Lois normales, cours, terminale S

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Lois normales, cours, terminale S"

Transcription

1 Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1

2 1 Variables centrées et réduites Propriété et dénition : Soit X une variable aléatoire discrète d'espérance E(X) = m, de variance V (X) et d'écart type σ(x) = V (X). Alors : La variable aléatoire X m a une espérance nulle : elle est dite centrée ; la variable aléatoire Z = X m a une espérance nulle et un écart type σ égal à 1 : elle est dite centrée et réduite. On a E(X m) = E(X) m par linéarité de l'espérance mathématique d'où E(X m) = E(X) m = m m = 0 d'où l'espérance nulle. On a en outre, E( X m ) = 1 E(X m) = 0 σ σ Par ailleurs, V (X m) = V (X) et V ( X m ) = 1 V (X) = σ2 = 1. σ σ 2 σ 2 Soient n un entier naturel et p un réel de ]0; 1[.Soit X n une variable aléatoire suivant la loi binomiale B(n; p). Alors la variable aléatoire Z n dénie par Z n = Xn np a pour espérance 0 et pour écart type 1. La variable aléatoire Z n est donc la variable centrée réduite associée à la variable X n. preuve : On a X n B(n; p) donc on sait que E(X n ) = np et σ(x n ) = np(1 p). E(Z n ) = E( Xn np ) = E(X n) np par linéarité de l'espérance mathématique. E(Z n ) = np np = 0. En outre, V (Z n ) = 1 V (X n np) car V (ax) = a 2 V (X) et V (Z n ) = 1 V (Z n) car V (X +b) = V (X). V (Z n ) = 1 np(1 p) = 1. 2 Loi normale centrée et réduite Théorème de De Moivre-Laplace : On considère une suite de variables aléatoires (X n ) suivant une loi binomiale B(n; p). Soit Z n = Xn np. Alors pour tous les réels a et b tels que a < b, on a lim n + P (a Z n b) = b 1 a 2 dx, c'est à dire que lorsque n devient grand Z n suit approximativement une loi de densité 1 e t2 2. admis http: // mathsfg. net. free. fr 2

3 Dénition : Une variable aléatoire X suit la loi normale centrée réduite notée N (0; 1) si sa densité f est dénie sur R par f(x) = 1 2 c'est à dire si pour tout réel x on a : P (X x) = x f(x)dx Propriétés : f est continue sur R ; l'aire totale sous la courbe de f est égale à 1 ; f est paire donc sa courbe représentative est symétrique par rapport à l'axe des ordonnées ; P (X 0) = 1 2 c'est à dire que l'aire sous la courbe de [0; + [ est 1 2 ; Pour tout réel x, P (X x) = P (X x) = 1 P (X x). Pour tout réel x positif, P ( x X x) = 2P (X x) 1 x 1 2 est dérivable sur R donc continue sur R. admis f( x) = f(x) pour tout réel x ] ; [. Conséquence de la parité. P ( x X X) = P (X x) P (X x) = P (X x) P (X x) = P (X x) (1 P (X x)) = 2P (X x) 1. Exemple : Soit X N (0; 1). Calcul de P (X 1, 5) : on a P (X 1, 5) = 1 P (X 1, 5)1. Mais les calculatrices ne permettent de calculer que P (a X b). On remarque donc que 1 P (X 1, 5) = 1 (P (X 0) + P (0 X 1, 5)) = 1 0, 5 P (0 X 1, 5) 0, 0668 Calcul de P (X < 1, 5) : on peut remarquer que P (X < 1, 5) = P (X > 1, 5) par symétrie, ce qui nous ramène au calcul précédent ou on peut écrire P (X < 1, 5) = P (X < 0) P ( 1, 5 X 0) = 0, 5 P ( 1, 5 X 0) ce qui permet d'utiliser une calculatrice. Si X est une variable aléatoire qui suit la loi normale N (0; 1), alors pour tout α ]0; 1[, il existe un unique réel positif u α tel que P ( u α X u α ) = 1 α. http: // mathsfg. net. free. fr 3

4 Preuve : D'après la symétrie de la courbe, on a pour tout réel x positif, P ( x X x) = 2P (0 X x) = 2 x 0 f(u)du. On pose pour tout réel x positif, H(x) = 2 x f(u)du. H est continue sur R. H est aussi 0 strictement croissante sur ]0; + [. On a lim x + H(x) = 1 et H(0) = 0. Pour tout réel α ]0; 1[ on a 1 α ]0; 1[ et d'après le théorème des valeurs intermédiaires, il existe un unique réel u α strictement positif tel que H(u α ) = 1 α. Remarque : En particulier on a u 0,05 1, 96 et u 0,01 2, 58 c'est à dire P ( 1, 96 X 1, 96) 0, 95 et P ( 2, 58 X 2, 58) 0, 99 ce qui signie qu'environ 95% des rélaisations se trouvent dans l'intervalle [ 1, 96, 1, 96] et 99% se trouvent dans l'intervalle [ 2, 58; 2, 58]. Exemple : X N (0; 1). On recherche a réel tel que P ( a X a) = 0, 99. On exprime P ( a X a) à l'aide de P (X a) pour pouvoir utiliser une calculatrice. P ( a X a) = P (X a) P (X < a) = P (X a) (1 P (X a)) donc P ( a X a) = P (X a) 1+P (X a) = P (X a) 1+P (X a) = 2P (X a) 1. Avec une calculatrice, on cherche a tel que 2P (X a) 1 = 0, 99 c'est à dire tel que P (X a) = 1,99 2. On obtient bien a 2, 58. Si X N (0; 1) alors E(X) = 0 et σ(x) = 1. Admis 3 Loi normale N (µ, σ 2 ) Dénition : Soient µ et σ deux réels avec σ > 0. Une variable aléatoire X suit la loi normale N (µ; σ 2 ) si la variable aléatoire T = X µ suit la loi normale σ N (0; 1). Remarque : La densité de probabilité d'une variable aléatoire qui suit N (µ; σ 2 ) est représentée par une courbe en cloche dont l'axe de symétrie est la droite d'équation x = µ. Si X suit la loi N (µ; σ 2 ) alors son espérance est µ, sa variance est σ 2 et son écart type est σ. Immédiat par changement de variable http: // mathsfg. net. free. fr 4

5 Si X est une variable aléatoire suivant la loi normale N (µ; σ 2 ) alors : P (µ σ X µ + σ) 0, 68 P (µ 2σ X µ + 2σ) 0, 95 P (µ 3σ X µ + 3σ) 0, 997 http: // mathsfg. net. free. fr 5

Lois normales, cours, terminale S

Lois normales, cours, terminale S Lois normales, cours, terminale S F.Gaudon 27 avril 2017 Table des matières 1 Loi normale centrée et réduite 2 2 Variables centrées et réduites 5 3 Loi normale N (µ, σ 2 ) 6 1 1 Loi normale centrée et

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Fonction logarithme népérien, cours de Terminale STI

Fonction logarithme népérien, cours de Terminale STI Fonction logarithme népérien, cours de Terminale STI F.Gaudon 5 juillet 010 Table des matières 1 Construction de la fonction logarithme népérien Propriétés analytiques.1 Étude de la fonction.......................................

Plus en détail

Loi normale. I) Loi Normale N(0 ; 1) 1) Définition. 2) Théorème 1

Loi normale. I) Loi Normale N(0 ; 1) 1) Définition. 2) Théorème 1 Loi normale I) Loi Normale N(0 ; 1) 1) Définition Soit X une variable aléatoire à valeurs réelles. On dit qu elle suit la loi normale centrée réduite N(0 ; 1) si elle admet pour densité la fonction ϕ définie

Plus en détail

Lois de probabilité 3/3. Anita Burgun

Lois de probabilité 3/3. Anita Burgun Lois de probabilité 3/3 Anita Burgun Contenu des cours Loi binomiale Loi hypergéométrique Loi de Poisson Loi normale Loi du Chi2 Loi de Student Loi normale VA continue X Densité de probabilité de X" Loi

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

LOI NORMALE. 1. Du discret au continu. 2. Loi normale centrée réduite. x e

LOI NORMALE. 1. Du discret au continu. 2. Loi normale centrée réduite. x e LOI NORMAL Cours Terminale S 1 Du discret au continu Lorsqu on étudie la loi binomiale sur un grand nombre d expériences ( n 50 par exemple) à condition que la probabilité de succès sur une expérience

Plus en détail

Compléments sur la dérivation et continuité, cours, terminale S

Compléments sur la dérivation et continuité, cours, terminale S Compléments sur la dérivation et continuité, cours, terminale S F.Gaudon er septembre 206 Table des matières Fonction dérivée, tangente 2 2 Dérivation de fonctions 3 2. Fonctions dérivées usuelles (rappel)..............................

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Exercices corrigés de SQ20

Exercices corrigés de SQ20 1 Exercices corrigés de SQ2 Corrigés TD 1 à 4 Printemps 215 responsable de l'uv : André Turbergue SQ2 TD1 : espaces probabilisés TD1 : espaces probabilisés 1 Énoncés Exercice 1. Calculer si possible une

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Cours N 4 : La loi Normale

Cours N 4 : La loi Normale I. Définition Cours N 4 : La loi Normale La loi normale, ou loi de Laplace-Gauss, ou loi de Gauss, de paramètre σ et µ,est définie sur R par la densité de probabilité suivante : Avec : f x = 1 σ 2π exp[

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Chapitre XII Loi Normale

Chapitre XII Loi Normale Chapitre XII Loi Normale Etrait du programme : I Loi normale centrée réduite Définition et représentation graphique L observation de représentations graphiques de certaines lois binomiales conduit à une

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Limites de fonctions, cours, terminale STI

Limites de fonctions, cours, terminale STI Limites de fonctions, cours, terminale STI F.Gaudon 7 octobre 2 Table des matières Limites nies à l'inni 2 2 Limites innies à l'inni 3 3 Opérations sur les limites à l'inni 5 3. Addition.............................................

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Lois normales. P( Z u ) = P ( Z u ) P( Z u ) = 1 P( Z < u )

Lois normales. P( Z u ) = P ( Z u ) P( Z u ) = 1 P( Z < u ) Lois normales La loi de probabilité la plus utilisée en statistique est la loi normale, encore appelée loi de Gauss ou de Laplace_Gauss. C'est une distribution théorique qui ne se rencontre jamais exactement

Plus en détail

Fonctions exponentielles, cours, terminale S

Fonctions exponentielles, cours, terminale S Fonctions exponentielles, cours, terminale S F.Gaudon 27 juin 203 Table des matières Dénitions et propriétés algébriques 2 2 Étude de la fonction 3 2. Dérivabilité...........................................

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

Probabilités continues et lois à densité Ce que dit le programme :

Probabilités continues et lois à densité Ce que dit le programme : Chapitre 08 Probabilités continues et lois à densité Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Terminale ES Notion de loi à densité à partir d exemples Loi à densité sur un intervalle.

Plus en détail

Cours de terminale S Probabilités : lois à densité

Cours de terminale S Probabilités : lois à densité Cours de terminale S Probabilités : lois à densité V. B. et S. B. Lycée des EK Considérons une variable aléatoire susceptible de prendre n importe quelle valeur réelle appartenant à un intervalle donné.

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Loi normale centrée réduite

Loi normale centrée réduite Loi normale centrée réduite Vallon 17 avril 2017 Vallon Loi normale centrée réduite 17 avril 2017 1 / 14 Table : 1 Jacob Bernouilli et la loi faible des grands nombres 2 De Moivre et la loi normale centrée

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Fonctions exponentielles, cours, terminale S

Fonctions exponentielles, cours, terminale S Fonctions exponentielles, cours, terminale S F.Gaudon 2 novembre 202 Table des matières Dénitions et propriétés algébriques 2 2 Étude de la fonction 3 2. Dérivabilité...........................................

Plus en détail

Variables aléatoires continues et loi normale

Variables aléatoires continues et loi normale Variables aléatoires continues et loi normale H. Hocquard HSE 2016-2017 Hervé Hocquard Variables aléatoires continues et loi normale 1/35 Variable alétoire continue Définition Une variable aléatoire est

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

démonstrations exigibles au baccalauréat

démonstrations exigibles au baccalauréat démonstrations exigibles au baccalauréat fonction exponentielle (1/2) propriété : Il existe une unique fonction dérivable sur telle que ' = et (0) = 1 1 L'existence de la fonction est admise conformément

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probabilité à densité 1 Variable aléatoire à densité Variable aléatoire discrète et continue En Première, on a défini les variables aléatoires discrètes Ce sont des fonctions définies sur l univers

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Limites de fonctions, cours, terminale S

Limites de fonctions, cours, terminale S Limites de fonctions, cours, terminale S F.Gaudon 23 février 204 Table des matières Limites nies à l'inni 2 2 Limites innies à l'inni 2 3 Limites en un réel 3 4 Opérations sur les limites 4 4. Addition,

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Correction du TP4. column 1 to 17. column 18 to 34. column 35 to 51. column 52 to 68. column 69 to 85. column 86 to 100. U i ]. i=1.

Correction du TP4. column 1 to 17. column 18 to 34. column 35 to 51. column 52 to 68. column 69 to 85. column 86 to 100. U i ]. i=1. Exercice 1. 1. U=grand(1,10000,'uin',-2,5) disp(u(1:100), "U=") On obtient par exemple : U= column 1 to 17-1. 2. 3. 0. 5. 3. - 1. 0. 4. - 2. 5. 3. - 1. 2. 0. - 1. 3. column 18 to 34-2. - 1. 3. 1. 5. 5.

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Suites numériques, cours, classe de terminale STG. 1 Suites arithmétiques. 1.1 Propriétés des suites arithmétiques

Suites numériques, cours, classe de terminale STG. 1 Suites arithmétiques. 1.1 Propriétés des suites arithmétiques Suites numériques, cours, classe de terminale STG 1 Suites arithmétiques 1.1 Propriétés des suites arithmétiques Dénition : Soit r un nombre réel. On appelle suite arithmétique de raison r toute suite

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Chapitre 13 : Lois normales et échantillonnage

Chapitre 13 : Lois normales et échantillonnage I. Loi normale centrée réduite 1 Activité d introduction : approximation de la loi binomiale 2 Théorème de Moivre-Laplace Soit X n une variable aléatoire suivant la loi binomiale B(n, p) : X n compte les

Plus en détail

1. Espaces probabilisés dénombrables

1. Espaces probabilisés dénombrables Probabilités sur un univers dénombrable 12-1 Sommaire 1. Espaces probabilisés dénombrables 1 1.1. Ensemble dénombrables......... 1 1.2. Suite infinie d événements........ 1 1.3. Probabilité sur un univers

Plus en détail

De la loi binomiale à la loi normale

De la loi binomiale à la loi normale ) De B (n, p) à N (m, v) De la loi binomiale à la loi normale.a] Premier exemple : de B (6 ; ) à N (8 ; 4) Soit Y suivant la loi binomiale B(6 ; ) de paramètres n = 6 et p =. Espérance m = n p = 8, variance

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Espérance, variance ; loi faible des grands nombres

Espérance, variance ; loi faible des grands nombres 49 Espérance, variance ; loi faible des grands nombres Pour ce chapitre, (Ω, B, P) est un espace probabilisé et X une variable aléatoire à valeurs réelles positives (i. e. une application de Ω dans R +

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Taux d'évolution, cours de Terminale STG

Taux d'évolution, cours de Terminale STG Taux d'évolution, cours de Terminale STG F.Gaudon 7 novembre 2007 Table des matières Évolutions 2 2 Évolutions successives 3 2. Taux global............................ 3 2.2 Taux moyen............................

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Probabilités 6 : Loi normale N (μ ; σ 2 )

Probabilités 6 : Loi normale N (μ ; σ 2 ) Probabilités 6 : Loi normale N (μ ; 2 ) «I» : Définition Soit μ un nombre réel et un réel strictement positif, o n dit qu'une variable aléatoire X suit la loi normale N (μ ; 2 ), lorsque la variable aléatoire

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Fiche 10 : Probabilités

Fiche 10 : Probabilités Nº : 3 MTHEMTIQUES Fiche : Probabilités Calculer une probabilité simple Exercice 5 Le nombre de cas possibles est le nombre de façons de choisir deux objets parmi 5, c est-à-dire 75. Le nombre de cas favorables

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Variables continues usuelles

Variables continues usuelles Variables continues usuelles I) Variables uniformes 1.1 Densités Nous avons déjà rencontré ce type de variables. Définition 1 On dit que la variable suit une loi uniforme continue sur 0,1 si sa fonction

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

Antilles Guyane Juin 2013

Antilles Guyane Juin 2013 Juin 0 / 5 Exercice. Les plans (AEC) et (IEC) sont confondus. J n appartient pas à (AEC). Réponse b.. = ( ). ( ) = ( ). ( ) =. + +. +. = ² = Réponse c. ( ;0 ;) (0 ; ;) sont vecteurs non colinéaires. Ce

Plus en détail