Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :
|
|
- Madeleine Desjardins
- il y a 4 ans
- Total affichages :
Transcription
1 Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de paramètre strictement positif alors, pour tout réel positif, a)) Démontrer l'égalité =. =. b)) En déduire que pour et réels positifs, l'égalité suivante est vraie : += Partie B : La durée d'attente exprimée en minutes à chaque caisse d'un supermarché peut être modélisée par une variable aléatoire T qui suit une loi exponentielle de paramètre strictement positif. 1. a. Déterminer une expression exacte de sachant que : 10=0,7. On prendra pour la suite de l'exercice, la valeur 0,12 comme valeur approchée de. 1. b. Donner une expression exacte de la probabilité conditionnelle! c. Sachant qu'un client a déjà attendu 10 minutes à une caisse, déterminer la probabilité que son attente totale ne dépasse pas 15 minutes. On donnera une expression exacte, puis une valeur approchée à 0,01 près de la réponse. 2. On suppose que la durée d'attente à une caisse de ce supermarché est indépendante de celle des autres caisses. Actuellement, 6 caisses sont ouvertes. On désigne par Y la variable aléatoire qui représente le nombre de caisses pour lesquelles la durée d'attente est supérieure à 10 minutes. 2. a. Donner la nature et les paramètres caractéristiques de Y. 2. b. Le gérant du supermarché ouvre des caisses supplémentaires si la durée d'attente à au moins 4 des 6 caisses est supérieure à 10 minutes. Déterminer à 0,01 près la probabilité d'ouverture de nouvelles caisses. Ex2 : Une entreprise lance la production de batteries pour véhicules électriques. Il est prévu que l autonomie permise par ce type de batteries, sous certaines conditions de conduite, soit de 200 km. Sur un parcours joignant une ville située à 160 km, on suppose que l autonomie, exprimée en km, permise par ces batteries suit une loi normale d espérance µ = 200 et d écart-type # = Quelle est la probabilité, arrondie au centième, de ne pas atteindre cette ville? 2. La probabilité de pouvoir faire l aller-retour jusqu à cette ville sans recharge des batteries est-elle supérieure à 0,01? Justifier votre réponse. EX 3 (d après Polynésie STI2D STL) Une entreprise produit en grande quantité des pièces détachées destinées à l industrie. L objectif de cet exercice est d exploiter divers outils mathématiques pour analyser la qualité de cette production. A. Loi normale Une pièce est conforme lorsque sa longueur, exprimée en millimètres, appartient à l intervalle [74,4; 75,6]. On note L la variable aléatoire qui, à chaque pièce prélevée au hasard dans la production, associe sa longueur. On suppose que la variable aléatoire L suit la loi normale d espérance 75 et d écart type 0, Calculer )74,4 * 75,6. 2. Quelle valeur doit-on donner à h pour avoir )75 h * 75+h = 0,95? B. Loi binomiale Les pièces produites par l entreprise sont livrées par lots de 20. On note D l événement : «une pièce prélevée au hasard dans la production n est pas conforme». On suppose que P(D) = 0,02. On prélève au hasard 20 pièces dans la production. La production est assez importante pour que l on puisse assimiler ce prélèvement à un tirage aléatoire avec remise. On considère la variable aléatoire X qui, à un lot de 20 pièces, associe le nombre de pièces non conformes qu il contient. 1. Justifier que la variable aléatoire X suit la loi binomiale de paramètres 20 et 0, Calculer la probabilité P(X = 0). 3. Calculer la probabilité qu il y ait au moins une pièce non conforme dans ce lot de 20 pièces. 4. Calculer l espérance mathématique, E(X), de cette variable aléatoire et interpréter le résultat.
2 Ex4 : Pondichéry avril 2014 Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée en années, d un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre, où est un réel strictement positif. On sait que 2=0,15. Déterminer la valeur exacte du réel. Dans la suite de l exercice on prendra 0,081 pour valeur de. 2. a. Déterminer 3. b. Montrer que pour tous réels positifs t et h, / +h= h c. Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu il fonctionne encore 2 ans? d. Calculer l espérance de la variable aléatoire X et donner une interprétation de ce résultat. 3. Dans la suite de cet exercice, on donnera des valeurs arrondies des résultats à 10 3 près. L entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à 1%. Afin de vérifier cette affirmation 800 moteurs sont prélevés au hasard. On constate que 15 moteurs sont détectés défectueux. Le résultat de ce test remet-il en question l annonce de l entreprise A? Justifier (On pourra s aider d un intervalle de fluctuation.) Ex1 Antilles Septembre 2006 Partie A - Restitution organisée des connaissances Si est une variable aléatoire qui suit une loi exponentielle de paramètre strictement positif alors, pour tout réel positif, =1 < =1 =1 1 = =1 5 6 =1+ 1 = Pour tous réels et positifs : + = 7 +9 = + = :; = ; = ; = =.
3 Partie B : 1. a. Déterminer une expression exacte de sachant que : 10=0,7. 10=0, =0, =0,7! +1=0,7! =0,3 10=ln0,3 = 1 10 ln0,3 On remarque que!! ln0,3 0, b. Donner une expression exacte de la probabilité conditionnelle! 15.! 15=! 10+5 =5 cf R.O.C : loi de durée de vie sans vieillissement or =,A, cf R.O.C D où! 15=,A 1. c. Sachant qu'un client a déjà attendu BC minutes à une caisse, déterminer la probabilité que son attente totale ne dépasse pas 15 minutes. «un client a déjà attendu 10 minutes» : 10 «un client n attend pas plus de 15 minutes» : 15! 15=1! 15=1,A 0,45 Ainsi, la probabilité qu'un client ayant déjà attendu 10 minutes à une caisse n attende pas plus de 15 minutes est égale à 1,A en valeur exacte, ou 0,45 à 0,01Dè. 2.a on répète 6 fois de manière identique et indépendante une même épreuve qui n a que deux issues : E «le temps d attente est supérieur à 10mn» de probabilité E=10=0,3 et E de probabilité 0,7 donc la variable aléatoire G qui désigne le nombre de caisses pour lesquelles la durée d'attente est supérieure à 10 minutes, suit une loi binomiale de paramètres 6 et 0,3. 2.b. H «le temps d attente est supérieur à 10mn à au moins 4 des 6 caisses» : I J K=G 4 =G=4+G=5+G=6 =L 6 4 M 0,3N 0,7 O +L 6 5 M 0,7! +L 6 6 M 0,3A 0,7 =15 0,3 N 0,7 O +6 0,7! +0,3 A 0,07047 Ainsi, la probabilité d'ouverture de nouvelles caisses est de 0,07 à 0,01 près. Ex2 Soit X la variable aléatoire désignant l autonomie en km. suit la loi normale P200 ;40 1 «ne pas atteindre cette ville» : <160 <160=0,5 160< 200 0,16 La probabilité de ne pas atteindre cette ville est 0,16 2 «pouvoir faire l aller-retour jusqu à cette ville sans recharge des batteries» : 320
4 320=0,5 200<<320 0,0013<0,01 La probabilité de pouvoir faire l aller-retour sans recharge est inférieure à un centième. EX 3 (d après Polynésie STI2D STL) Partie A. L suit une loi normale N( 75, 0,25²) soit Q=75 et#=0,25 1 On a donc p( 74,4 < L < 75,6) = normalfrep( 74,4, 75,6, 75, 0,25 ) = 0,9836..= 0,984 à 10-3 près 2 )75 h * 75+h= 0,95 )Q h * Q+h = 0,95 Si * suit la loi normale P75 ;0,25 O alors G= suit la loi normale P0 75 h * 75+h h 0,25 * 75 0,25 h 0,25 Cours : Pour G qui suit la loi normale P0 ;1, on a 1,96 G 1,96=0,95 D où U =1,96 donc h=1,96 Partie B. 1. Il s agit d une expérience de Bernoulli (succès p = 0,02 échec q= 0,98) répétée n = 20 fois dans les mêmes conditions et de façon indépendante, donc le nombre X de succès suit une loi binomiale B(n,p) = B(20, 0,02) 2. On a alors = 0=L 20 0 M 0,020 0,98 20 =0, ,668 binomfdp( n, p, k) = binomfdp(20, 0,02, 0) 3. ) 1 = 1 = 0 = 0,332 à 10 Y près 4. L espérance d une loi binomiale est facile : Z= [ = 20 0,02 = 0,4 Donc en moyenne, sur 20 pièces, il y en aura 0,4 de non conforme Ou plutôt : sur 200 pièces, 4 seront non conformes en moyenne (Ou 40 sur 2000 etc..) Ex4 1. La durée de vie, exprimée en années, d un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre λ, où λ est un réel strictement positif. D après le cours : \ ]=1 Donc pour 0, = =1 Donnée : 2=0,15 _ ^ =2 1 ^ 4 = ^+_ = _ ^ _ 2=0,15 1 O =0,15 O =0,85 2=ln0,85 = 1 2 ln0,85 D où =! O ln0,85 0,081 Dans la suite de l exercice on prendra 0,081 pour valeur de λ.
5 2. a. Pour t 0 : =1 =1 71 9= Donc ) 3= Y,`! =,ONY 0,78 b. Pour tous réels positifs t et h : = +h= :U Pour tous réels et positifs : +h = 7 +h9 = +h = :U = U = U =h c. Le moteur a déjà fonctionné durant 3 ans. La probabilité pour qu il fonctionne encore 2 ans est : Y 3+2=2=1 2=1 0,15=0,85. d. D après le cours, pour une variable aléatoire suivant une loi exponentielle de paramètre λ, l espérance de X est Z=! =!,`! 12,35 Ce qui veut dire que la durée moyenne de vie d un moteur est de 12,35 années. 3. L entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à 1%. Afin de vérifier cette affirmation 800 moteurs sont prélevés au hasard. Pour une proportion p et un échantillon de taille n, l intervalle de fluctuation asymptotique au seuil de 95% est : Au seuil de 0,95 : h i =j 1,96 k1 ;+1,96 k1 m [ [ Avec les conditions d application, [ 30 [ 5 [1 5 L échantillon de l enquête est de taille n = 800 et l entreprise annonce que le pourcentage de moteurs défectueux est égal à 1% donc p = 0,01. Regardons si les trois conditions sont vérifiées : [ = , [ = 800 0,01 = 8 5 [1 = 800 0,99 = Intervalle : 1,96 k1 0,0031 1,96 k1 0,0168 [ [ D où h` =[0,003 ;1,017] On constate que 15moteurs sont détectés défectueux sur 800, ce qui fait une fréquence de n ` =0, Prise de décision n h` I donc, au seuil de 95%, le résultat de ce test remet en question l annonce de l entreprise.
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Ressources pour le lycée général et technologique
éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents
mathématiques mathématiques mathématiques mathématiques
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Baccalauréat ES 2013. L intégrale d avril à novembre 2013
Baccalauréat ES 2013 L intégrale d avril à novembre 2013 Pour un accès direct cliquez sur les liens bleus Pondichéry 15 avril 2013.......................................................... 3 Amérique du
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
MATHÉMATIQUES. Mat-4104
MATHÉMATIQUES Pré-test D Mat-404 Questionnaire e pas écrire sur le questionnaire Préparé par : M. GHELLACHE Mai 009 Questionnaire Page / 0 Exercice ) En justifiant votre réponse, dites quel type d étude
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Mesures et incertitudes
En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs DS1 26/09/2012 page2 DV 09/10/2012 page 6 DS 24/10/2012 page 8 DV 30/11/2012 page 14 DV 14/12/2012 page 16 BAC BLANC 18/01/2013 page 17 DV 05/02/2013 page
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
Suites numériques Exercices
Première L 1. Exercice 9 2 2. Exercice 10 2 3. Exercice 11 2 4. Exercice 12 3 5. Exercice 13 3 6. France, septembre 2001 4 7. Asie juin 2002 5 8. Centres étrangers juin 2002 6 9. Pondichery, juin 2001
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus