupe et le nombre de caisses de chaque supermarché du deuxième groupe. (c) Déterminer un nombre m tel que tous les supermarchés du premier groupe proposent un nombre de caisses inférieur ou égal à m et tous les supermarchés du deuxième groupe proposent un nombre de caisses supérieur ou égal à m. Combien a-t-on de possibilités? (d) Calculer la moyenne entre le plus grand nombre de caisses du premier groupe et le plus petit nombre de caisses du second groupe. Par convention, ce nombre est appelé la médiane de la série. 4. Un nouveau supermarhché équipé de 32 caisses vient d ouvrir dans cette commune. Proposer une méthode pour déterminer la nouvelle médiane de cette série. Définition (Médiane) Une série statistique étant rangée dans l ordre croissante, on appelle médiane la valeur qui partage cette série ordonnée en deux séries de même effectif. Autrement dit, il y a autant de valeurs inférieures ou égales à la médiane qu il y a de valeurs supérieures ou égales à la médiane. s Effectif impair : Effectif pair :

4 Faire les exercices

5 III/ Etendue Définition (Étendue) L étendue d une série est la différence entre la plus grande et la plus petite valeur de la série. On considère la série des dépenses de Julien chaque jour de sa semaine de vacances : 12,40 e ; 35 e ; 48,35 e ; 50,70 e ; 19 e ; 59,80 e ; 25,30 e. La plus grande valeur de la série est 59,80 e et la plus petite valeur est 12,40 e. L étendue est alors égale à 59,80 12,40 = 47,40 e. Il y a donc 47,40 e d écart entre la plus grande dépense et la plus petite dépense pendant cette semaine. Faire les exercices 9 10

6 IV/ Premier et troisième quartile Activité B. Relevé de température A) Tous les matins des seize premiers jours du mois de septembre, Camille a relevé la température sur son balcon. La liste qui suit indique les températures par ordre chronologique : 17 C ; 17 C ; 19 C ; 20 C ; 23 C : 15 C ; 14 C ; 18 C ; 19 C ; 19 C ; 20 C ; 21 C ; 17 C ; 16 C ; 15 C ; 15 C. 1. Ranger ces températures par odre croissant. 2. Déterminer la températures T à partir de laquelle on peut affirme qu au moins un quart des mesures sont inférieurs ou égales à T. Cette valeur est appelée le premier quartile de la série. 3. Déterminer la température T à partir de laquelle on peut affirmer qu au moins trois quarts des mesures sont inférieurs ou égales à T. Cette valeur est appelée le troisième quartile de la série. B) Camille poursuit ses mesures jusqu à la fin du mois de septembre. Les quatorze mesures supplémentaires sont indiquées ci-contre : 16 C ; 18 C ; 18 C ; 17 C ; 17 C ; 15 C ; 18 C ; 16 C ; 16 C ; 17 C ; 18 C ; 18 C ; 18 C ; 16 C. 1. Ranger les trente températures relevées pendant tout le mois de septembre par ordre croissant. 2. Déterminer le premier quartile Q 1 et le troisième quartile Q 3 de cette série de trente valeurs. C) 1. Recopier et compléter le tableau d effectifs ci-dessous regroupant les trente relevés du mois de septembre. Température 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 23 C Total Nombre de relevé 2. Expliquer comment déterminer rapidement les quartiles Q 1 et Q 3 à partir de ce tableau. Définition (Premier quartile) Le premier quartile d une série, noté Q 1 est la plus petite donnée de la série telle qu au moins 25% des données de la série sont inférieurs ou égales à Q 1. On considère la série ordonnée : 12, 18, 24, 35, 41, 47, 47, 50, 68, 76, 80, 89, 93, 94, 97. L effectif total de la série est 15 et 25% de 15 est égal à 3,75. Le plus petit entier supérieur ou égal à 3,75 est 4, donc le premier quartle est la 4 e donnée, soit Q 1 = est la plus petite donnée telle qu au moins 25% des données sont inférieurs ou égales à cette donnée.

7 Définition (Troisième quartile) Le troisième quartile d une série, noté Q 3, est la plus petite donnée de la série telle qu au moins 75% des données de la série sont inférieurs ou égales à Q 3. On considère la série ordonnée : 12, 18, 24, 35, 41, 47, 47, 50, 68, 76, 80, 89, 93, 94, 97. L effectif total de la série est 15 et 75% de 15 est égal à 11,25. Le plus petit entier supérieur ou égal à 11,25 est 12, donc le troisième quartile est la 12 e donnée, soit Q 3 = est la plus petite donnée telle qu au moins 75% des données sont inférieures ou égales à cette donnée. Remarque Environ la moitié des données de la série sont comprises entre le premier et le troisième quartile. Dans l exemple, il y a sept données comprises entre 35 et 89, soit environ la moitié de la série de 15 données. Activité C. Exercice d application ou de conclusion Le tableau ci-dessous donne la répartition des commandes d un site de vente en fonction du nombre d articles par commande. Nombres d articles Fréquence (en %) 1,5 5,4 16,4 15,3 18,2 13,2 8,9 7,9 6,8 6,4 1. Quelle est la signification de la phrase : «La fréquence de 3 articles est égale à 16,4%»? 2. (a) Comment utiliser ce tableau de fréquences pour déterminer la médiane de cette série? (b) Indiquer quelle est la médiane et en donner une interprétation en langage courant. 3. (a) Utilise ce tableau pour déterminer le premier quartile et le troisième quartile de cette série. (b) Interpréter les résultats obtenus. Faire les exercices Problèmes : Faire les exercices Vu au brevet : Faire les exercices

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Corrigé des exercices

Corrigé des exercices THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5

Plus en détail

chap S1 : Statistiques descriptives Eléments de correction des exercices

chap S1 : Statistiques descriptives Eléments de correction des exercices 2ndes chap S1 : Statistiques descriptives Eléments de correction des exercices Objectifs : mieux comprendre les notions de moyenne et médiane utiliser des statistiques pour prendre des décisions Moyenne

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Étendue, moyenne, médiane

Étendue, moyenne, médiane Étendue, moyenne, médiane 1 Climat Ce tableau compare les températures mensuelles moyennes (en C) au cours d'une année dans deux villes Alpha (A) et Gamma (G). A 6 9 1 10 11 19 24 28 21 10 4 3 G 5 7 9

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième.

Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième. EXERCICE 1: Brevet Ouest 2 CORRIGE EXERCICES DE STATISTIQUES BREVET 211 Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième. Notes

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Première L juin 2008 A B C D E F G

Première L juin 2008 A B C D E F G Première L juin 2008 Liban 1. Exercice 1 (10 points) On fournit ci-dessous un tableau statistique relatif aux accidents de la route avec des piétons en France. Ce tableau est obtenu à l'aide d'un tableur,

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

TD d exercices statistiques et pourcentages.

TD d exercices statistiques et pourcentages. TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

ATELIER "STATISTIQUES "

ATELIER STATISTIQUES ATELIER "STATISTIQUES " Médiane et quartiles Se référer au document d'accompagnement des programmes de premières des séries générales, annexe "boîtes et quantiles". Médiane Me La définition à adopter est

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

2. Responsable principal de l effet de serre : le dioxyde de carbone CO 2.

2. Responsable principal de l effet de serre : le dioxyde de carbone CO 2. Etude d une maladie Patient : climat mondial Diagnostic : réchauffement excessif de la planète Terre Cause principale : le gaz carbonique Remède : les énergies renouvelables Un cours d introduction au

Plus en détail

Chapitre 3 - Statistiques descriptives

Chapitre 3 - Statistiques descriptives 2nde Chapitre 3 - Statistiques descriptives 2012-2013 Chapitre 3 - Statistiques descriptives I Effectifs, fréquences et représentations statistiques TD1 : Choisir et interpréter un graphique Les graphiques

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

STATISTIQUES. Déterminer la valeur médiane d une série sur des observations individuelles.

STATISTIQUES. Déterminer la valeur médiane d une série sur des observations individuelles. STATISTIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A MEDIANE : Une caractéristique de position Définition : La médiane m d une série statistique

Plus en détail

26 - Les statistiques

26 - Les statistiques I. Série statistique - Les statistiques La population étudiée est l ensemble des élèves d une classe de e dans un collège. Le caractère ou la variable étudiée est la note de ces élèves à un devoir de mathématiques.

Plus en détail

Statistique descriptive

Statistique descriptive Statistique descriptive Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Statistique Année 2015/2016 1 / 13 1 Moyenne d une série statistique Définition et exemples

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Baccalauréat Mathématiques-informatique Polynésie juin 2007

Baccalauréat Mathématiques-informatique Polynésie juin 2007 Durée : 1 h 30 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices L annexe 1 est rendre avec la copie Baccalauréat Mathématiques-informatique Polynésie juin 2007 EXERCICE 1 10 points

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

Statistiques. Denis Vekemans

Statistiques. Denis Vekemans Statistiques Denis Vekemans 1 Introduction Les statistiques proposent différents indicateurs qui permettent de résumer, ou de rendre apparentes certaines propriétés d une population que l on veut étudier.

Plus en détail

LES STATISTIQUES. 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total.

LES STATISTIQUES. 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total. LES STATISTIQUES I) Activité : II) Fréquence: 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total. ) Propriété : La somme des fréquences de toutes

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

Organisation et gestion de données

Organisation et gestion de données - Mathématiques - Niveau 3 ème Organisation et gestion de données Remerciements à Mesdames Hélène Clapier et Dominique Halperin, professeures de mathématiques de collège et Monsieur Gilles Damamme, maître

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 3 (1 ere ES/L) Samedi 8 février Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la qualité

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Fiche de travail - Paramètres d une série statistique. Exercice 1

Fiche de travail - Paramètres d une série statistique. Exercice 1 Fiche de travail - Paramètres d une série statistique Exercice 1 On a réalisé une enquête portant sur le nombre de livres lus pendant l année par les élèves d une classe de seconde. Les résultats sont

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Statistiques avec la graph 35+

Statistiques avec la graph 35+ Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,

Plus en détail

Enquête sur la tarification des cliniques privées de physiothérapie. (pour la clientèle privée) RÉSULTATS

Enquête sur la tarification des cliniques privées de physiothérapie. (pour la clientèle privée) RÉSULTATS Enquête sur la tarification des cliniques privées de physiothérapie (pour la clientèle privée) RÉSULTATS JANVIER 2013 Faits saillants Quelque 178 cliniques ont répondu au sondage de la FPPPQ sur la tarification

Plus en détail

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité NOM : Prénom : Exercice 1 : Elections régionales 1999 Le tableau ci-dessous donne les pourcentages des voix obtenues par le

Plus en détail

Statistiques : indicateurs de dispersion

Statistiques : indicateurs de dispersion 33 Statistiques : indicateurs de dispersion Capacités Comparer deux séries statistiques à l aide d indicateurs de tendance centrale et de dispersion Connaissances Indicateurs de dispersion : étendue, s

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur.

CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur. CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur. (Voir : 5 ème, chapitre 11 ; 4 ème, chapitre 13.) I) Une nouvelle caractéristique de position La valeur médiane d une série statistique

Plus en détail

Leçon 2 Des entiers pour compter. Choisir à chaque fois la (ou les) bonne(s) réponse(s). b 100 milliers d 10 centaines de milliers CALCUL MENTAL

Leçon 2 Des entiers pour compter. Choisir à chaque fois la (ou les) bonne(s) réponse(s). b 100 milliers d 10 centaines de milliers CALCUL MENTAL 20unité 1 Leçon 2 Des entiers pour compter QCM pour commencer Choisir à chaque fois la (ou les) bonne(s) réponse(s). 1 4 235 c est aussi : a (4 1 000) + (23 10) + 5 b (42 100) + (35 10) c (42 10) + 35

Plus en détail

Sommaire des leçons de numération

Sommaire des leçons de numération Sommaire des leçons de numération n Titre de la leçon NUM 1 NUM 2 NUM 3 NUM 4 NUM 5 NUM 6 NUM 7 NUM 8 NUM 9 NUM 10 NUM 11 NUM 12 NUM 13 Les nombres entiers Lire et écrire les nombres en chiffres Lire et

Plus en détail

Barème Statistique descriptive

Barème Statistique descriptive Université de Perpignan - IUT de Carcassonne Barème Statistique descriptive DUT STID, 1 ère année & Année spéciale, Interrogation 2 : Analyse comparée de deux variables Nom :......................................................................

Plus en détail

A1.- Le décibel et le bruit les unités acoustiques

A1.- Le décibel et le bruit les unités acoustiques A1.- Le décibel et le bruit les unités acoustiques A1.1.- Définition du bruit : A1.1.1.- Production et caractéristiques d un son Tout corps qui se déplace ou qui vibre émet un son. Il transmet sa vibration

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL)

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) 1GM Sciences et Techniques Industrielles Page 1 sur 5 Productique - Cours Génie Mécanique Première LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) Née aux USA, la méthode S. P. C. est traduite le plus

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Feuille de révision n 3 pour le brevet

Feuille de révision n 3 pour le brevet Feuille de révision n 3 pour le brevet Cette feuille est constituée d exercices tirés des annales des brevets des années antérieures et traite les chapitres abordés en classe depuis le deuxième brevet

Plus en détail

STATISTIQUES. Pour représenter ces données statistiques, on peut construire un diagramme en barres:

STATISTIQUES. Pour représenter ces données statistiques, on peut construire un diagramme en barres: I Différentes représentations 1) Diagrammes en bâtons et en barres STATISTIQUES Pour comparer des données, on peut représenter un diagramme dans lequel les barres ou les bâtons ont des hauteurs proportionnelles

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Linéarité proportionnalité Discipline

Linéarité proportionnalité Discipline Cours 3a-1 Linéarité proportionnalité Discipline Sommaire 1 Fonctions affines et linéaires........................................... 2 1.1 Représentation graphique 2 1.2 Linéarité et proportionnalité

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Indicateurs statistiques

Indicateurs statistiques Indicateurs statistiques 1 Les indicateurs statistiques permettent de résumer un grand nombre de données, trop nombreuses pour être «lisibles», afin d en dégager l information utile. Du recensement de

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Statistiques. Effectif d une valeur : c est le nombre de fois que la valeur d un caractère (la «modalité») revient dans la série.

Statistiques. Effectif d une valeur : c est le nombre de fois que la valeur d un caractère (la «modalité») revient dans la série. I Vocabulaire de base Statistiques Série statistique : une série statistique est un ensemble d observations collectées. Population : C est l ensemble sur lequel porte une étude statistique. Si elle est

Plus en détail

Fiche descriptive : Statistique descriptive avec Sinequanon

Fiche descriptive : Statistique descriptive avec Sinequanon Fiche descriptive : Statistique descriptive avec Sinequanon Public concerné : Enseignants de tous niveau désirant découvrir des possibilités du logiciel Objectif : Proposer une approche du logiciel pour

Plus en détail

COURS 1 : Fréquence. SAVOIR FAIRE : Calculer une fréquence

COURS 1 : Fréquence. SAVOIR FAIRE : Calculer une fréquence CHAPITRE 1 : STATISTIQUES Etude statistique en classe de la pointure de chaque élève. Liste discrète des pointures, calcul de la fréquence, la moyenne, recherche de la médiane. Utilisation d un tableau

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Devoir de mathématiques

Devoir de mathématiques 1STG1 25/01/11 Devoir de mathématiques La qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies. EXERCICE

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Statistiques. Christophe ROSSIGNOL. Année scolaire 2016/2017

Statistiques. Christophe ROSSIGNOL. Année scolaire 2016/2017 Statistiques Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Quelques rappels sur la moyenne 2 2 Médiane, quartiles, diagramme en boîte 2 2.1 Médiane..................................................

Plus en détail

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison.

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison. Énoncés Exercice 1 Le tableau ci-contre indique des grandeurs physiques et démographiques des territoires constituant la Mélanésie. 1. Rédiger une phrase commençant par «Il y a» et contenant le nombre

Plus en détail

Partie 2 Statistique- Chapitre 8 Tableaux Croisés

Partie 2 Statistique- Chapitre 8 Tableaux Croisés Partie 2 Statistique- Chapitre 8 Tableaux Croisés PLAN: Cours... 2 TABLEAUX CROISES... 2 1. Tableau des effectifs... 2 2. Tableau des fréquences un rapport à l'effectif total... 2 3. Tableau des fréquences

Plus en détail

COURSES ETRANGERES EN E

COURSES ETRANGERES EN E COURSES ETRANGERES EN E MASSE COMMUNE I - PRISE DE PARIS EN MASSE COMMUNE SUR LES COURSES IRLANDAISES Les calculs de répartition sont effectués sur la base du principe de masse à partager. Sont remboursés

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

COURSES ETRANGERES EN E

COURSES ETRANGERES EN E COURSES ETRANGERES EN E MASSE COMMUNE I - PRISE DE PARIS EN MASSE COMMUNE SUR LES COURSES IRLANDAISES Les calculs de répartition sont effectués sur la base du principe de masse à partager. Sont remboursés

Plus en détail

3 ème Cours : Statistiques et probabilité

3 ème Cours : Statistiques et probabilité I Statistiques a) Médiane d une série statistique On appelle médiane d une série statistique ordonnée une valeur du caractère qui partage la série en deux groupes de même effectif tels que : un groupe

Plus en détail

Douze jeux de cartes. d'additions, de soustractions et de doubles. François Guély

Douze jeux de cartes. d'additions, de soustractions et de doubles. François Guély Douze jeux de cartes d'additions, de soustractions et de doubles. François Guély Aritma Parc des Fontenelles - Bailly, France www.aritma.net - Contact : info@aritma.net Sommaire Présentation... 4 Tableaux

Plus en détail

Seconde DS de Mathématiques 29 mars 2010 1 H

Seconde DS de Mathématiques 29 mars 2010 1 H Seconde DS de Mathématiques 29 mars 2010 1 H NOM : A traiter directement sur l énoncé EXERCICE I ( 4 poiuts ) On lance deux dés ( bien équilibrés et à 6 faces numérotées de 1 à 6) et on fait le produit

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

STATISTIQUES. 1 Quelques rappels Vocabulaire et définitions Exemple-utilisation de la calculatrice Médiane-quartiles-déciles 3

STATISTIQUES. 1 Quelques rappels Vocabulaire et définitions Exemple-utilisation de la calculatrice Médiane-quartiles-déciles 3 Table des matières 1 Quelques rappels 2 1.1 Vocabulaire et définitions........................................ 2 1.2 Exemple-utilisation de la calculatrice.................................. 3 2 Médiane-quartiles-déciles

Plus en détail

Mathématiques 11 Avril 2013. Année scolaire 2012-2013

Mathématiques 11 Avril 2013. Année scolaire 2012-2013 Année scolaire 2012-201 Mathématiques 11 Avril 201 Classe de ème Brevet Blanc N 2 Durée : 1h50min Les calculatrices sont autorisées ainsi que les instruments usuels de dessin 4 points sont réservés à la

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

STATISTIQUES ET ECHANTILLONNAGE

STATISTIQUES ET ECHANTILLONNAGE STATISTIQUES ET ECHANTILLONNAGE I. Caractéristique de position d une série statistique ) Séries statistiques Voici les séries de notes obtenues par 3 élèves : Jérôme : ; 6 ; 8 ; 7 ; 7 ; 2 ; 2 ; 8 Bertrand

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail