[ édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que"

Transcription

1 [ édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant A X t Y. b En déduire l existence de λ K tel que A 2 λa. Exercice 2 [ ] [correction] Soit A une matrice carrée de rang. Montrer qu il existe λ K tel que A 2 λa. Exercice 3 [ ] [correction] Soit H M n C une matrice de rang. a Montrer qu il existe des matrices U, V M n, K telles que H U t V. b En déduire H 2 trhh c On suppose trh. Montrer que I n + H est inversible et I n + H I n + trh H d Soient A GL n K telle que trha. Montrer que A + H est inversible et A + H A + trha A HA Exercice 4 [ ] [correction] Soient A M 3,2 R et B M 2,3 R telles que 0 0 AB a Déterminer les rangs de A et B. b Calculer BA en observant AB 2 AB. Exercice 5 [ ] [correction] Soient A M 3,2 R et B M 2,3 R matrices de rang 2 vérifiant AB 2 AB. Montrer BA I 2. Exercice 6 [ ] [correction] Soit A M n R une matrice de rang r. Déterminer la dimension de l espace {B M n R/ABA O n } Exercice 7 [ 0602 ] [correction] Soient A, B M n K. a Justifier qu il existe U, V GL n K tels que UA + BV minn, A + B b On suppose A + B n. Montrer qu il existe U, V GL n K tels que UA + BV GL n R Exercice 8 [ 0334 ] [correction] Soient A, B, C, D M n K. a On note A B M n,2n K la matrice obtenue en accolant les colonnes de B à droite de celles de A. Montrer A B A U M n K, B AU A b On note M C 2n,n K la matrice obtenue en accolant les lignes de C en dessous de celles de A. Montrer A A V M C n K, C V A c En déduire A B A B A U, V M n K, Exercice 9 [ 0070 ] [correction] Soit G un groupe multiplicatif formé d éléments de M n R. Montrer que les éléments de G ont tous le même rang. A AU V A V AU

2 [ édité le 0 juillet 204 Enoncés 2 Exercice 0 [ ] [correction] a Montrer que si C M n R vérifie : X M n R, detc + X det X alors elle est nulle on pourra étudier le rang de C. b Montrer que si A et B de M n R vérifient : alors A B. X M n R, deta + X detb + X

3 [ édité le 0 juillet 204 Corrections 3 Corrections Exercice : [énoncé] a A est équivalente à la matrice J diag, 0,..., 0 donc il existe P, Q GL n K vérifiant A P J Q. Pour C t, 0,..., 0, on a J C t C donc A X t Y avec X P C et Y t QC. b A 2 X t Y X t Y. t Y X est un scalaire λ donc A 2 Xλ t Y λx t Y λa. Exercice 2 : [énoncé] Il existe une colonne X telle que AX 0 et alors ImA VectAX. A 2 X ImA donc il existe λ K tel que A 2 X λax. De plus pour Y ker A, A 2 Y 0 λay. Enfin ker A et VectX sont supplémentaires dans M n, K donc A 2 λa. Exercice 3 : [énoncé] a Soit U une colonne non nulle de l image de H. Pour tout j p, la colonne C j de H peut s écrire C j λ j U avec λ j K. La matrice colonne V t λ... λ n vérifie alors H U t V. b On a alors H 2 U t V U t V avec λ t V U un scalaire donc H 2 λh et c En développant I n + H I n λ t V U tr t V U tr U t V trh + trh H I n + H + trh H + trh H2 I n Par le théorème d inversibilité des matrices, on obtient I n + H est inversible et I n + H I n + trh H d On a HA H car on ne modifie pas le rang en multipliant par une matrice inversible. On en déduit que I n + HA est inversible et In + HA In + trha HA En multipliant par la matrice inversible A, on obtient A + H I n + HA A inversible et A + H A I n + HA A n + trha A HA Exercice 4 : [énoncé] a On a donc AB 2 mina, B 2 A B 2 b On a ABAB AB donc ABA I 2 B O 3. On en déduit Im BA I 2 B ker A {0} donc BA I 2 B O 2,3. Par suite ImB kerba I 2 or B est surjective donc BA I 2 O 2 puis BA I 2 Exercice 5 : [énoncé] On a ABA I 2 B 0. Or puisque A est de rang 2, ker A {0} et donc BA I 2 B 0. De plus, puisque B est de rang 2, ImB M 2 R et donc BA I 2 0. Exercice 6 : [énoncé] La matrice est équivalente à la matrice J r I r O r,n r O n r,r O n r et donc il existe des matrices P, Q inversibles vérifiant A QJ r P. Par suite ABA O n J r P BQJ r O n. Via l isomorphisme B P BQ, l espace {B M n R/ABA O n } est isomorphe à {M M n R/J r MJ r O n }. En écrivant la matrice M par blocs, on vérifie que les matrices M vérifiant Or J r MJ r O n sont les matrices de la forme dim {B M n R/ABA O n } n 2 r 2.. On en déduit Exercice 7 : [énoncé] a Posons r A et s B. Les matrices A et B sont respectivement équivalentes aux matrices J r Ir O r,n r O n r,t O n r et J s Il existe donc P, Q, R, S GL n R telles que et alors P AQ J r et RBS J s P AQ + RBS J r + J s On s O n s,s O s,n s I s

4 [ édité le 0 juillet 204 Corrections 4 qui est une matrice de rang minn, r + s. On peut aussi écrire En raisonnant comme en b, il existe une matrice V M n K telle que V A V B R P A + BSQ R J r + J sq et en posant U R P et V SQ, on obtient U, V GL n R telles que UA + BV minn, r + s b Si r + s n alors minn, r + s n et ce qui précède conduit à une matrice inversible. On en déduit A B Inversement, supposons A AU V A V AU A B A AU V A V AU Exercice 8 : [énoncé] a Supposons A B A r. Rappelons que le rang d une matrice est le rang de la famille de ses colonnes. Puisque A r, la matrice A possède r colonnes indépendantes. Puisque A B r, les colonnes de A B sont toutes combinaisons linéaires des colonnes précédentes. En particulier les colonnes de B sont combinaisons linéaires des colonnes de A. Ceci permet de former U M n K vérifiant B AU. Supposons B AU. Les colonnes de B sont combinaisons linéaires des colonnes de A et donc par opérations sur les colonnes A B A O n A b Il suffit de transposer le raisonnement qui précède en raisonnant sur les lignes et en exploitant que le rang d une matrice est aussi le rang de la famille des ses lignes. c Supposons A B A Puisque on a A A A A B A B B A B et En vertu de a il existe une matrice U M n K telle que B AU A A B Les n dernières lignes étant combinaisons linéaires des n premières, on a A B A AU A AU puis A B O n O n A AU A O n O n Exercice 9 : [énoncé] Commençons par noter que le neutre multiplicatif de G n est pas nécessairement I n. Par exemple, G {O n } est un groupe multiplicatif formé d éléments de M n R. Notons J le neutre du groupe G. Soit A G. D une part AJ A donc A AJ J. D autre part, il existe B M n R tel que AB J donc J AB A. Finalement A G, A J. Exercice 0 : [énoncé] a Posons r C. On peut écrire C QJ r P avec P, Q inversibles et Ir 0 J r 0 O n r Posons alors X QJ rp avec J r Or 0 0 I n r Puisque A + X QI n P QP, la matrice A + X est inversible et donc det X deta + X 0.

5 [ édité le 0 juillet 204 Corrections 5 On en déduit que la matrice J r est l identité et donc r 0 puis A O n. b Quand X parcourt M n R alors Y B + X parcourt M n R et en posant C A B, on obtient Ce qui précède permet alors de conclure. Y M n R, detc + Y det Y

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Matrices et déterminants

Matrices et déterminants [http://mpcpgedupuydelomefr] édité le 0 juillet 204 Enoncés Matrices et déterminants Généralités sur les matrices Exercice [ 00702 ] [correction] Résoudre l équation X 2 = A où A = 0 0 4 2 0 0 6 Exercice

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1 Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015 Test 1 Exercice 1. (1) Donner la liste des sous-groupes de Z/24Z. Justifier. (2) Est-ce que Z/24Z a un sous-groupe

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A MAT702 A - SOLUTIONS DU TEST #2 - VERSION A. (5 points) Étant donné A 3 et B. 0 Pour chacune des opérations matricielles ci-dessous, calculez la matrice résultante si elle existe. Si l opération n est

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. d) Soient A vérifiant (P ) et B une matrice de même rang que A ; montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. d) Soient A vérifiant (P ) et B une matrice de même rang que A ; montrer [http://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Exercice [ 02598 ] [Correction] Soient A et B deux matrices réelles carrées d ordre n telles qu il existe un polynôme P R [X] de degré au

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Crochet de Lie Exercice 1 [ 00775 ] [Correction] Soient A, B M n (R) vérifiant AB BA = A. (a) Calculer A k B BA k pour k N. (b) À quelle

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 Réduction Sous-espaces stables Exercice 1 [ 00755 ] [Correction] Soient u et v deux endomorphismes d un K-espace vectoriel E. On suppose

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3.

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3. Algèbre 2 - L1 MIASHS/Lettres-Maths AMIRI Aboubacar UFR MIME, Université Lille 3. 10 avril 2015. Université Lille 3 1 Définitions et notations Quelques matrices particulières Matrice d une famille sur

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées.

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées. 0 0 3 3 EXERCICE Soit les matrices A = et B = 2 3 0 0. Calculer le déterminant de A. En déduire le rang de cette matrice. 0 0 0 Dét(A) = dét = dét 0 0 car (propriété P ) le déterminant d une matrice ne

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1 Questions de cours 3 Exercices 1. Énoncer et montrer le théorème de la base incomplète. 2. Soit E de dimension finie n et F un sousespace de E. Montrer que F est

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Matrices Définition.. Une matrice réelle (ou complexe) M = (m i,j ) (m, n) à m lignes et n colonnes est un tableau à m lignes et n colonnes de réels (ou de complexes). Le coefficient

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

À propos des transvections

À propos des transvections À propos des transvections Antoine Ducros Préparation à l agrégation de mathématiques 1 Les transvections : aspect matriciel On fixe pour toute la suite du texte un corps commutatif k. (1.1) Définition.

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

TD 1 - Mise en bouche - Feuille d exercice 0.

TD 1 - Mise en bouche - Feuille d exercice 0. Université Claude Bernard Lyon 1 Licence Sciences & Technologies 43, boulevard du 11 novembre 1918 Spécialité : Mathématiques 69622 Villeurbanne cedex, France UE : Analyse III Automne 2011 Groupe B Enseignant

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Déterminants Définition Déterminant d une matrice On définit par récurrence le déterminant, noté det(a),

Plus en détail

Compléments d algèbre linéaire

Compléments d algèbre linéaire Chapitre Compléments d algèbre linéaire Le physicien et mathématicien anglais John William Strutt, baron de Rayleigh, élabore une théorie mathématique de l optique et des systèmes vibratoires. Par la suite

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

1 Espaces vectoriels, compléments

1 Espaces vectoriels, compléments CHAPITRE 1 Espaces vectoriels, compléments Sommaire 1 Somme directe... 3 1.1 Somme... 3 1.2 Somme directe... 3 1.3 Supplémentaire... 4 1.4 Cas de la dimension finie... 4 2 Décomposition de E en somme directe...

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Exercice 6 [ ] [Correction] Soit A GL n (R) vérifiant. Pour k N, calculer A k + A k.

Exercice 6 [ ] [Correction] Soit A GL n (R) vérifiant. Pour k N, calculer A k + A k. [http://mpcpgedupuydelomefr] édité le 28 décembre 2016 Enoncés 1 Calcul matriciel Opérations sur les matrices Exercice 1 [ 01247 ] [Correction] Pour A M n (K), on note σ (A) la somme des termes de A On

Plus en détail

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2...

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2... 11 mars 014 Calcul matriciel I IA Matrices : définition, opérations et propriétés Définitions et structure d espace vectoriel Définition 1 (Définition Une matrice de type (n, p est un tableau à n lignes

Plus en détail

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C.

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C. CHAPITRE 0 Calcul matriciel Dans tout le chapitre, K désigne le corps R ou C 0 L'ensemble des matrices 0 Dénitions Dénition Soient n, p N On appelle matrice à coecients dans K à n lignes et p colonnes

Plus en détail

Résumé 02 : Matrices & Déterminants

Résumé 02 : Matrices & Déterminants http://mpbertholletwordpresscom Résumé 02 : Matrices & Déterminants Dans tout ce chapitre, K sera le corps R ou C 1 LES BASES 1 L opérateur L A Toute application linéaire de R p dans R n est l application

Plus en détail

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 30 janvier 2011 Matrices (p. 107) Définition

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Ouverts et fermés Exercice 1 [ 113 ] [correction] Montrer que tout fermé peut s écrire comme intersection d une suite décroissante d ouverts.

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

Bref, c'est difficile, mais tout le monde doit y arriver.

Bref, c'est difficile, mais tout le monde doit y arriver. Bonjour à tous, les colles de mardi m'ont permis de vérifier que les notions de base du chapitre espaces vectoriels sont loin d'être acquises. Comme je vous le disais, il est essentiel d'apprendre régulièrement

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Déterminants. Chapitre 23. Objectifs. Plan

Déterminants. Chapitre 23. Objectifs. Plan Chapitre 23 Déterminants Objectifs Étudier le groupe des permutations de [[1n]] Définir les notions : de cycles, de transpositions, de décomposition en produit de cylces, de signature Définir les notions

Plus en détail

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I TD - Chapitres 19 et 0 - ALGÈBRE LINÉAIRE PROBLÈME 1 : Une équation matricielle Extrait sujet «Petites Mines» 010 Le but de ce problème est d étudier différentes matrices qui commutent avec leur transposée,

Plus en détail

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle Algèbre linéaire pour GM Jeudi novembre Prof A Abdulle EPFL Série 6 Corrigé Exercice a Calculer la décomposition LU de la matrice A = 9 6 6 On effectue la réduction de la matrice A jusqu à obtenir une

Plus en détail