Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Dimension: px
Commencer à balayer dès la page:

Download "Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson."

Transcription

1 Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière uiforme/égale sur les 3 serveurs. Le ombre de requêtes à l heure la plus chargée est de 30 req/sec. Il s agit des requêtes arrivat sur le web switch. Lorsque le taux d utilisatio des serveurs est iférieur à 80%, le temps de séjour correspod au temps de service. Les temps de service sot de 50ms sur le serveur 1, de 75ms sur le serveur 2 et de 90 ms sur le serveur 3. Le temps de traitemet de la requête iitiale par le web switch est de 2ms. Lorsque la charge dépasse 80%, les temps de séjour s alloge, de 50% du temps de service etre 80 et 89% de charge, de 150% pour ue charge comprise etre 90 et 94% et de 400% etre 95 et 100%. 1. Doez le taux d utilisatio de chacu des composats. 2. Quel est le ombre de requêtes e cours de traitemets sur chacu des composats. 3. Quel est le goulot d étraglemet? 4. Quelle est la capacité maximale du système? 5. O suppose que l o chage le composat le plus egorgé de maière à réduire so taux d utilisatio par deux. Quelle est la ouvelle capacité du système? 6. Quels sot le temps de séjour moye et le ombre de cliets à charge maximale avec les paramètres de la questio précédete? Exercice 2 : Soit u serveur d applicatio et ue base de doées associée. Le serveur d applicatio peut lacer au plus au plus 300 processus e parallèle. Chaque processus gère la requête d u cliet. U processus iteragit plusieurs fois avec la base de doées pour répodre à ue requête. Les logs du serveur de la base de doées idiquet qu il traite requêtes pour l heure la plus chargée de la jourée lorsqu il y a 300 processus sur le serveur d applicatio. Pour u processus doé, le temps etre la réceptio d ue requête et l émissio d ue ouvelle requête à la base de doées est séparé e moyee de 150 msec. O cherche à évaluer le système lorsqu il est à saturatio, c'est-à-dire lorsqu il y a costammet 300 processus exécuté e parallèle. 1. Doez le temps de répose moye pour ue requête evoyé à la base de doées. 2. Quel est le taux d utilisatio de la base de doées (traitemet des requêtes e série) sachat que le temps de service moye est de 2ms? 3. Appliquez la formule de la loi du temps de répose au serveur d applicatio. 4. O souhaite modifier le serveur d applicatios pour qu il puisse gérer plus de coexios e parallèles ou avoir u temps de traitemet iférieur. O a chagé le CPU du serveur d applicatio, les itervalles etre la réceptio d ue répose et la géératio d ue ouvelle requête à la base de doées est deux fois plus court. a. Quel est le temps de répose pour ue requête à la base de doée? b. Quel est le taux d utilisatio de la base de doées?

2 Exercice 3 : Soit u système composé d u serveur et de 20 postes de travail. Le serveur est composé d ue uité de traitemet et de deux uités de disques A et B. O a S trait =35ms V trait =25, S A =30ms V A =20, S B =25ms V B =4. Le temps de réflexio au iveau d u poste de travail est de 17 secodes. 1. Calculez les demades de services aux différetes ressources? 2. Si le taux d utilisatio du disque A est de 60%, quels sot les taux d utilisatio de B et de l uité de traitemet. 3. Quel est le temps de répose moye? 4. Quel est le goulet d étraglemet? 5. Quels sot les taux maximal d utilisatios des deux disques et de l uité de traitemet? 6. Quel est le ombre maximum de postes de travail que le système peut supporter avat saturatio et le temps de répose? Exercice 4 : Liges Faisceau Commutateur O cosidère le réseau téléphoique ci-dessus. O s itéresse plus particulièremet aux traitemets des appels das les commutateurs d accès. O distigue alors deux tâches : La présélectio qui cosiste à traiter le uméro taper au clavier et à l eregistrer. Cette tâche est opérée par des équipemets das le commutateur qui sot iférieur au ombre de liges. Si aucu de ces équipemets est dispoible, u appel est mis e attete jusqu à ce que l u des eregistreurs se libère (émissio de la toalité). La sélectio et l achemiemet qui cosiste à sélectioer le commutateur suivat et achemier l appel. Le ombre de joctios etre deux commutateurs état iférieur au ombre de liges si aucue joctio est dispoible l appel est perdu.

3 O cherche à dimesioer ce commutateur e terme de ombre d eregistreurs et la taille du faisceau e ombre de joctios. O suppose qu il y a e moyee 180 appels par miute qui arrivet au commutateur et que les appels duret 3 miutes e moyee. O suppose égalemet que la durée de traitemet d u appel par l eregistreur suit ue loi expoetielle qui dure e moyee 15 secodes. 1. Quelle est la file d attete qui pourrait modéliser les eregistreurs? 2. Quel est le ombre d appels par secode qui arrivet au commutateur? 3. Quelle est la charge du système? 4. Si le ombre d eregistreurs est de 50, quel est le ombre moye d appel e cours de service ou e attete? 5. Quel est le temps de séjour moye (attete+traitemet par l eregistreur)? 6. Pedat combie de temps e moyee u appel est mis e attete avat de trouver u eregistreur? 7. Quelle est alors la probabilité qu u ouvel appel etrat attede avat de trouver u eregistreur libre? 8. Quel doit être le ombre d eregistreurs pour que la probabilité d attete soit iférieure à 10-2, 10-3, 10-4? Quelle est alors la durée moyee d attete? 9. Sachat qu il y a 5400 téléphoes coectés au commutateur. Chaque téléphoe émet e moyee deux appels par heure. a. Quel est le taux d occupatio de la lige (e Erlag)? b. Quel est le rapport etre le ombre d eregistreur et le ombre de téléphoe? 10. O cosidère maiteat le faisceau du commutateur. Quel type de file d attete pourrait modéliser la sélectio et l achemiemet d u appel? 11. Quelle est la charge du système? 12. Si il y a 10 joctios, quelle est la probabilité de perte d u appel? 13. Quel devrait être le ombre de joctio pour que la probabilité de perte soit iférieure à 10-2, 10-3, 10-4? 14. Sachat qu il y a 5400 téléphoes coectés au commutateur. Chaque téléphoe émet e moyee deux appels par heure. a. Quel est le taux d occupatio de la lige (e Erlag)? b. Quel est le rapport etre le ombre de caaux et le ombre de téléphoe? Exercice 5 : O cosidère u routeur. O cherche à étudier la probabilité de pertes des paquets. O suppose que la loi des iter-arrivées des paquets suit ue loi expoetielle. De même, l o suppose que la taille des paquets suit ue loi expoetielle. Les paquets ot ue taille moyee de 400 octets, il arrive e moyee paquets par miutes. La capacité de traitemet du routeur (routage+émissio) est de 4Mbit/s. 1. Quel est le ombre moye de paquets par secode qui etret das le routeur? Quelle est la charge du système? 2. Quel type de file d attete pourrait modéliser le routeur? 3. Quel doit être la taille du tampo du routeur e ombre de paquets pour que la probabilité de perte soit iférieure à 10-2, 10-3 et 10-4? Quelle serait la taille du tampo e octets? 4. Pour cette taille de tampo (avec 10-4 comme probabilité de perte), quel est le ombre moye de paquets das le système?

4 5. O suppose maiteat que 76% des paquets sot de 64 octets et que les autres sot de 1500 octets. a. Le temps de service suit alors ue loi expoetielle? b. Quelle est la taille moyee d u paquet? c. Calculer le ombre moye de paquets das le système pour cette loi. Exercice 6 :Voix sur IP Nous cosidéros la trasmissio de commuicatio téléphoique utilisat la de voix sur IP. E voix sur IP, les périodes de blacs (période où l iterlocuteur e parle pas) est codé différemmet des périodes de paroles. Lors des périodes de paroles ou de blacs, les débits géérés par les codes sot costats. Ils sot otés M pour les périodes de paroles et m pour les périodes de blacs. Das le tableau ci-dessous, ous doos la valeur de ces débits e, foctio des codecs (source : L essetiel de la voix sur IP, O. Herset, D. Gurle et J-P. Petit aux éditios Duod). Ce tableau pred e compte les e-têtes protocolaires. Codec M (kbit/s) m (kbit/s) G ,73 G ,67 13,87 Lucet SX7003P 20,27 13,87 O suppose que les périodes de blacs et d activité sot de taille costate. Ue valeur représetative pour le pourcetage de période d activité est 35%. O ote a ce taux d activité. E supposat qu il y a N sources e parallèle (N commuicatios), o cherche à estimer le débit écessaire. Si les sources sot idépedates, il est cou que le ombre de sources das l état actif suit ue loi biomiale. La probabilité d avoir sources das l état actif parmi N est : C N a (1 a) N avec C N = N!!( N )! 1. Tracez la distributio du ombre de sources actives pour a=0,35, N=10 puis N= Quel est le débit moye gééré par les sources? Quel est la variace du débit (la variace d ue loi biomiale est doé par Na(1-a))? 3. Par quelle loi de probabilité cette loi biomiale semble-t-elle approximable pour N grad? 4. Comparer graphiquemet ue loi ormale de même moyee et variace à la distributio biomiale. 5. O souhaite dimesioer le débit écessaire pour N sources. Commet peut-o estimer la probabilité que le débit de N sources soit supérieur à B? Tracer la probabilité que le débit soit supérieur à B e foctio des valeurs de B. O cosidère maiteat le serveur e charge des commuicatios de voix sur IP (le gatekeeper). Le serveur peut predre e charge au maximum N commuicatios simultaées. Il peut s agir d ue limitatio logicielle ou du ombre de caaux dispoible de la sortie vers le RTC/PSTN.

5 Nous cosidéros das u premier temps u modèle fermé. Nous supposos que le site héberge S téléphoes IP. O suppose que la durée d ue commuicatio suit ue loi expoetielle de paramètre µ. O suppose égalemet que la durée etre la fi d ue commuicatio et ue ouvelle (par le même téléphoe) suit ue loi expoetielle de paramètre λ. L équatio décrivat l équilibre des flux ous doe P() la probabilité d avoir commuicatios e cours sur le serveur comme : P( ) = λ CS µ S i λ CS µ i= 0 i Il s agit d ue loi biomiale troquée car les valeurs possibles de sot {0,1,..,N} avec N<S. Cette distributio est égalemet appelée loi de Egset. 1. Calculez la probabilité de blocage pour λ=1/1200, µ=1/300, S=10 et N=3 et pour λ=1/1200, µ=1/300, S=2000 et N= Calculez la probabilité de blocage das le système équivalet mais ouvert. Das ce cas λ est le ombre d appels par secode arrivat sur le serveur. O predra λ ouvert = λs. 3. Tracer ue figure représetat la probabilité de blocage avec le modèle fermé et ouvert. La valeur de S variera de 10 à O predra N comme la partie etière de λs/ µ +3.

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Guide d utilisation de TELUS LinkMC. pour appareils ios

Guide d utilisation de TELUS LinkMC. pour appareils ios Guide d utilisatio de TELUS LikMC pour appareils ios Table des matières Itroductio... 1 Aperçu... 1 Pricipales caractéristiques.... 1 Istallatio du cliet.... 2 Préalables.... 2 Téléchargemet et istallatio

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS PERFORMANCE CONTACT vous présete so LOGICIEL de PRISE de RENDEZ-VOUS OBTENEZ sas effort LES RENDEZ-VOUS que vous SOUHAITEZ SIMPLICITÉ ET EFFICACITÉ Spécialisée das la prise de redez-vous depuis de ombreuses

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

Demandes de prêt REER FAQ

Demandes de prêt REER FAQ Demades de prêt REER FAQ Commet soumettre des demades de prêt REER e lige 1. Commet puis-je accéder à l outil e lige? Pour accéder à l outil e lige, redez-vous à l adresse mauvie.ca/pretreer. Etrez votre

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

relatif à la transmission d ordres par fax et téléphone

relatif à la transmission d ordres par fax et téléphone Règlemet Télé-Equity relatif à la trasmissio d ordres par fax et téléphoe (Cliets de détail) 02541 Pour des raisos d efficacité et de rapidité, le Cliet peut trasmettre ses ordres par fax et/ou téléphoe

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

Séance 3 : coût d'un algorithme

Séance 3 : coût d'un algorithme Séace 3 : coût d'u algorithme Pla : 1. rappel sur les séaces précédetes 2. calcul d'ue variace 3. coût de l'algorithme 4. le jeu du pedu 1. rappel Au cours des séaces précédetes, ous avos vu : 1. les calculs

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 11: Tests d adéquatio II Table des matières 1 Test de Kolmogorov-Smirov

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Probabilités & Statistiques L1: Cours. December 20, 2008

Probabilités & Statistiques L1: Cours. December 20, 2008 Probabilités & Statistiques L1: Cours December 20, 2008 Chapter 1 Déombremets I 1.1 Pricipes gééraux Règle du produit O fait deux expérieces, successives ou simultaées. Si la première doe 1 résultats possibles

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

1. Probabilités sur les ensembles finis

1. Probabilités sur les ensembles finis . Probabilités sur les esembles fiis.. RAPPELS ET COMPLEMENTS. VOCABULAIRE DES EVENEMENTS Das ue expériece aléatoire, l'uivers Ω est l'esemble des résultats possibles. U évéemet est ue partie de l'uivers.

Plus en détail

I Exercices I I I-1 3 Coefficients binomiaux et triangle de Pascal... I I I I I I

I Exercices I I I-1 3 Coefficients binomiaux et triangle de Pascal... I I I I I I Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

PROBABILITES. TD n 1. Bg sachant que PA

PROBABILITES. TD n 1. Bg sachant que PA TD 1 1. Quel est l uivers Ω pour l'expériece : o lace 2 fois de suite u dé (o truqué). A quelles parties de Ω correspodet les évéemets suivats : a) A : o obtiet pas d as au cours des 2 lacers ; b) B :

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1 ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S 1 1 Suites 1 Foctios 11 3 Probabilités 4 Géométrie 4 33 5 Spécialité 41 6 Cocours 53 1 Suites 1-1 :

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Application du logiciel Excel

Application du logiciel Excel Applicatio du logiciel Ecel Utilisatio du Solver du logiciel Ecel Table de matiers Lacemet du logiciel... Optimisatios... Programmatio liéaire... Problème du trasport... 8 Problème de programmatio quadratique...

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail