09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe"

Transcription

1 UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: Téléfax (1) Tél : M A T H E M A T I Q U E S 09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff 8 Epreuve du 1 er groupe Les calculatrices électroiques o imprimates avec etrées uique par clavier sot autorisées Les calculatrices permettat d afficher des formulaires ou des tracés de courbe sot iterdites Leur utilisatio sera cosidérée comme ue fraude(cfcirculaire /OB/DIR du ) EXERCICE 1 1 Das l espace, o doe deux poits A et B disticts a) Motrer que toute rotatio R de l espace trasformat A e B a so axe (D) iclus das le pla médiateur de [AB] 1 pt b) Réciproquemet, soit (D) ue droite du pla médiateur de [AB] Motrer qu il existe ue rotatio et ue seule d axe (D) trasformat A e B O pourra itroduire le projeté orthogoal K de A sur (D) 1 pt Soit OABC u tétraèdre régulier dot tous les côtés ot la même logueur c est à dire OA = OB = OC = BC = AB = AC a) Motrer qu il existe ue rotatio R 1 et ue seule d axe (OC) trasformat A e B b) Motrer que le projeté orthogoal K de A sur (OC) est le milieu de [OC] 3 E déduire que KA = AB 0,5 + 0,5 = c) Détermier le cosius de l agle de la rotatio R 1 1 pt EXERCICE O rappelle la propriété coue sous le om de petit théorème de Fermat : Si p est u ombre premier et a u etier aturel premier avec p, alors a p 1 1 est divisible par p 1 Prouver à l aide du petit théorème de Fermat, que est divisible par 9 Soiet a et deux etiers aturels o uls Démotrer que (a + 1) 1 [a] E déduire que 4 1 [3] 3 Soiet a et deux etiers aturels o uls Démotrer que (a 1) ( 1) [a] E déduire que [17] et 4 1 [5] 0,5 + 0,5 = 1 pt 0,5 + 0,5 + 0,5 = 1,5 pt 4 A l aide des questios précédetes, détermier 4 diviseurs premiers de PROBLEME Le pla euclidie (P) est mui d u repère orthoormé R = (O, i, j ) 1 1 pt

2 M A T H E M A T I Q U E S /9 Epreuve du 1 er groupe O appelle f a la foctio umérique de la variable réelle x défiie par : f a (x) = x a l, x + 1 où a est u réel o ul O ote C a la courbe représetative de f a das le repère R (uité graphique 1 cm) Partie A: (5, 5 pts ) 1 Détermier l esemble de défiitio D fa de f a puis calculer les limites de f a à ses bores 0,5 + 0,5 = 0,75 pt a) Prouver que toutes les courbes (C a ) passet par u poit fixe I dot o détermiera les coordoées 0, 5 pt b) Démotrer que le poit I est cetre de symétrie de toutes les courbes (C a ) 3 Détermier les asymptotes de (C a ) puis étudier les positios relatives de (C a ) par rapport à so asymptote oblique ( ) 0,5 + 0,5 + 0,5 = 1 pt 4 Vérifier que f a est dérivable das D fa et calculer f a (x) pour tout x D f a 0,5 + 0,5 = 0,75 pt 5 Soit g a le triôme défii pour tout x réel par : g a (x) = x + a 1 a) Résoudre, suivat les valeurs de a l équatio g a (x) = 0 b) Das le cas où l équatio g a (x) = 0 admet deux solutios réelles distictes, o ote x 1 la solutio strictemet positive Détermier e foctio de a le sige de 1 x 1 c) Etudier suivat les valeurs du paramètre réel a strictemet égatif, les variatios de f a 6 Tracer la courbe (C 1 ) das le repère R Les poits d iflexio et d itersectio avec l axe des abscisses e sot pas demadés Partie B: (3 pts ) Soit b u élémet de R \ { 1 } et ϕ b l applicatio du pla das lui-même qui, à tout poit M(x, y) d affixe z associe le poit M (x, y ) d affixe z tel que : z = 1 [ ] (1 b) + (1 + b)i z + 1 [ ] (1 + b) + (1 + b)i z + i(1 + b) où z est le cojugué de z 1 a) Ecrire x et y e foctio de x, y et b b) Démotrer que l esemble des poits ivariats par ϕ b est la droite ( ) d équatio y = x + 1 c) Démotrer que si M est pas u poit de ( ) alors la droite (MM ) est parallèle à ue directio fixe 0, 5 pt d) Soit M 0 le poit de ( ) ayat même abscisse que M Exprimer M 0 M e foctio de M 0 M a) Démotrer que pour tout b R \ { 1 } et tout a R, ϕ b (C a ) = (C ab ) b) E déduire ue costructio géométrique simple de C 3 poit par poit à partir de C 1 das le repère R

3 M A T H E M A T I Q U E S 3 /9 Epreuve du 1 er 3 groupe Partie C: (3, 5 pts ) Soit λ u réel tel que 0 < λ < 1 et A(λ) l aire du domaie délimité par (C a ), (C a+ ) et les droites d équatios x = 0 et x = λ das le repère R 1 e utilisat ue itégratio par parties, calculer A(λ) puis détermier lima(λ) λ 1 0,5 + 0,5 = 1 pt ( O cosidère la foctio h défiie pour tout élémet de [0, 1[ par : h(x) = l 1+ x ) 1 x et la suite (S ) N de terme gééral S = 1 1 ( p h ) a) Détermier le ses de variatio de h sur [0, 1[ puis prouver que pour tout etier aturel p vérifiat : 0 p o a : 1 ( p + 1 ) h p + 1 p p=0 h(x) dx 1 h ( p b) e déduire que : S + 1 ( h 1 1 ) ( A 1 1 ) S ( et A 1 1 ) ( S A 1 1 ) 1 ( h 1 1 ) c) Déduire de 1 que lim S() = l 4 + ) 0,5 + 0,5 = 1 pt 0,5 + 0,5 = 1 pt

4 4M A T H E M A T I Q U E S 4 /9 EXERCICE 3 CORRECTION Epreuve du 1 er groupe 1 a) Si M u poit quelcoque de l axe d ue telle rotatio, alors R(M) = M Comme les rotatios coservet les distaces, le tableau atécédet A M motre que Image B M AM = BM ; ce qui veut dire que M appartiet au pla P médiateur de [A, B] b) Soit (D) ue droite coteue das le pla P et K le projeté orthogoal de A sur (D) Alors la droite (D) est orthogoale aux droites (AK) et (AB); par coséquet elle est perpediculaire au pla (ABK) défii par ces deux droites sécates La rotatio d axe (D) et d agle ( KA, KB) est la seule rotatio d axe (D) trasformat A e B (D) A θ K B P a) Les relatios OA = OB et CA = CB sigifiet que les poits O et C appartieet au pla médiateur du segmet [AB]; doc la droite (OC) est coteue das ce pla médiateur Par coséquet, d après la questio précédete, il existe ue et seule rotatio R 1 d axe (OC) trasformat A e B

5 M A T H E M A T I Q U E S 5 /9 Epreuve du 1 er 5 groupe O K A θ C B b) Puisque le triagle OAC est équilatérale, la hauteur (AK) est aussi la médiae issue de A; doc K est le milieu du segmet [OC] O e déduit KC = OC = a où a désige la logueur de l arête du tétraèdre E appliquat le théorème de Pythagore au triagle AKC rectagle e K o obtiet : AK = AC KC = a a 4 = 3a 4 Doc 3 AK = a c) Das le triagle isocèle AKB de sommet K, désigos par L le projeté orthogoal de K sur la droite (AB) et par θ ue mesure de l agle KA, KB Le poit L est aussi le milieu de [AB] E appliquat le théorème de Pythagore au triagle AKL rectagle e L o obtiet : c est à dire KL = a KL = KA AL == 3a 4 a 4 = a Alors cos θ = KL KA = a a 3 = EXERCICE ; esuite cosθ = cos θ 1 = 3 1 cosθ = E appliquat le petit théorème de Fermat avec p = 9 qui est premier et a = 4, o peut écrire : est divisible par 9 Soiet a, b, c, d, p et des etiers aturels avec p et o uls Alors o a modulo p : a c b d a+b c+d ; a c b d ab cd ; a c a c Autremet dit, o peut additioer membre à membre des cogrueces, les multiplier ou les élever à ue puissace doée 1 Si p est premier, ( Z/pZ \ { 0 } ) ; est u groupe d ordre p 1 et d élémet eutre 1 Alors a Z et premier avec p (doc o multiple de p ou ȧ 0 ), ȧ p 1 = 1 c est à dire a p 1 1 [p]

6 6M A T H E M A T I Q U E S 6 /9 Epreuve du 1 er groupe O peut doc écrire d après ce prélimiaire et pour tous etiers a et o uls : a 0 [a] 1 1 [a] a [a] (a + 1) 1 [a] O obtiet alors la relatio demadée 4 1 [3] e preat a = 3 3 O a aussi, toujours d après ce prélimiaire et pour tous etiers a et o uls : a 0 [a] 1 1 [a] a 1 1 [a] (a 1) ( 1) [a] O e déduit e preat a = 17 que 16 1 [17] c est à dire [17] Et e preat a = 5 que 4 1 [5] 4 O déduit de 4 1 [3] e preat = 8 que [3] c est à dire est divisible 3 O déduit de [17] e preat = 7 que [17] c est à dire est divisible 17 O déduit de 4 1 [5] e preat = 14 que [5] c est à dire est divisible 5 E résumé est divisible par chacu des quatre ombres premiers 3, 5, 17 et 9 PROBLEME Partie A: 1 Soit x u réel x D fa x + 1 existe { x 1 { x 1 x + 1 > 0 x x 1 Doc toutes les foctios f a ot même esemble de défiitio et a R, D fa = R \ { 1, 1 } Lorsque x ted vers + ou, x + 1 ted vers 1 et l x + 1 ted vers 0 Lorsque x ted vers 1, x + 1 ted vers 0 et est > 0; doc l x + 1 ted vers Lorsque x ted vers 1, x + 1 ted vers + ; doc l x + 1 ted vers + Par coséquet : lim f(x) =, lim f(x) = + x x + Si a > 0 : f(x) = lim x 1 lim f(x) = + x 1 Si a < 0 : f(x) = + lim x 1 lim f(x) = x 1 a) Cherchos I 0 (x 0, y 0 ) tel que pour tout a R, I C fa

7 M A T H E M A T I Q U E S 7 /9 Epreuve du 1 er 7 groupe a R, I C fa a R, y 0 = f a (x 0 ) a R, y 0 = x a l x 0 1 x a R, y 0 x 0 1 a 1 l x 0 1 = 0; polyôme e a idetiquemet ul { x y0 x 0 1 = 0 l x 0 1 = 0 { x y0 x 0 1 = 0 x 0 1 = 1 { x y0 x 0 1 = 0 x 0 1 x 0 1 = 1 ou { x x = 1 y0 x 0 1 = 0 { 1 = 1 ou x 0 = 0 x0 = 0 y 0 = 1 Aisi, toutes les courbes passet par le poit I(0, 1) b) Pour que le poit I soit cetre de symétrie de C fa, il faut et il suffit que pour tout x de D fa, le réel x 0 x appartiee à D fa et f a (x 0 x) + f a (x) = y 0 Ici x 0 = 0 et y 0 = 1 Soit x u élémet de D fa c est à dire x est différet de 1 et 1 Alors x 0 x = x est aussi différet de 1 et 1 c est à dire appartiet à D fa De plus f a (x 0 x)+f a (x) = f a ( x)+f a (x) = x+1+ a l x + 1 +x+1+a l x + 1 = = y 0 3 Lorsque x ted vers +, x + 1 ted vers 1 et l x + 1 ted vers 0 Doc e posat ϕ(x) = a l x + 1, o peut écrire : f a (x) (x + 1) = ϕ(x) et lim ϕ(x) = 0 x + Doc pour tout a R, la droite d équatio y = x + 1 est asymptote à C fa aussi bie au voisiage de + qu au voisiage de La positio de la courbe C fa par rapport à déped qu sige de ϕ(x) Or, x D fa, l x + 1 > 0 x + 1 > 1 () > 1 (Car il est légitme d élever au carré) (x + 1) () > (x + 1) 4x > 0 x < 0 Aisi :

8 8M A T H E M A T I Q U E S 8 /9 Si a > 0, Pour x > 0, ϕ(x) < 0 doc C fa(x) est dessous de, Pour x < 0, ϕ(x) > 0 doc C fa(x) est dessus de, Epreuve du 1 er groupe Si a < 0, Pour x > 0, ϕ(x) > 0 doc C fa(x) est dessus de, Pour x < 0, ϕ(x) < 0 doc C fa(x) est dessous de, 4 Désigos par u la foctio défiie sur D fa par u(x) = x + 1 Alors x D fa, f a (x) = x a l u(x) La foctio u est o ul sur D fa, y est dérivable et x D fa, u (x) = La foctio f a est doc dérivable sur D fa et (x + 1) x D fa, f a (x) = 1 + a u (x) u(x) = 1 + a x + 1 (x + 1) x D fa, f a (x) = x + a 1 ()(x + 1) 5 a) Si 1 a est < 0 c est à dire a > 1, l équatio g(x) = 0 a pas de solutio das R Si 1 a est ul c est à dire a = 1, l équatio g(x) = 0 a solutio uique x 0 = 0 Si 1 a est > 0 c est à dire a < 1, l équatio g(x) = 0 a deux solutios opposées x 1 = 1 a et x = 1 a b) E utilisat l expressio cojuguée, o peut écrire : 1 x 1 = 1 1 a = Par coséquet, 1 x 1 et a sot de même sige c) E remarquat que x D fa, f a (x) = g a (x) sige de g a (x)()(x + 1) Puisque a est < 0, g a (x) a deux racies opposées x 1 et x Voici le tableau des siges de f a (x) a a ()(x + 1), o voit que dérivée f a (x) a le x x 1 1 x 1 + g a (x) ()(x + 1) f a(x) Et voici le tableau de variatio de f a

9 M A T H E M A T I Q U E S 9 /9 Epreuve du 1 er 9 groupe x x 1 1 x 1 + f a f a (x ) + + f a f a (x 1 ) M 3 M 1 (C 3) M (C 0 1) 4 3 (C 0 )

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

Devoir de synthèse n 1

Devoir de synthèse n 1 Mathématiques Lycée IBN KHALDOUN - RADES Devoir de sythèse 4 e Maths Mardi 06--0 Durée : heures Prof : ABIDI Farid Exercice :(pts) Répodre par Vrai à Faux et avec justificatio à chacue des trois propositios

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Corrigé du baccalauréat S Liban 3 juin 2010

Corrigé du baccalauréat S Liban 3 juin 2010 Corrigé du baccalauréat S Liba 3 jui 1 Exercice 1. Partie A : Restitutio orgaisée de coaissaces 1) x R, o a d après le pré-requis e preat y x : e x e x e x+x e 1. Ceci état vrai pour tout x, e divisat

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 01 : EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Techique Bamako 1) Démotrer par récurrece que : a) ε N*: 1+ + 3+ + = ( + 1) b) ε N*: 1+ 3+ 5+ + ( 1) = c) ε N*: 1 + 3+ 5 + +

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Chapitre 2 Nombres Complexes Exercices

Chapitre 2 Nombres Complexes Exercices Chapitre Nombres Complexes Exercices I. Ciril, F. De Lepie, F. Duffaud, C. Peschard Exercice 1 Mettre chacu des ombres complexes suivats sous la forme a + ib, a R et b R. 1 i, 1 1 + i i, 1 + i 1 i, + 5i

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

( ) 1 D. PINEL, Site Mathemitec : Terminale S Nouvelle Calédonie, Mars 2009 Sujets de Bac

( ) 1 D. PINEL, Site Mathemitec :  Terminale S Nouvelle Calédonie, Mars 2009 Sujets de Bac zd ( ) = + i D PINEL, Site Mathemitec : http://mathemitecfreefr/idexphp Termiale S Nouvelle Calédoie, Mars 009 Sujets de Bac D PINEL, Site Mathemitec : http://mathemitecfreefr/idexphp Termiale S Nouvelle

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exercice n 3. Soit A et B deux points distincts. Construire, s ils existent, les barycentres des systèmes de points pondérés suivants.

Exercice n 3. Soit A et B deux points distincts. Construire, s ils existent, les barycentres des systèmes de points pondérés suivants. BARYCENTRES EXERCICES CORRIES Exercice. Soit A et B deux poits disticts. Das chacu des cas suivats, justifier que le poit défii par l égalité vectorielle doée est le barycetre d u système de poits podérés

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

B(z B ) A(z A ) Les nombres complexes

B(z B ) A(z A ) Les nombres complexes 1 Les ombres complexes I) Forme algébrique d u ombre complexe. Théorème Il existe u esemble, oté c,de ombres appelés ombres complexes, tel que : ccotiet r ; c est mui d ue additio et d ue multiplicatio

Plus en détail

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n.

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n. Amérique du Nord Mai 1 Série ES Exercice U club de sport propose à ses adhérets deux types d aboemets : l aboemet de type A qui doe accès à toutes les istallatios sportives et l aboemet de type B qui,

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages Devoir de Sthèse ème Maths : M Date : le 0 / 0 / 00 Durée : heures oefficiet : Eseigat : hadhab Lassad Le sujet comorte ages Eercice : oits L esace est mui d u reère orthoormé de ses direct ( A i j k)

Plus en détail

MPSI Nombres complexes

MPSI Nombres complexes MPSI Nombres complexes Exercice 1: Résoudre das C l équatio 4 + 6 3 + 9 2 + 100 = 0 Exercice 2: 1 Motrer que si π 5 = 5 5 2 Détermier l esemble des poits M d affixe tels que = 2 i Exercice 3: Soit ABC

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

SESSION DE JUIN 2017 Durée :4H ****** Coefficient : 4. Corrigé proposé par : FARID ABIDI ****** Lycée Ibn Rachic - Ezzahra

SESSION DE JUIN 2017 Durée :4H ****** Coefficient : 4. Corrigé proposé par : FARID ABIDI ****** Lycée Ibn Rachic - Ezzahra EXAMEN DU BACCALAUREAT Epreuve : MATHEMATIQUES SESSION DE JUIN 07 Durée :4H ****** Coefficiet : 4 Sectio : Mathématiques SESSION DE CONTRÔLE Corrigé proposé par : FARID ABIDI ****** Lycée Ib Rachic - Ezzahra

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

CONCOURS COMMUN 2010

CONCOURS COMMUN 2010 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mathématiques (toutes filières PREMIER PROBLEME Partie I Soit R D et + > D ], [ ], + [ l( + + 3 3 + o(3 et doc f( + 3 3 + o(3

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative Activités metales u est la suite défiie pour tout etier aturel par u = + +. Calculer u 4. u est la suite défiie pour tout etier aturel o ul par u =. Calculer les trois premiers termes de la suite. u est

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2009

Correction du baccalauréat S Pondichéry 16 avril 2009 Correctio du baccalauréat S Podichéry 6 avril 009 EXERCICE 7 poits La foctio f est défiie sur l itervalle [0 ; + [ par : f (x)=xe x. Partie. a. O remarque que, pour tout x> 0, f (x)= x x e. x lim x + x

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Université Claude Bernard - Lyon 1 Semestre de printemps Partie CCP - Devoir numéro 3

Université Claude Bernard - Lyon 1 Semestre de printemps Partie CCP - Devoir numéro 3 Uiversité Claude Berard - Lyo Semestre de pritemps 24-25 Math IV - Cursus préparatoire 2A Durée : heure et 3 miutes Partie CCP - Devoir uméro 3 Le cadidat attachera la plus grade importace à la clarté,

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1 Das l esemble du sujet, et pour chaque questio, toute trace de recherche même icomplète, ou d iitiative même o fructueuse, sera prise e compte das l évaluatio. Exercice ( poits) Commu à tous les cadidats

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail