Bases Indispensables des Mathématiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Bases Indispensables des Mathématiques"

Transcription

1 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Bases Indispensables des Mathématiques Chapitre 2 : Algèbre linéaire. (Partie 2 : Applications linéaires et Matrices) Julian Tugaut Jeudi 08 Septembre 2016 Julian Tugaut Bases Indispensables des Mathématiques

2 Sommaire 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel Addition et multiplication par un scalaire Produit de deux matrices 5 Déterminants 6 Inversion de matrices

3 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel 5 Déterminants 6 Inversion de matrices

4 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Applications linéaires Définition Soient E et F deux espaces vectoriels sur R (ou C). On dit qu une application f de E dans F est linéaire si λ R, x,y E, on a : f (λx +y) = λf(x)+f(y). Julian Tugaut Bases Indispensables des Mathématiques

5 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Applications linéaires Définition Soient E et F deux espaces vectoriels sur R (ou C). On dit qu une application f de E dans F est linéaire si λ R, x,y E, on a : f (λx +y) = λf(x)+f(y). Exemples L application Id E de E dans lui-même définie par Id E (x) := x est linéaire. L application de K n dans K définie par f(x 1,,x n ) := x 1 + +x n est linéaire. L application Tr de M n (R) dans R qui, à une matrice, associe sa trace est également linéaire. Julian Tugaut Bases Indispensables des Mathématiques

6 Vocabulaire Endomorphisme Une application linéaire de E dans lui-même est un endomorphisme.

7 Vocabulaire Endomorphisme Une application linéaire de E dans lui-même est un endomorphisme. Exemple L application f de C dans lui-même définie par f(z) := z.

8 Vocabulaire Endomorphisme Une application linéaire de E dans lui-même est un endomorphisme. Exemple L application f de C dans lui-même définie par f(z) := z. Isomorphisme Une application linéaire bijective de E vers F est un isomorphisme.

9 Vocabulaire Endomorphisme Une application linéaire de E dans lui-même est un endomorphisme. Exemple L application f de C dans lui-même définie par f(z) := z. Isomorphisme Une application linéaire bijective de E vers F est un isomorphisme. Exemple L application f de C dans R 2 définie par f(z) := (Re(z);Im(z)).

10 Vocabulaire Endomorphisme Une application linéaire de E dans lui-même est un endomorphisme. Exemple L application f de C dans lui-même définie par f(z) := z. Isomorphisme Une application linéaire bijective de E vers F est un isomorphisme. Exemple L application f de C dans R 2 définie par f(z) := (Re(z);Im(z)). Définition On dit que E est isomorphe à F s il existe un isomorphisme de l un vers l autre.

11 Théorème de la dimension Image On appelle image de f : Imf := {f(x) ; x E} F.

12 Théorème de la dimension Image On appelle image de f : Imf := {f(x) ; x E} F. Noyau On appelle noyau de f : Kerf := {x E f(x) = 0}.

13 Théorème de la dimension Image On appelle image de f : Imf := {f(x) ; x E} F. Noyau On appelle noyau de f : Kerf := {x E f(x) = 0}. Imf est un sous-espace vectoriel de F tandis que Kerf est un sous-espace vectoriel de E. On appelle rang de f : rg(f) := dimimf.

14 Théorème de la dimension Image On appelle image de f : Imf := {f(x) ; x E} F. Noyau On appelle noyau de f : Kerf := {x E f(x) = 0}. Imf est un sous-espace vectoriel de F tandis que Kerf est un sous-espace vectoriel de E. On appelle rang de f : rg(f) := dimimf. Théorème du rang dime = dimimf +dimkerf = rg(f)+dimkerf.

15 Déterminer une application linéaire Résultat Soient {e 1 ; ; e p } une base de E et {f 1 ; ; f n } une base de F. Alors connaître les coordonnées des p vecteurs f(e 1 ),,f(e p ) dans la base {f 1 ; ; f n } est suffisant pour caractériser l application linéaire f.

16 Déterminer une application linéaire Résultat Soient {e 1 ; ; e p } une base de E et {f 1 ; ; f n } une base de F. Alors connaître les coordonnées des p vecteurs f(e 1 ),,f(e p ) dans la base {f 1 ; ; f n } est suffisant pour caractériser l application linéaire f. Démonstration On suppose connues les coordonnées des p vecteurs f(e 1 ),,f(e p ) dans la base {f 1 ; ; f n } : f(e j ) = a 1,j f 1 +a 2,j f 2 + +a n 1,j f n 1 +a n,j f n. Soit un vecteur quelconque x de E. Il existe α 1,, α p R tels que x = α 1 e 1 + +α p e p d où : f(x) = p α j f(e j ) = j=1 p j=1 i=1 n a i,j α j f i = n p a i,j α j f i i=1 j=1

17 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel 5 Déterminants 6 Inversion de matrices

18 Matrice d une application linéaire On connaît donc l application linéaire f si l on connait : f(e 1 ) {}} { a 1,1. a i,1. a n,1 ; ; f(e j ) {}} { a 1,j. a i,j. a n,j ; ; f(e p) { }} { a 1,p. a i,p. a n,p

19 Matrice d une application linéaire On connaît donc l application linéaire f si l on connait : f(e 1 ) {}} { a 1,1. a i,1. a n,1 ; ; f(e j ) {}} { a 1,j. a i,j. a n,j ; ; f(e p) { }} { a 1,p. a i,p. a n,p Pour simplifier l écriture, on met tous les coefficients dans un tableau à n lignes et p colonnes : a 1,1 a 1,j a 1,p... a i,1 a i,j a i,p... a n,1 a n,j a n,p

20 Terminologie Matrice Ce tableau est appelé la matrice de l application linéaire f.

21 Terminologie Matrice Ce tableau est appelé la matrice de l application linéaire f. Rang d une matrice Le rang d une matrice M est égal au rang de son application linéaire.

22 Terminologie Matrice Ce tableau est appelé la matrice de l application linéaire f. Rang d une matrice Le rang d une matrice M est égal au rang de son application linéaire. Notation Pour simplifier, on écrit M = (a i,j ) 1 i n. 1 j p M est alors une matrice à n lignes et p colonnes. On appelle M n,p (R) l espace vectoriel des matrices à n lignes et p colonnes et à coefficients dans R. On note : dim R M n,p (R) = np.

23 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Transposée et adjointe Transposée Si le corps est R, la transposée de M est M T := (a j,i ) 1 i n, 1 j p. M T est alors une matrice à p lignes et n colonnes. Julian Tugaut Bases Indispensables des Mathématiques

24 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Transposée et adjointe Transposée Si le corps est R, la transposée de M est M T := (a j,i ) 1 i n, 1 j p. M T est alors une matrice à p lignes et n colonnes. Adjointe Si le corps est C, l adjointe de M est M := (a j,i ) 1 i n, 1 j p. M est alors une matrice à p lignes et n colonnes. Julian Tugaut Bases Indispensables des Mathématiques

25 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel 5 Déterminants 6 Inversion de matrices

26 Matrices carrées Définition Matrices ayant autant de lignes que de colonnes : a 1,1 a 1,j a 1,n... M := a i,1 a i,j a i,n... a n,1 a n,j a n,n

27 Matrices carrées Définition Matrices ayant autant de lignes que de colonnes : a 1,1 a 1,j a 1,n... M := a i,1 a i,j a i,n... a n,1 a n,j a n,n Trace On définit la trace comme étant la somme des éléments diagonaux : n Tr(M) := a i,i. i=1

28 Matrices symétriques/hermitiennes Matrices symétriques Matrices carrées réelles telles que M = M T : a i,j = a j,i. Exemple : M :=

29 Matrices symétriques/hermitiennes Matrices symétriques Matrices carrées réelles telles que M = M T : a i,j = a j,i. Exemple : Matrices hermitiennes M := Matrices carrées complexes telles que M = M T : a i,j = a j,i. Exemple : 1 i 3 M := i 5 3 i 3 3+i 2

30 Matrices symétriques/hermitiennes Matrices symétriques Matrices carrées réelles telles que M = M T : a i,j = a j,i. Exemple : Matrices hermitiennes M := Matrices carrées complexes telles que M = M T : a i,j = a j,i. Exemple : 1 i 3 M := i 5 3 i 3 3+i 2 Remarque : une matrice complexe symétrique n est pas une matrice hermitienne.

31 Matrices diagonales Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Les matrices diagonales sont des matrices carrées telles que les coefficients hors diagonale sont nuls : a i,j = 0 si i j. Exemple : M := Julian Tugaut Bases Indispensables des Mathématiques

32 Matrices diagonales Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Les matrices diagonales sont des matrices carrées telles que les coefficients hors diagonale sont nuls : a i,j = 0 si i j. Exemple : M := Les matrices diagonales jouent un rôle particulier puisqu il est facile de les multiplier, de calculer leurs puissances et leur exponentielle. On cherche autant que faire se peut à travailler avec. Julian Tugaut Bases Indispensables des Mathématiques

33 Matrices triangulaires Remarque On ne peut pas toujours travailler avec des matrices diagonales mais si l on travaille dans C, on peut toujours se ramener à une matrice triangulaire supérieure (ou une matrice triangulaire inférieure).

34 Matrices triangulaires Remarque On ne peut pas toujours travailler avec des matrices diagonales mais si l on travaille dans C, on peut toujours se ramener à une matrice triangulaire supérieure (ou une matrice triangulaire inférieure). Définition Une matrice triangulaire supérieure est une matrice carrée telle que a i,j = 0 si i > j : M :=

35 Matrices identités Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices La matrice identité est une matrice diagonale dont tous les termes diagonaux sont égaux à 1. On la note I n lorsque l on est en dimension n : I 4 := Julian Tugaut Bases Indispensables des Mathématiques

36 Matrices identités Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices La matrice identité est une matrice diagonale dont tous les termes diagonaux sont égaux à 1. On la note I n lorsque l on est en dimension n : I 4 := Il s agit aussi de l élément neutre pour la multiplication des matrices. Julian Tugaut Bases Indispensables des Mathématiques

37 Matrices nulles Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices La matrice nulle est une matrice carrée dont tous les coefficients sont égaux à 0. On la note O n lorsque l on est en dimension n : O 4 := Julian Tugaut Bases Indispensables des Mathématiques

38 Matrices nulles Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices La matrice nulle est une matrice carrée dont tous les coefficients sont égaux à 0. On la note O n lorsque l on est en dimension n : O 4 := Il s agit aussi de l élément neutre pour l addition des matrices. Julian Tugaut Bases Indispensables des Mathématiques

39 Vecteurs lignes/colonnes Vecteur ligne Un vecteur ligne est une matrice ayant une unique ligne et p colonnes.

40 Vecteurs lignes/colonnes Vecteur ligne Un vecteur ligne est une matrice ayant une unique ligne et p colonnes. Exemple ( )

41 Vecteurs lignes/colonnes Vecteur ligne Un vecteur ligne est une matrice ayant une unique ligne et p colonnes. Exemple ( ) Vecteur colonne Un vecteur colonne est une matrice ayant une unique colonne et n lignes.

42 Vecteurs lignes/colonnes Vecteur ligne Un vecteur ligne est une matrice ayant une unique ligne et p colonnes. Exemple ( ) Vecteur colonne Un vecteur colonne est une matrice ayant une unique colonne et n lignes. Exemple

43 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel Addition et multiplication par un scalaire Produit de deux matrices 5 Déterminants 6 Inversion de matrices

44 Addition L addition de deux matrices se fait coefficient à coefficient : a 1,1 a 1,2 a 1,3 a 1,4 b 1,1 b 1,2 b 1,3 b 1,4 a 2,1 a 2,2 a 2,3 a 2,4 + b 2,1 b 2,2 b 2,3 b 2,4 a 3,1 a 3,2 a 3,3 a 3,4 b 3,1 b 3,2 b 3,3 b 3,4 = a 1,1 +b 1,1 a 1,2 +b 1,2 a 1,3 +b 1,3 a 1,4 +b 1,4 a 2,1 +b 2,1 a 2,2 +b 2,2 a 2,3 +b 2,3 a 2,4 +b 2,4 a 3,1 +b 3,1 a 3,2 +b 3,2 a 3,3 +b 3,3 a 3,4 +b 3,4

45 Addition L addition de deux matrices se fait coefficient à coefficient : a 1,1 a 1,2 a 1,3 a 1,4 b 1,1 b 1,2 b 1,3 b 1,4 a 2,1 a 2,2 a 2,3 a 2,4 + b 2,1 b 2,2 b 2,3 b 2,4 a 3,1 a 3,2 a 3,3 a 3,4 b 3,1 b 3,2 b 3,3 b 3,4 = a 1,1 +b 1,1 a 1,2 +b 1,2 a 1,3 +b 1,3 a 1,4 +b 1,4 a 2,1 +b 2,1 a 2,2 +b 2,2 a 2,3 +b 2,3 a 2,4 +b 2,4 a 3,1 +b 3,1 a 3,2 +b 3,2 a 3,3 +b 3,3 a 3,4 +b 3,4 Les matrices doivent avoir le même nombre de lignes et de colonnes.

46 Addition L addition de deux matrices se fait coefficient à coefficient : a 1,1 a 1,2 a 1,3 a 1,4 b 1,1 b 1,2 b 1,3 b 1,4 a 2,1 a 2,2 a 2,3 a 2,4 + b 2,1 b 2,2 b 2,3 b 2,4 a 3,1 a 3,2 a 3,3 a 3,4 b 3,1 b 3,2 b 3,3 b 3,4 = a 1,1 +b 1,1 a 1,2 +b 1,2 a 1,3 +b 1,3 a 1,4 +b 1,4 a 2,1 +b 2,1 a 2,2 +b 2,2 a 2,3 +b 2,3 a 2,4 +b 2,4 a 3,1 +b 3,1 a 3,2 +b 3,2 a 3,3 +b 3,3 a 3,4 +b 3,4 Les matrices doivent avoir le même nombre de lignes et de colonnes. La multiplication par un scalaire λ K s effectue sur chaque coefficient : a 1,1 a 1,2 a 1,3 a 1,4 λ.a 1,1 λ.a 1,2 λ.a 1,3 λ.a 1,4 λ. a 2,1 a 2,2 a 2,3 a 2,4 = λ.a 2,1 λ.a 2,2 λ.a 2,3 λ.a 2,4 a 3,1 a 3,2 a 3,3 a 3,4 λ.a 3,1 λ.a 3,2 λ.a 3,3 λ.a 3,4

47 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Propriétés de l addition Addition et multiplication par un scalaire Produit de deux matrices Groupe L ensemble M n,p (K) des matrices à n lignes et p colonnes muni de l addition matricielle est un groupe abélien. Et, muni de la multiplication par un scalaire, c est un K-espace vectoriel. Julian Tugaut Bases Indispensables des Mathématiques

48 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Propriétés de l addition Addition et multiplication par un scalaire Produit de deux matrices Groupe L ensemble M n,p (K) des matrices à n lignes et p colonnes muni de l addition matricielle est un groupe abélien. Et, muni de la multiplication par un scalaire, c est un K-espace vectoriel. Pour les matrices carrées, on a de plus : Tr(A+B) = Tr(A)+Tr(B) et Tr(λ.A) = λ.tr(a). La trace est donc une application linéaire de M n (K) vers K. On a également : (A+B) T = A T +B T. Julian Tugaut Bases Indispensables des Mathématiques

49 Définition du produit de deux matrices Rappel Une matrice est associée à une application linéaire. Ainsi, si f est une application linéaire d un espace vectoriel E de dimension p vers un espace vectoriel n, la matrice associée est un tableau à n lignes et p colonnes, les n coordonnées dans la nouvelle base des images par f de l ancienne base.

50 Définition du produit de deux matrices Rappel Une matrice est associée à une application linéaire. Ainsi, si f est une application linéaire d un espace vectoriel E de dimension p vers un espace vectoriel n, la matrice associée est un tableau à n lignes et p colonnes, les n coordonnées dans la nouvelle base des images par f de l ancienne base. Définition On définit le produit d une matrice A M n,p par une matrice B M q,r comme étant la matrice associée à la composée des deux applications linéaires associées.

51 Définition du produit de deux matrices Rappel Une matrice est associée à une application linéaire. Ainsi, si f est une application linéaire d un espace vectoriel E de dimension p vers un espace vectoriel n, la matrice associée est un tableau à n lignes et p colonnes, les n coordonnées dans la nouvelle base des images par f de l ancienne base. Définition On définit le produit d une matrice A M n,p par une matrice B M q,r comme étant la matrice associée à la composée des deux applications linéaires associées. Première remarque On en déduit immédiatement que le produit A B n est défini que si p = q et alors la matrice produit A B est dans M n,r.

52 Formule pour le produit On peut montrer que le produit d une matrice A M n,p par une matrice B M p,q est une matrice C dans M n,q dont chaque coefficient c i,j est égal à c i,j = p a i,k b k,j. k=1

53 Formule pour le produit On peut montrer que le produit d une matrice A M n,p par une matrice B M p,q est une matrice C dans M n,q dont chaque coefficient c i,j est égal à c i,j = p a i,k b k,j. k=1 Matrices carrées On peut toujours multiplier deux matrices carrées de même taille entre elles, dans un sens ou dans l autre. Muni de l addition et de la multiplication, M n (K) est un anneau.

54 Formule pour le produit On peut montrer que le produit d une matrice A M n,p par une matrice B M p,q est une matrice C dans M n,q dont chaque coefficient c i,j est égal à c i,j = p a i,k b k,j. k=1 Matrices carrées On peut toujours multiplier deux matrices carrées de même taille entre elles, dans un sens ou dans l autre. Muni de l addition et de la multiplication, M n (K) est un anneau. Propriétés Tr(A B) = Tr(B A). Et : (A B) T = B T A T.

55 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Remarques importantes sur le produit Addition et multiplication par un scalaire Produit de deux matrices Le produit de deux matrices non nulles peut être nul. Exemple : = Julian Tugaut Bases Indispensables des Mathématiques

56 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Remarques importantes sur le produit Addition et multiplication par un scalaire Produit de deux matrices Le produit de deux matrices non nulles peut être nul. Exemple : = Et, une matrice est inversible pour le produit si et seulement si le rang de la matrice (en d autres termes, la dimension de l image de son application linéaire associée) est égal à n. Ainsi, une matrice est inversible si et seulement si ses vecteurs colonnes (ou ses vecteurs lignes) forment une famille libre dans K n. Julian Tugaut Bases Indispensables des Mathématiques

57 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel 5 Déterminants 6 Inversion de matrices

58 Définition Par définition, le déterminant... détermine. Il détermine en particulier l inversibilité ou non de la matrice. On le définit comme étant une application multi-linéaire de la matrice.

59 Définition Par définition, le déterminant... détermine. Il détermine en particulier l inversibilité ou non de la matrice. On le définit comme étant une application multi-linéaire de la matrice. Exemple On considère une matrice carrée de n lignes et n colonnes. On appelle C 1,,C n ses n colonnes. On a alors : Det ( C 1,,C i 1, λ.c i +C i,c i+1,,c n ) =λdet(c 1,,C i 1,C i,c i+1,,c n ) +Det ( C 1,,C i 1,C i,c i+1,,c n ).

60 si k i. Enfin, on suppose Det(I n ) = 1. Définition Par définition, le déterminant... détermine. Il détermine en particulier l inversibilité ou non de la matrice. On le définit comme étant une application multi-linéaire de la matrice. Exemple On considère une matrice carrée de n lignes et n colonnes. On appelle C 1,,C n ses n colonnes. On a alors : Det ( C 1,,C i 1, λ.c i +C i,c i+1,,c n ) =λdet(c 1,,C i 1,C i,c i+1,,c n ) +Det ( C 1,,C i 1,C i,c i+1,,c n ). On suppose également que le déterminant est nul dès que deux colonnes sont égales d où : Det(C 1,,C i 1,C i + λ.c k,c i+1,,c n ) = Det(C 1,,C i 1,C i,c i+1,,c n )

61 Calcul pratique 1 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Définition calculatoire Det(A) := n a i,σ(i). σ S n ( 1) Inv(σ) i=1 Julian Tugaut Bases Indispensables des Mathématiques

62 Calcul pratique 1 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Définition calculatoire Det(A) := n a i,σ(i). Peu pratique... σ S n ( 1) Inv(σ) i=1 Julian Tugaut Bases Indispensables des Mathématiques

63 Calcul pratique 1 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Définition calculatoire Det(A) := n a i,σ(i). Peu pratique... σ S n ( 1) Inv(σ) i=1 Dans M 2 (K) Det (( a b c d )) := ad bc. Julian Tugaut Bases Indispensables des Mathématiques

64 Calcul pratique 2 Dans M 3 (K) Det a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3

65 Calcul pratique 2 Dans M 3 (K) Det a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3 se calcule par la méthode de Sarrus (NE FONCTIONNE PAS SI N 4!!). On réécrit les deux premières lignes en dessous de la matrice. On prend la somme des trois nombres obtenus en effectuant le produit des trois diagonales descendantes et l on retranche les trois nombres obtenus en effectuant le produit des trois diagonales ascendantes.

66 Calcul pratique 2 Dans M 3 (K) Det a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3 se calcule par la méthode de Sarrus (NE FONCTIONNE PAS SI N 4!!). On réécrit les deux premières lignes en dessous de la matrice. On prend la somme des trois nombres obtenus en effectuant le produit des trois diagonales descendantes et l on retranche les trois nombres obtenus en effectuant le produit des trois diagonales ascendantes. En dimension quelconque On effectue le pivot de Gauss (opérations sur les lignes de la matrice) pour simplifier le calcul du déterminant.

67 Exemple de calcul de déterminant par le pivot (L 1 ) (L 2 ) (L 3 ) (L 4 ) On encadre le pivot que l on choisit puis l on applique les opérations sur les lignes : (L 1 ) (L 2 ) (L 1 ) (L 3 ) (L 1 ) (L 4 ) (L 1 )

68 Exemple de calcul de déterminant par le pivot 2 On conserve l encadrement du pivot (pour se souvenir de ne plus utiliser la ligne (L 1 )). On procède de même que précédemment : (L 1 )+ 1 2 (L 3) (L 2 ) (L 3 ) (L 4 ) (L 3 )

69 Exemple de calcul de déterminant par le pivot 2 On conserve l encadrement du pivot (pour se souvenir de ne plus utiliser la ligne (L 1 )). On procède de même que précédemment : (L 1 )+ 1 2 (L 3) (L 2 ) (L 3 ) (L 4 ) (L 3 ) Puis : (L 1 )+ 1 2 (L 2) (L 2 ) (L 3 ) (L 4 ) (L 2 )

70 Exemple de calcul de déterminant par le pivot 3 Puis : (L 1 )+ 1 4 (L 4) (L 2 )+ 1 2 (L 4) (L 3 )+ 1 2 (L 4) (L 4 )

71 Exemple de calcul de déterminant par le pivot 3 Puis : (L 1 )+ 1 4 (L 4) (L 2 )+ 1 2 (L 4) (L 3 )+ 1 2 (L 4) (L 4 ) On calcule ensuite le déterminant en développant par rapport à la première colonne.

72 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Développement par rapport à une colonne (ou une ligne) Si une ligne ou une colonne contient beaucoup de 0, on peut utiliser la formule suivante : Julian Tugaut Bases Indispensables des Mathématiques

73 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Développement par rapport à une colonne (ou une ligne) Si une ligne ou une colonne contient beaucoup de 0, on peut utiliser la formule suivante : n ) Det(A) = a i,k ( 1) i+k Det (Ãi,k k=1 où Ãi,k est la matrice A à laquelle on a enlevé la ligne i et la colonne k. Julian Tugaut Bases Indispensables des Mathématiques

74 Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Développement par rapport à une colonne (ou une ligne) Si une ligne ou une colonne contient beaucoup de 0, on peut utiliser la formule suivante : n ) Det(A) = a i,k ( 1) i+k Det (Ãi,k k=1 où Ãi,k est la matrice A à laquelle on a enlevé la ligne i et la colonne k. De même : Det(A) = n k=1 ) a k,j ( 1) k+j Det (Ãk,j où Ãk,j est la matrice A à laquelle on a enlevé la ligne k et la colonne j. Julian Tugaut Bases Indispensables des Mathématiques

75 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Julian Tugaut Bases Indispensables des Mathématiques

76 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Julian Tugaut Bases Indispensables des Mathématiques

77 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Det(AB) = Det(BA) = Det(A)Det(B). Julian Tugaut Bases Indispensables des Mathématiques

78 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Det(AB) = Det(BA) = Det(A)Det(B). Le déterminant d une matrice diagonale est égal au produit des éléments diagonaux. Julian Tugaut Bases Indispensables des Mathématiques

79 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Det(AB) = Det(BA) = Det(A)Det(B). Le déterminant d une matrice diagonale est égal au produit des éléments diagonaux. Le déterminant d une matrice triangulaire est égal au produit des éléments diagonaux. Julian Tugaut Bases Indispensables des Mathématiques

80 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Det(AB) = Det(BA) = Det(A)Det(B). Le déterminant d une matrice diagonale est égal au produit des éléments diagonaux. Le déterminant d une matrice triangulaire est égal au produit des éléments diagonaux. Det(λA) = λ n Det(A). Julian Tugaut Bases Indispensables des Mathématiques

81 Quelques propriétés Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Si le déterminant est nul, la matrice est non inversible. Si le déterminant est non nul, la matrice est inversible. Det(AB) = Det(BA) = Det(A)Det(B). Le déterminant d une matrice diagonale est égal au produit des éléments diagonaux. Le déterminant d une matrice triangulaire est égal au produit des éléments diagonaux. Det(λA) = λ n Det(A). ( ) Det A T = Det(A). Julian Tugaut Bases Indispensables des Mathématiques

82 Plan 1 Applications linéaires 2 Matrices : Introduction 3 Quelques matrices particulières 4 Calcul matriciel 5 Déterminants 6 Inversion de matrices

83 Définition Par définition, A M n (K) est inversible si et seulement s il existe une matrice B M n (K) telle que A B = B A = I n. On note A 1 cette matrice inverse (si elle existe).

84 Inversion par le pivot de Gauss On peut procéder par le pivot de Gauss. Reprenons notre exemple : A :=

85 Inversion par le pivot de Gauss On peut procéder par le pivot de Gauss. Reprenons notre exemple : A := On met la matrice identité à droite de la matrice initiale et on les sépare par un trait vertical. Puis, l on effectue le pivot de Gauss jusqu à obtenir la matrice identité à gauche. On aura alors l inverse de A à droite.

86 Exemple d inversion de matrice par le pivot de Gauss (L 1 ) (L 2 ) (L 3 ) (L 4 ) On encadre le pivot que l on choisit puis l on applique les opérations sur les lignes : (L 1 ) (L 2 ) (L 1 ) (L 3 ) (L 1 ) (L 4 ) (L 1 )

87 Exemple d inversion de matrice par le pivot de Gauss 2 On conserve l encadrement du pivot (pour se souvenir de ne plus utiliser la ligne (L 1 )). On procède de même que tout à l heure : (L 1 )+ 1 2 (L 3) (L 2 ) (L 3 ) (L 4 ) (L 3 )

88 Exemple d inversion de matrice par le pivot de Gauss 2 On conserve l encadrement du pivot (pour se souvenir de ne plus utiliser la ligne (L 1 )). On procède de même que tout à l heure : (L 1 )+ 1 2 (L 3) (L 2 ) (L 3 ) (L 4 ) (L 3 ) Puis : (L 1 )+ 1 2 (L 2) (L 2 ) (L 3 ) (L 4 ) (L 2 )

89 Exemple d inversion de matrice par le pivot de Gauss 3 Puis : (L 1 )+ 1 4 (L 4) (L 2 )+ 1 2 (L 4) (L 3 )+ 1 2 (L 4) (L 4 )

90 Exemple d inversion de matrice par le pivot de Gauss 3 Puis : (L 1 )+ 1 4 (L 4) (L 2 )+ 1 2 (L 4) (L 3 )+ 1 2 (L 4) (L 4 ) Et enfin : (L 1 ) (L 3) (L 2) (L 4)

91 Exemple d inversion de matrice par le pivot de Gauss 3 Puis : (L 1 )+ 1 4 (L 4) (L 2 )+ 1 2 (L 4) (L 3 )+ 1 2 (L 4) (L 4 ) Et enfin : (L 1 ) (L 3) (L 2) (L 4) La matrice à droite du trait vertical est l inverse de la matrice de départ.

Bases Indispensables des Mathématiques

Bases Indispensables des Mathématiques Applications linéaires Matrices : Introduction Quelques matrices particulières Calcul matriciel Déterminants Inversion de matrices Diagonalisation Bases Indispensables des Mathématiques Chapitre 2 : Algèbre

Plus en détail

avec E i j = (a kl ) 1 k n (K)). Le produit AB peut alors se calculer par blocs :

avec E i j = (a kl ) 1 k n (K)). Le produit AB peut alors se calculer par blocs : I Rappels sur les matrices 1 Opérations et structure Proposition 1 Structure d espace vectoriel L ensemble (M n,p (K),+, ) est un K-espace vectoriel de dimension np (isomorphe à K np ) La base canonique

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Rappels d algèbre linéaire

Rappels d algèbre linéaire Rappels d algèbre linéaire Ce chapitre se consacre à rappeler un certain nombre de résultats d algèbre linéaire qui seront utiles pour le cours d analyse numérique matricielle et optimisation Nous décomposons

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

Matrices. Chapitre Définition d une matrice

Matrices. Chapitre Définition d une matrice Chapitre 17 Matrices 171 Définition d une matrice Définition 171 : Soit un corps commutatif K et deux entiers n,p 1 On appelle matrice n p à coefficients dans K, une application { [[1,n]] [[1,p]] K A :

Plus en détail

Chapitre 10. Matrices Définitions

Chapitre 10. Matrices Définitions Chapitre 10 Matrices Nous allons dans ce chapitre découvrir la notion fondamentale de matrice Dans ce chapitre, on note K = R ou C 101 Définitions Définition 1011 On appelle matrice à n lignes et p colonnes

Plus en détail

Matrices. Chapitre V. 1 Révisions. a) Généralités

Matrices. Chapitre V. 1 Révisions. a) Généralités Chapitre V Matrices 1 Révisions a) Généralités Définitions Soient m, n et un corps commutatif Une matrice de type m, n à coefficients dans est un tableau de mn éléments de à m lignes et n colonnes, que

Plus en détail

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note Chapitre Matrices Matrices Règles de calcul Définition Rappel On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note On note en abrégé a i,j i n j n a, a,

Plus en détail

Algèbre bilinéaire et Intégration. par Emmanuel Hebey. Université de Cergy-Pontoise Année

Algèbre bilinéaire et Intégration. par Emmanuel Hebey. Université de Cergy-Pontoise Année Algèbre bilinéaire et Intégration par Emmanuel Hebey Université de Cergy-Pontoise Année 2018-2019 Chapitre 2 Matrices et applications linéaires On continue de ne considérer que le cas d espaces vectoriels

Plus en détail

Contenu de la section

Contenu de la section Contenu de la section Matrices (suite) Transposition Contenu de la section Matrices (suite) Transposition Inverse Trace Propriétés des opérations sur les matrices Calculer rapidement des déterminants Transposition

Plus en détail

Transposition Inverse Trace Propriétés des opérations sur les matrices Propriétés sur les déterminants

Transposition Inverse Trace Propriétés des opérations sur les matrices Propriétés sur les déterminants Transposition Inverse Trace Propriétés des opérations sur les matrices Propriétés sur les déterminants Définition La transposée d une matrice M de taille m n est la matrice t M (parfois notée M ) de taille

Plus en détail

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Déterminants Définition Déterminant d une matrice On définit par récurrence le déterminant, noté det(a),

Plus en détail

Chapitre 1: Matrices

Chapitre 1: Matrices Chapitre 1: Matrices Définition Matrice M de dimensions (m,n) = «Tableau à deux dimensions» avec m lignes et n colonnes Exemple : M est une matrice (4,3) à coefficients dans R M 1 6.4 3 3 8 2 = 2 4 9 1.1

Plus en détail

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 25 février 2013 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

Matrices. Résolution de systèmes linéaires

Matrices. Résolution de systèmes linéaires Chapitre 4 Matrices Résolution de systèmes linéaires K désigne Q, R ou C 41 Matrices, opérations sur les matrices 411 Définition et règles de calcul Définition 41 Soit n N + Un vecteur colonne (resp ligne

Plus en détail

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble.

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Matrices Notations du chapitre Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Ensemble des matrices Définition 1.1 Matrice à n lignes et p colonnes

Plus en détail

Chapitre R2. Matrices

Chapitre R2. Matrices Chapitre R2 Matrices I. Opérations sur les matrices............................................................ 2 1/ Définition............................................................................

Plus en détail

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 18 novembre 2015 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières MATRICES I Ensemble des matrices et opérations Dans toute cette partie, K désigne indifféremment R ou C, et n et p désignent des entiers naturels non nuls 1 o Définition et matrices particulières Définition

Plus en détail

MATRICES SYSTEMES. Soit E un espace vectoriel de dimension p et F un espace vectoriel de dimension n. B = QAP

MATRICES SYSTEMES. Soit E un espace vectoriel de dimension p et F un espace vectoriel de dimension n. B = QAP Chapitre 6 MATRICES SYSTEMES K est un corps commutatif, E est un espace vectoriel sur K 1 Matrices 1.1 Matrices équivalentes et rang Soit E un espace vectoriel de dimension p et F un espace vectoriel de

Plus en détail

CH XIII : Calcul matriciel

CH XIII : Calcul matriciel CH XIII : Calcul matriciel I Généralités sur les matrices Soient n et p deux entiers naturels non nuls On appelle matrice à n lignes et p colonnes à cœfficients dans R un tableau de nombres réels Si A

Plus en détail

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur Plan (1/2) Mathématique Élémentaire Introduction à l algèbre linéaire Support au cours S. Bridoux Université de Mons-Hainaut 1 L espace R N Vecteurs de R N et opérations Produit scalaire de deux vecteurs

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

I) Trace d une matrice carrée

I) Trace d une matrice carrée CHAPITRE IV: Dans ce chapitre, K = R ou C. On notera [M] i j le coefficient situé à la ligne i colonne j de la matrice M lorsque M M np (K) où (n, p) (N ) 2 I) Trace d une matrice carrée Définition : Trace

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Table des matières 1 Matrice 2 2 Matrice carrée 3 3 Déterminant d une matrice carrée 4 4 Matrice de Vandermonde 5 5 Matrice associée à une épplication linéaire 5 6 Forme normale

Plus en détail

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année.

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année. Mathématiques - ECS1 7 Matrices Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 2015, Polycopié du cours de mathématiques de première année 7 Matrices Dans tout ce qui suit, K désigne R ou C 71

Plus en détail

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 Matrice p. 1/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement

Plus en détail

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K)

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 21-10- 2007 JFC Mat p 1 MATRICES I GÉNÉRALITÉS 1 Définitions 2 Matrices carrées particulières II ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 1 Structure d espace vectoriel de M n,p (K) 2 Base canonique

Plus en détail

2 Diverses interprétations des matrices

2 Diverses interprétations des matrices 1 Rappels Espace vectoriel M p,n (K) : Addition : dénition et propriétés élémentaires : commutativité, associativité, existence d'un neutre, toute matrice admet un(e) opposé(e) pour + Multiplication par

Plus en détail

Matrices à coefficients dans R ou C.

Matrices à coefficients dans R ou C. BCPST1 B 2015/2016 Matrices à coefficients dans R ou C Dans ce chapitre n, r, q et p sont des entiers naturels non nuls, Les éléments de R ou de C sont appelés nombres ou scalaires I) Définition et vocabulaire

Plus en détail

Maths en PCSI Année Chapitre n 12. Calcul matriciel

Maths en PCSI Année Chapitre n 12. Calcul matriciel Chapitre n 12 Calcul matriciel Dans tout ce chapitre, K désigne R ou C, et n, p et q des entiers naturels non nuls Les éléments de K seront aussi appelés des scalaires 1 Ensembles de matrices Définition

Plus en détail

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices Matrices Matrices Matrices 1 Matrices Définitions Espace vectoriel des matrices n p Multiplication des matrices Inverse d une matrice Systèmes linéaires Applications linéaires Changement de bases Matrices

Plus en détail

LES MATRICES. Chapitre Premières définitions

LES MATRICES. Chapitre Premières définitions Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉTERMINANTS Dans tout ce chapitre, n désigne un entier naturel non nul. 1 Groupe symétrique 1.1 Permutation Définition 1.1 Permutation, groupe symétrique On appelle permutation de 1, n toute bijection

Plus en détail

Matrices. 2.1 Matrice d une application linéaire. Chapitre Représentation des vecteurs et des applications linéaires

Matrices. 2.1 Matrice d une application linéaire. Chapitre Représentation des vecteurs et des applications linéaires Chapitre 2 Matrices Dans ce chapitre, nous rappelons, souvent sans démonstration, les définitions et résultats importants du cours de première année. Dans tout le chapitre, K désigne soit R, soit C. 2.1

Plus en détail

Matrices. 5 février 2018

Matrices. 5 février 2018 Matrices 5 février 218 Table des matières 1 Généralités 3 11 Généralités 3 111 Définitions 3 112 Notation 3 113 Egalité entre deux matrices : 3 114 Ensemble de matrices 3 12 Des cas particuliers 4 121

Plus en détail

Al 6 -Systèmes linéaires - Calcul matriciel

Al 6 -Systèmes linéaires - Calcul matriciel Al 6 -Systèmes linéaires - Calcul matriciel Dans ce chapitre K désignera R ou C, et n, p, q, r désigneront des entiers naturels non nuls 1 Matrices Définition 1 1 On appelle matrice de taille n p à coefficients

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017 Matrices Cours de É. Bouchet ECS novembre 07 Table des matières Ensemble de matrices M n,p (K. Premières dénitions............................................... Matrices carrées.................................................

Plus en détail

I.1.6 Proposition. Soit n N, A, B M p (K). Si AB = BA alors. tout k N (avec la convention 0 0 = 1).

I.1.6 Proposition. Soit n N, A, B M p (K). Si AB = BA alors. tout k N (avec la convention 0 0 = 1). I Opérations 1/6 Table des matières I Opérations 1 I.1 Produit, puissances................................ 1 I.2 Inversibilité.................................... 2 II Trace 2 II.1 Trace d une matrice...............................

Plus en détail

Déterminants (résumé de cours) Algèbre et analyse fondamentales - Paris 7 - O. Bokanowski - Septembre 2015

Déterminants (résumé de cours) Algèbre et analyse fondamentales - Paris 7 - O. Bokanowski - Septembre 2015 Déterminants (résumé de cours) Algèbre et analyse fondamentales - Paris 7 - O Bokanowski - Septembre 2015 1 Permutations et signature Soit n un entier 1, et I n := {1,, n} On note S n = {σ bijection :

Plus en détail

Chapitre A8 : Matrices et systèmes linéaires

Chapitre A8 : Matrices et systèmes linéaires Chapitre A8 : Matrices et systèmes linéaires 1 Matrices Dans tout le chapitre n, p, q, r N et K = R ou C 1 a) Définitions Définition 11 On appelle matrice à n lignes et p colonnes une application de 1,

Plus en détail

a i+1,1 a i+1,j 1 a i+1,j+1 a i+1,n M (n 1) (n 1) (K). ( 1) j 1 a 1j det n 1 A 1j. j=1

a i+1,1 a i+1,j 1 a i+1,j+1 a i+1,n M (n 1) (n 1) (K). ( 1) j 1 a 1j det n 1 A 1j. j=1 Université Claude Bernard Lyon 1 L1 de Mathématiques : Math II Algèbre cursus PMI Année 2014 2015 Déterminants I On fixe pour tout le chapitre un corps K On va associer à toute matrice carrée, et même

Plus en détail

Chapitre 8. Matrices. 1 Vocabulaire et Notations

Chapitre 8. Matrices. 1 Vocabulaire et Notations ECE 1 - Année 2016-2017 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 8 Matrices Ce Chapitre introduit la notion de matrice ainsi que les règles de calcul matriciel

Plus en détail

1 Ensemble de matrices

1 Ensemble de matrices 1 Ensemble de matrices Définition 1 : M n,p (R) désigne l ensemble des matrices à n lignes et p colonnes à coefficients a 11 a 1p dans R, c est à dire de tableaux d éléments de R A = notés de manière condensée

Plus en détail

Noter que le déterminant est un polynôme homogène de degré n en n 2 variables (a ij ) qui contient n! monômes.

Noter que le déterminant est un polynôme homogène de degré n en n 2 variables (a ij ) qui contient n! monômes. Déterminants 1 Définition Soit A = (a ij ) 1 i,j n une matrice carrée d ordre n Le déterminant est une application dét: Mat n (K) K défini par récurrence sur n de façon suivante: - Si n = 1, det(a 11 )

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

Applications linéaires - déterminants

Applications linéaires - déterminants Chapitre 4 Applications linéaires - déterminants 1. Applications linéaires Définition 1.1. Soient E et F deux espaces vectoriels sur R. Une application linéaire de E vers F est une application f : E F

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Déterminants. I Le cas de la dimension 2 Construction du déterminant

Déterminants. I Le cas de la dimension 2 Construction du déterminant Université Claude Bernard Lyon I L1 de Mathématiques : Math II Algèbre (cursus PMI) Année 2010 2011 Déterminants Dans tout le chapitre, K désigne un corps On va associer à toute matrice carrée, et même

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Cours de remise à niveau Maths 2ème année. Applications linéaires

Cours de remise à niveau Maths 2ème année. Applications linéaires Cours de remise à niveau Maths 2ème année Applications linéaires C. Maugis-Rabusseau GMM Bureau 116 cathy.maugis@insa-toulouse.fr C. Maugis-Rabusseau (INSA) 1 / 40 Plan 1 Applications linéaires Définitions

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

Résumé de Math Sup : Matrices

Résumé de Math Sup : Matrices Résumé de Math Sup : Matrices I - Opérations dans M n,p (K) Une matrice à n lignes et p colonnes (n et p entiers naturels non nuls) est une application de 1, n 1, p dans K qui à un couple d indices (i,

Plus en détail

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7 Chapitre 2 Calcul matriciel Ensemble des matrices 2 Définitions 2 2 Opérations sur les matrices 3 3 Matrices carrées 7 2 Opérations élémentaires de pivot et calcul matriciel 2 Matrices d opérations élémentaires

Plus en détail

i e ligne et la j e colonne de M. x n p (A) i,k (B) k,j.

i e ligne et la j e colonne de M. x n p (A) i,k (B) k,j. Dans tout ce chapitre désignera ou, n et p deux entiers de On conviendra dans toute la suite, pour toute matrice M de M n,p () et tout couple (i, j) de 1, n 1, p, de noter (M) i,j le terme général de la

Plus en détail

Matrices. 3 Cas particulier des matrices de passage Effets d un changement de bases Matrices équivalentes et matrices semblables...

Matrices. 3 Cas particulier des matrices de passage Effets d un changement de bases Matrices équivalentes et matrices semblables... Dans le cas particulier des espaces vectoriels de dimension finie, nous avons introduit la représentation matricielle d une famille de vecteurs pour déterminer son rang De la même façon, nous verrons comment

Plus en détail

IV Systèmes linéaires, déterminants

IV Systèmes linéaires, déterminants IV Systèmes linéaires, déterminants 1 Systèmes linéaires 1.1 Définition, exemples Définition IV.1 Un système linéaire ayant n inconnues x 1, x 2,..., x n et p équations est une suite d égalités : a 11

Plus en détail

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz Cours d algèbre 2 CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed Département de Mathématiques Filières SMP-SMC (Semèstre 1) Module

Plus en détail

Révisions sur les matrices

Révisions sur les matrices BCPST2 9 5 2 10Révisions sur les matrices I Dénition et structure A) Ensemble des matrices Soient n, p N des entiers xés On appelle matrice à n lignes et p colonnes et à coecients à K la donnée d'une famille

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

Chapitre 1 : Compléments sur les espaces vectoriels, les endomorphismes et les matrices

Chapitre 1 : Compléments sur les espaces vectoriels, les endomorphismes et les matrices Chapitre 1 : Compléments sur les espaces vectoriels, les endomorphismes et les matrices Table des matières 1 Rappels sur les espaces vectoriels 2 11 Définitions d espaces et sous-espaces vectoriels 2 12

Plus en détail

Matrices. Chapitre 7. Sommaire

Matrices. Chapitre 7. Sommaire Chapitre 7 Matrices Sommaire 7.1 Notion de matrice et vocabulaire..................... 109 7.1.1 Définitions.................................. 109 7.1.2 Quelques cas particuliers...........................

Plus en détail

Résumé 02 : Matrices & Déterminants

Résumé 02 : Matrices & Déterminants http://mpbertholletwordpresscom Résumé 02 : Matrices & Déterminants Dans tout ce chapitre, K sera le corps R ou C 1 LES BASES 1 L opérateur L A Toute application linéaire de R p dans R n est l application

Plus en détail

Chapitre 6 Matrices. descend! Table des matières

Chapitre 6 Matrices. descend! Table des matières descend! Chapitre 6 Matrices Version du 25-09-2017 à 06:15 Table des matières 1 Matrices de format n p 2 Structure de K-espace vectoriel sur M n,p (K 3 Produit matriciel 4 Matrices carrées 5 Matrices carrées

Plus en détail

Cours d Algèbre Mathématiques et Outils logiciels Semestre 2

Cours d Algèbre Mathématiques et Outils logiciels Semestre 2 Florent ARNAL Cours d Algèbre Mathématiques et Outils logiciels Semestre 2 Résolution de systèmes par la méthode du pivot de Gauss Matrices & Déterminants Université de Bordeaux Adresse électronique :

Plus en détail

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C.

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C. XIII Matrices 1 Opérations sur les matrices On note K = R ou C Définition 1 On appelle matrice à n lignes et p colonnes à coefficients réels ou complexes un tableau rectangulaire à n lignes et p colonnes

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre : Matrices Notion de matrice et vocabulaire Notation Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

1) Définitions, exemples

1) Définitions, exemples Terminales S 2017 / 18 spécialité maths 1) s, exemples On appelle matrice d ordre n p ou (n ; p) un tableau de nombres réels possédant n lignes et p colonnes. On note la matrice A sous la forme (a ij )

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Rappels sur l algèbre linéaire

Rappels sur l algèbre linéaire Rappels sur l algèbre linéaire Dans tout ce chapitre n et p sont des entiers naturels non nuls et K = R ou C, E un K-espace vectoriel, I un ensemble non vide. I- Espace vectoriel I-1 Définition et exemples

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

18. Applications linéaires

18. Applications linéaires 18. Applications linéaires Ce chapitre s intègre dans le cadre général de l algèbre linéaire. Jusqu à présent, les chapitres d algèbre linéaire précédents doivent donc parfaitement être maitrisés afin

Plus en détail

Chapitre. Calcul matriciel. Sommaire. 1 Notions fondamentales

Chapitre. Calcul matriciel. Sommaire. 1 Notions fondamentales Chapitre Calcul matriciel Les matrices sont les outils de base dans le calcul en plusieurs dimensions Ce chapitre présente l ensemble de leurs propriétés et bien qu il soit axé sur les techniques de calcul,

Plus en détail

VII. Systèmes linéaires - Matrices

VII. Systèmes linéaires - Matrices Systèmes d équations linéaires Définition d un système d équations linéaires Définition On appelle système linéaire de n équations à p inconnues le système d équations : a, u + a,2 u 2 + + a,p u p = v

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Matrices. Définition d une matrice inversible. Inverse du produit. Transposée de l inverse.

Matrices. Définition d une matrice inversible. Inverse du produit. Transposée de l inverse. TD3 Matrices On a toujours K = Q ou R ou C Rappels de cours Définition de M p,q (K) comme K-espace vectoriel Base canonique et dimension de M p,q (K) Définition du produit matriciel : bilinéaire et associatif

Plus en détail

Outils mathématiques pour la géophysique Remise à niveau Algèbre

Outils mathématiques pour la géophysique Remise à niveau Algèbre Outils mathématiques pour la géophysique Remise à niveau Algèbre Table des matières 1 Espaces vectoriels 3 1.1 Espace vectoriel - sous espace vectoriel.................................. 3 1.2 Famille libre

Plus en détail

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C.

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C. CHAPITRE 0 Calcul matriciel Dans tout le chapitre, K désigne le corps R ou C 0 L'ensemble des matrices 0 Dénitions Dénition Soient n, p N On appelle matrice à coecients dans K à n lignes et p colonnes

Plus en détail

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2...

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2... 11 mars 014 Calcul matriciel I IA Matrices : définition, opérations et propriétés Définitions et structure d espace vectoriel Définition 1 (Définition Une matrice de type (n, p est un tableau à n lignes

Plus en détail

MATHEMATIQUES - Module F311

MATHEMATIQUES - Module F311 MATHEMATIQUES - Module F311 Michel Fournié michel.fournie@iut-tlse3.fr ou michel.fournie@math.ups-tlse.fr 1/106 Matrice?? Matrice?? 2/106 Matrice?? Quelles notions faut-il bien comprendre? Une matrice

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

GROUPES, ANNEAUX, CORPS

GROUPES, ANNEAUX, CORPS GROUPES, ANNEAUX, CORPS 1 Notion de loi 1.1 Loi interne Définition 1.1 Loi interne Soit E un ensemble. On appelle loi interne sur E toute application de E E dans E. Notation 1.1 Si est une loi interne

Plus en détail

Corrigé de l examen de Mathématiques (S3) Session de janvier 2007

Corrigé de l examen de Mathématiques (S3) Session de janvier 2007 Université Paris XII Licence Économie-Gestion Corrigé de l examen de Mathématiques S3 Session de janvier 7 Exercice On peut calculer la somme de deux matrices si et seulement si elles sont de même taille.

Plus en détail

Calcul matriciel 1. Calcul matriciel

Calcul matriciel 1. Calcul matriciel Calcul matriciel 1 le 29 Novembre 2008 UTBM MT11 Arthur LANNUZEL http ://mathutbmal.free.fr Calcul matriciel Introduction. A un système linéaire de p équations à n inconnues on associe un tableau avec

Plus en détail

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls.

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Chapitre 4 Matrices I - Notion de matrice et vocabulaire Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

Algèbre Lineaire (II)

Algèbre Lineaire (II) Résumé du cours Algèbre Lineaire (II) Table des matières I Les matrices 1 I1 Ensembles de matrices remarquables 1 I2 L opérateur L A 1 I3 Produit 2 I4 Inversibilité 3 I5 Lignes et colonnes 3 I51 Manipulations

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 2 : Applications linéaires et matrices ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 2 Applications linéaires et matrices 2.1 Applications linéaires...............................

Plus en détail

Chapitre 6 : Matrices

Chapitre 6 : Matrices Chapitre 6 : Matrices Ce chapitre est consacré à l'étude des matrices Nous y introduisons les bases du calcul matriciel : somme, produit, inverse et transposée Table des matières 1 Matrice à n lignes,

Plus en détail

Diagonalisation des endomorphismes

Diagonalisation des endomorphismes FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2 Mathématiques. Mathématiques: ALGEBRE LINEAIRE II Cours Elisabeth REMM Chapitre 1 Diagonalisation des endomorphismes 1. Matrices diagonales et diagonalisables

Plus en détail