NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011

Dimension: px
Commencer à balayer dès la page:

Download "NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011"

Transcription

1 NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 Utiles pour réaliser r des tirages et simuler des phénom nomènes nes aléatoires atoires Nombres aléatoires: atoires: suite de réalisations r indépendantes d une d variable uniforme sur [0;1] Peuvent être obtenus par des procédés s physiques: roues de loterie, éclairage à intervalles irréguliers d'un disque divisé en 10 secteurs isométriques et numérot rotés s de 0 à 9 : table de Kendall et Babington Smith 1

2 Nombres pseudo aléatoires Procédés s déterministes d mais fournissant une suite de nombres en apparence iid sur [0; 1] Suites mathématiques matiques décimales de π,, des tables de logarithmes Procédés s arithmétiques tiques Milieu du carré de Von Neumann (1946) 2

3 On part d'un nombre entier On l él élève au carré On extrait les chiffres du centre comme nombres aléatoires. atoires. Exemple : x 0 = 7534 (7534) 2 = (7611) 2 = (9273) 2 = (9885) 2 = d'où la suite Inconvénients nients majeurs : dépendance d au nombre de départ d et régularités s nombreuses (permanence de 0 ou de séries s particulières). res). 3

4 Méthodes de congruence Elles reposent sur des suites récurrentes : choix arbitraire d un entier x 0 appelé germe (ou seed ou graine) génération d une séquence (x 1,..., x n ) d entiers : X i+1 =a x i +b (modulo m) pour i = 1,..., n, où a, b et m sont des entiers appelés respectivement multiplicateur, incrément et modulo. On vérifie : 0< x i < m pour i 1,..., n. Intérêt : les nombres u 1...,u n où forment un échantillon pseudo-aléatoire de la loi uniforme sur [0,1] si les entiers a, b et m sont «bien» choisis. u = Intuition de l horloge : les heures 9h et 21 sont Congrues modulo 12 x i m 4

5 Le procédé étant déterministe, ces nombres sont dits pseudo-aléatoires. Exemple : x 0 = 1 ; a = 6 ; b = 0 ; m = 25 x 0 = 1 x 1 = 6 [25] = 6 x 2 = 36[25] =11 x 3 = 66[25] = 16 x 4 = 21 x 5 = 1 = x 0 Ce cycle a pour longueur 5. Remarque : La séquence x i i=1,...,n contient au plus m termes distincts. Cette suite est donc périodique de période p avec p m Si p = m, la période est dite pleine. 5

6 Choix des entiers a, b et m : Ils sont déterminés de telle sorte que la séquence ait les meilleures propriétés possibles. En particulier, m est pris aussi grand que possible pour assurer une grande variété de valeurs dans la suite xi Hull et Dobell (1962) ont montré que les séquences de période pleine sont obtenues si et seulement si : b et m sont premiers entre eux, (a-1) est un multiple de chaque nombre premier qui divise m si m est un multiple de 4 alors (a-1) aussi Un algorithme très usité est la méthode congruentielle de Lehmer (1948) qui pose b = 0. 6

7 Méthode de Lehmer : =ax i (m) x i+1 =ax (Sur machines 32 bits m aussi grand que possible m=2 31-1) choix classiques: a=7 5 =16807 m= a= =65539 m= a= m= Remarque : a= =65539 m= : RANDU (introduit dans les années 1960, sur des machines IBM. Il est très impopulaire car il possède de nombreux biais auxquels ont dûd faire face les personnes qui l'ont utilisé). 7

8 RANDU a= =65539 m= m = m²=6m-9 9 mod 2 31 Pb : trois nombres successifs X n X n + 1 et X n + 2 vérifient toujours la relation X n + 2= 2 = 6 6X n X n Cette relation donne un caractère re prédictif à la série s pseaudo aléatoire: atoire: par exemple, une modification des valeurs de X n et X n + 1 de l'ordre de 0,01, change la valeur de X n + 2 d'au plus 0,15. Pour avoir un "bon" générateur, g on souhaite une relation avec des coefficients beaucoup plus grands, de telle manière qu'une petite modification de X n et X n + 1 change complètement X n + 2 8

9 9

10 Solutions variées: congruences avec retard x i =a x i -r +b [m] Exemple: r i+1 =( r i ) m = 2 32 (Numerical Recipes in C ) Nombreux tests pour valider le caractère uniforme et l indépendance des réalisations Chi-deux, Kolmogorov, tests de séquences, de non corrélation 10

11 estimation de π sop.inria.fr/mefisto/java/tutorial1/node15.html#section

12 Calcul d intégrales: méthode de Monte Carlo Première méthodem : on simule n valeurs de U 1 I = g() tdt= Eg ( ( U )) 0 n ˆ 1 I = g( ui ) n i = 1 Deuxième méthode: m fonction d importanced T variable sur [0 ;1] de densité p(t) n 1 g() t g( T ) () Iˆ 0 n i= 1 I = p t dt = E p() t p( T) = 1 g( t ) i p( t ) i 12

13 Générateurs pseudo-aléatoires cryptographiques Doivent être capable de produire des séries s dont le caractère re pseudo aléatoire atoire est moins discernable pour mériter ce titre Mais plus lents Un générateur g rateur congruenciel rapide et possédant de bonnes propriétés s : Mersenne Twister (1997) Mais n est n pas considéré comme générateur g cryptographique Utilisé dans SPSS à partir de la version 12 13

14 ALGORITHMES DE TIRAGE Qualités s souhaitées: Sans remise Séquentiel Rapide Respecte les probabilités s d inclusiond De taille fixe Utilisable si N est inconnu Etc. 14

15 Une méthode inefficace : énumération puis sélection (Yves Tillé, Sampling Algorithms p 31) Si le plan de sondage est connu, et que la population n est n par trop large, une méthode m pour sélectionner s un échantillon est l approche l énumérative : énumérer tous les échantillons possibles, puis en sélectionner 1 au hasard. méthode pure et simple conceptuellement mais impossible dès d s que la population dépasse d quelques dizaines L objectif des algorithmes de tirage est de tirer un échantillon en respectant le plan de sondage et en évitant une énumération complète au préalable 15

16 Classes de méthodes (Yves Tillé pp 32 39) Martingales Algorithmes séquentielss Sélection pas à pas Par élimination Sondages réjectifsr 16

17 Notion d entropie On montre aisément que I(p) est toujours positif. Plus l entropie l est élevée, e, plus le plan de sondage est en un certain cas aléatoire atoire A A défaut d d information d auxiliaire, on peut chercher le plan le plus aléatoire atoire (au sens de l entropie) l qui vérifie v les probabilités s d inclusion d fixées 17

18 Plans à probabilités égales sans remise 18

19 Plans à probabilités égales sans remise Tirage de Bernoulli: on tire N nombres aléatoires. atoires. L unitl unité i est retenue si U i <π. 19

20 Tirage de Bernoulli 20

21 Tri aléatoire atoire 21

22 Sélection-rejet si U 1 <n/n on prend l unitl unité 1. Puis n=n-1 1 et N=N-1. On sélectionne s l unité 2 si U 2 <n-1/n 1/N-1 Si U 1 >n/n, on passe à l unité 2 avec N=N-1. On sélectionne s l unitl unité 2 si U 2 <n/n-1 1 etc. j= nb d unités déjà sélectionnées 22

23 Méthode de mise à jour de l él échantillon 23

24 24

25 Pas aléatoires atoires Tirer U et trouver s tel que C U 1 C sélectionner l unitl unité s+1, faire N=N-s-1 1 et n=n-1 1 etc. et aussi le tirage systématique matique n N s 1 n N 25

26 Tirage systématique Définir un pas de tirage = N/n (entier par arrondi) Tirer une unité au hasard au début d du fichier entre 1 et pas Sélectionner une unité tous les pas Avantages: simplicité,, N pas nécessairement n connu a priori, peut être plus efficace que le tirage aléatoire atoire si le fichier est trié selon une variable bien corrélée à la variable d intd intérêt (cf cours sur le sondage en grappes) 26

27 Inconvénients nients Si périodicitp riodicité dans le fichier (Ardilly) 27

28 Probabilités inégales sans remise Infinité de plans de sondage pour des π i fixés Plus de 50 méthodes m de tirage! Aucune ne satisfait tous les critères. res. Quelques techniques simples: Tirage avec remise et conservation des unités s distinctes mais taille non fixe Rejet de l él échantillon si il y a des doublons mais proba d inclusion non proportionnelles aux x i 28

29 Tirage successif sans remise: On recalcule les probas d inclusion d après s tirage de ' π i chaque individu. Si j est tiré: π i Ne respecte pas les probas d inclusion d d ordre d 1 Tirage poissonnien: sélectionner s i si U i <π i π ij = π i π j variance simple Mais taille non fixe = 1 π j 29

30 Tirage poissonnien (S.Rousseau, 2004) 30

31 Méthode de Sunter (g sélection-rejet) (généralisation de la méthode m de 31

32 32

33 Méthode RHC (Rao, Hartley,Cochran) Pour un tirage à probabilités s proportionnelles à la taille X Trier les unités s dans un ordre alétaoire Tronçonner onner le fichier en n groupes successifs de N/n unités Tirer dans chaque groupe une unité proportionnellement à la taille Simple et performant Remarque: procédé «inexactement proportionnel à la taille» car les groupes ne sont pas de même taille 33

STA108 Sondages. Philippe Périé cours n 5 : 31OCT2014

STA108 Sondages. Philippe Périé cours n 5 : 31OCT2014 STA108 Sondages Philippe Périé cours n 5 : 31OCT2014 STA108 - Sondages Philippe Périé (IPSOS) philippe.perie@ipsos.com Sylvie Rousseau (INSEE) sylvie.rousseau@insee.fr Algorithmes de tirage Nombres aléatoires

Plus en détail

Nombres aléatoires et algorithmes de tirage

Nombres aléatoires et algorithmes de tirage Nombres aléatoires et algorithmes de tirage Sommaire I- LES NOMBRES AU HASARD 1. Généralités 2. Les procédés empiriques ou physiques 3. Les procédés arithmétiques 4. Conclusion II- LES ALGORITHMES DE TIRAGE

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

1 Générateurs à Congruences Linéaires (GCL)

1 Générateurs à Congruences Linéaires (GCL) TP 4 : Générateurs pseudo-aléatoires et applications Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant

Plus en détail

Générateur de Nombres Aléatoires

Générateur de Nombres Aléatoires Générateur de Nombres Aléatoires Les générateurs de nombres aléatoires sont des dispositifs capables de produire une séquence de nombres dont on ne peut pas tirer facilement des propriétés déterministes.

Plus en détail

On suppose l existence d un générateur de nombres aléatoires dont l utilisation se fait à coût unitaire.

On suppose l existence d un générateur de nombres aléatoires dont l utilisation se fait à coût unitaire. 8INF430 Algorithmes probabilistes 1 Générateur pseudo aléatoire On suppose l existence d un générateur de nombres aléatoires dont l utilisation se fait à coût unitaire. Définition: Soit a < b, deux nombres

Plus en détail

a) Considérons le cas où N est un multiple de n : N = Mn

a) Considérons le cas où N est un multiple de n : N = Mn 5.2 TIRAGE SYSTEMATIQUE a) Considérons le cas où N est un multiple de n : N = Mn où M N 0 Prélever un échantillon systématique consiste à tirer de manière équiprobable un individu i 1 parmi {1,..., M},

Plus en détail

Simuler l aléatoire. Licence 1 MASS, parcours SEMS et ESD Introduction à Java et à l algorithmique

Simuler l aléatoire. Licence 1 MASS, parcours SEMS et ESD Introduction à Java et à l algorithmique Licence 1 MASS, parcours SEMS et ESD Introduction à Java et à l algorithmique verel@i3s.unice.fr http://www.i3s.unice.fr/ verel Équipe ScoBi - Université Nice Sophia Antipolis 15 mars 2013 Synthèse Introduction

Plus en détail

Initiation à la théorie des sondages: cours IREM-Dijon

Initiation à la théorie des sondages: cours IREM-Dijon Initiation à la théorie des sondages: cours IREM-Dijon Camelia Goga IMB, Université de Bourgogne Dijon, 12 novembre 2009 Très court historique Laplace a présenté à l Académie des Sciences en 1783 une nouvelle

Plus en détail

Pr evision & g en eration d al

Pr evision & g en eration d al Prévision & génération d aléa Matthieu Finiasz Motivation Pourquoi générer de l aléa? En cryptographie, on a besoin d aléa pour beaucoup de choses : génération de clef, masquage aléatoire, génération de

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

A PROPOS DES TABLES DE NOMBRES AU HASARD

A PROPOS DES TABLES DE NOMBRES AU HASARD A PROPOS DES TABLES DE NOMBRES AU HASARD Dans les bulletins n 3 et n 5, nous avons publié dans le courrier des lecteurs deux exemples de séances de travaux dirigés durant lesquelles les étudiants devaient

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Chapitre VI Génération de valeurs pseudo-aléatoires

Chapitre VI Génération de valeurs pseudo-aléatoires Chapitre VI Génération de valeurs pseudo-aléatoires D Knuth, " The Art of Computer Programming ", Vol 2, Chap 3 : "Random Numbers", pp 1-177, 1981 A M Law & W D Kelton, " Simulation Modeling & Analysis",

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Autour des nombres pseudo-aléatoires

Autour des nombres pseudo-aléatoires Lycée Chaptal PCSI-PC* Informatique générale pour l ingénieur Autour des nombres pseudo-aléatoires Introduction Produire des suites de nombres aléatoires est une nécessité dans de nombreux domaines de

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Chapitre 10 Algorithmes probabilistes

Chapitre 10 Algorithmes probabilistes Chapitre 10 Algorithmes probabilistes Jouent à pile ou face Se comportent différemment lorsque exécutés deux fois sur un même exemplaire Défient parfois l intuition 1 Première surprise: le hasard peut

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =.

1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =. 1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =. p(b) Une boîte contient 3 boules blanches (en chocolat

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Génération de nombres pseudo-aléatoires basée sur des fonctions chaotiques

Génération de nombres pseudo-aléatoires basée sur des fonctions chaotiques 1/28 EJCIM, Perpignan 8-12 Avril 2013 Génération de nombres pseudo-aléatoires basée sur des fonctions chaotiques Vendredi 12 Avril 2013 Michael FRANÇOIS École Jeunes Chercheurs en Informatique-Mathématiques

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

1.6- Génération de nombres aléatoires

1.6- Génération de nombres aléatoires 1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures :

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures : Plan Introduction Systèmes de numération et représentation des nombres Systèmes de numération Système de numération décimaled Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

2.1 Introduction... 15 2.2 Échantillonnage aléatoire et pondéré... 16 2.3 Chaîne de Markov pour échantillonner le système

2.1 Introduction... 15 2.2 Échantillonnage aléatoire et pondéré... 16 2.3 Chaîne de Markov pour échantillonner le système Chapitre 2 Méthode Monte Carlo Contenu 2.1 Introduction....................... 15 2.2 Échantillonnage aléatoire et pondéré......... 16 2.3 Chaîne de Markov pour échantillonner le système à l équilibre........................

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

IFT3245. Simulation et modèles

IFT3245. Simulation et modèles IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques

Plus en détail

1 Générateurs pseudo-aléatoires.

1 Générateurs pseudo-aléatoires. Université de Provence. Préparation Agrégation. Épreuve de modélisation, option Probabilité-Statistique... Quelques références. Simulation de variables aléatoires. Fabienne CASTELL N. BOULEAU. Probabilités

Plus en détail

UV Théorie de l Information. Codes à longueur variable

UV Théorie de l Information. Codes à longueur variable Cours n 5 : UV Théorie de l Information Compression de l information : Codage de source sans distorsion Ex 1 : Code de Shannon Fano Ex 2 : Code de Huffman Ex 3 : Codage par plage Ex 4 : Codage de Lempel

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Méthodologie d échantillonnage et Échantillonneur ASDE

Méthodologie d échantillonnage et Échantillonneur ASDE Méthodologie d échantillonnage et Échantillonneur ASDE Par Michel Rochon L énoncé suivant définit de façon générale la méthodologie utilisée par Échantillonneur ASDE pour tirer des échantillons téléphoniques.

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

(Attention : il peut y avoir un calcul du type «Qté C.U.» mais le montant est affecté sans difficulté, sans arbitraire, à un coût déterminé.

(Attention : il peut y avoir un calcul du type «Qté C.U.» mais le montant est affecté sans difficulté, sans arbitraire, à un coût déterminé. 1 / 5 Chap. 2 : Le calcul des coûts (complets constatés) par la méthode des centres d analyse 1 re partie : Les fondements de la méthode des centres d analyse Cf. Chap.1 Applications 1 et 2 : Les achats

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

Fiche 1 Nombres pseudo-aléatoires

Fiche 1 Nombres pseudo-aléatoires Fiche 1 Nombres pseudo-aléatoires Stochastique Algo. ISTIL 3A «Anyone who considers arithmetical methods of producing random numbers is, of course, in a state of sin.» J. von Neumann Introduction Pour

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel)

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel) UPMC - UFR 99 Licence d informatique 205/206 Module 3I009 Cours 4 : Méthodes d accès aux données Plan Fonctions et structure des SGBD Structures physiques Stockage des données Organisation de fichiers

Plus en détail