Cours fonctions, expressions algébriques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours fonctions, expressions algébriques"

Transcription

1 I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles. Exemple : Développer et réduire l expression A(x) = 4 5 x 1 2 (x 2) A(x) = 4 5 x² -2x x = 4 5 x² - 5x = 4 5 x²- 2x Factoriser Factoriser une expression, c est l écrire sous forme d un produit. Exemple : Factoriser l expression B(x) = (3x 1)(2x + 4) (x 5)(3x 1) B(x) = (3x 1)(2x + 4 x + 5) = (3x 1)(x + 9) Identités remarquables on développe (a + b)² = a² + 2ab + b² (a b)² = a² 2ab + b² (a b)(a + b) = a² b² on factorise Exemples : 1. Développer à l aide d une identité remarquable : Développer C(x) = (2x + 4)² (4x 6)(4x + 6). C(x) = 4x² + 16x x² + 36 = - 12x² + 16x Factoriser à l aide d une identité remarquable : Factoriser D(x) = (x 1)² 9 puis E(x) = 2x² + 8x + 8 D(x) = (x-1+3)(x-1-3)=(x+2)(x-4) E(x) = 2(x²+4x+4)=2(x+2)² 1

2 3. Ecrire sous la forme d'un quotient : F(x) = x + 3 x - 1 x + 1 x + 2 On réduit les fractions au même dénominateur : un dénominateur commun à (x - 1) et (x + 2) est (x 1) (x + 2). (x + 3) (x + 2) (x + 1)(x 1) Donc F(x) = - (x 1)(x + 2) (x + 2)(x 1) x² + 2x + 3x + 6 x² - 1 F(x) = - (x - 1)(x + 2) (x + 2)(x 1) F(x) = F(x) = x² + 5x + 6 x² + 1 (x 1)(x + 2) 5x + 7 (x 1)(x + 2) b) Equations Egalité Une égalité est une affirmation utilisant le signe «=» et qui ne peut être que vrai ou fausse. Les identités remarquables sont des égalités. Equation Une équation est une égalité où figure un nombre inconnu. Résoudre une équation, c est trouver toutes les valeurs possibles de l inconnue telles que l égalité soit vraie. On détermine ainsi l ensemble des solutions. Exemple : 6 est solution de l équation 2 + x = 8 car l égalité = 8 est vraie. Résolution algébrique d une équation Règle du produit nul : Un produit de facteurs est nul si, et seulement si, l un des facteurs est nul : A B = 0 A = 0 ou B = 0 Règle du quotient nul : Un quotient est nul si, et seulement si, le numérateur est nul, mais pas le dénominateur : N D = 0 N = 0 et D 0 2

3 Exemples : Résoudre (x + 4)(5-7x) = 0 x + 4 = 0 ou 5 7x = 0 x = -4 ou x = 5 7 S = -4; 5 7 Résoudre 4x + 1 x + 2 = 0 4x + 1 = 0 et x x = et x = -2 S = Résolution d une équation du premier degré Règles Lorsqu on ajoute ou que l on retranche un même réel aux deux membres d une équation, on obtient une autre équation qui a exactement les mêmes solutions. Lorsqu on multiplie ou que l on divise chaque membre d une équation par un même réel différent de 0, on obtient une autre équation qui a exactement les mêmes solutions. Exemple : Résoudre l équation : 3x 4(3 + x) + 5(2x 1) = 5 x 3x -12 4x + 10x 5 = 5 x 9x 17 = 5 x 9x + x = x = 22 x = 2,2 3

4 II Définir une fonction a) Ensemble et intervalles L'ensemble des abscisses des points d'une droite graduée est appelée l'ensemble des nombres réels. On note l'ensemble de tous ces nombres. Remarques : On note l'ensemble des nombres entiers naturels (positifs). On note l'ensemble des nombres entiers relatifs (positifs ou négatifs). Certaines parties de sont appelées des intervalles; on les note en utilisant des crochets. a et b sont deux réels tels que a < b. Le tableau ci-dessous résume les différents types d intervalles. L intervalle noté est l ensemble des réels x tels que [a ; b] a x b Représentation de cet intervalle sur une droite graduée ]a ; b[ a < x < b ]a ; b] a < x b [a ; b[ a x <b [a ; + [ a x ]a ; + [ a < x ]- ; b] ]- ; b[ x b x > b Vocabulaire: [a ; b], ]a ; b[,]a ; b] et [a ; b[ sont des intervalles d extrémités a et b (a < b). Le centre de l intervalle est le nombre a + b, et sa longueur est b a. 2 Remarques : - (moins l infini) et + (plus l infini) ne sont pas des nombres, ce sont des symboles. Du côté de - et de +, le crochet est toujours ouvert, par convention. L ensemble des réels se note aussi ]- ; + [. [a ;a] = {a} ]a ;a[ = (ensemble vide) 4

5 Réunion et intersection d intervalles L intersection de deux intervalles est l ensemble des nombres réels appartenant à la fois aux deux intervalles. Le symbole utilisé pour l'intersection de deux intervalles est. L'intersection des intervalles A et B se note A B (on lit "A inter B"). La réunion de deux intervalles est l ensemble des nombres réels appartenant à l un ou l autre de ces intervalles (les éléments de l intersection appartiennent aussi à la réunion). Le symbole utilisé pour la réunion de deux intervalles est. La réunion des intervalles A et B se note A B (on lit "A union B"). x A B x A et x B x A B x A ou x B Exemples : [2 ; 5] [4 ; 6] = [4 ; 5] et [2 ; 5] [4 ; 6] = [2 ; 6]. ]- ; 2] [-1 ; + [ = [-1 ; 2] et ]- ; 2] [-1 ; + [ = ]- ; + [ = 3 b) Vocabulaire des fonctions D est une partie de l ensemble des réels. Lorsque, à chaque réel x de D on associe un seul réel y, on définit une fonction sur l ensemble D. Vocabulaire et notation : o D est l ensemble de définition de la fonction f. o x est la variable. o L image d un réel x de D est notée f(x) (lire «f de x»). o x est un antécédent de y Exemple : f est la fonction définie sur Y par f(x) = x² - 3 o 5 a pour image f(5) = 25 3 = 22 o -3 a pour image f(-3) = 9 3 = 6 5

6 Exemple 1 : Une fonction f définie par un graphique L'ensemble de définition de f est l'intervalle [-3;2]. Le nombre -3 a pour image -1, donc f(-3) = -1. Exemple 2 : Une fonction g définie par un tableau Nombre x Image g(x) L'ensemble de définition de g est D = {-4;-1;0;2;3}. Le nombre 0 a une seule image 0. g(-1) = 4 et g(3) = 4 donc les antécédents de 4 par g sont -1 et 3. Exemple 3 : Une fonction h définie par une formule La fonction h associe à un nombre réel x quelconque, le nombre h(x) = 2x² - 3. L'ensemble de définition de h est. On peut aussi écrire : h : x 2x² - 3. Pour calculer l'image de -5, on remplace x par -5 dans l'expression de h(x) : h(-5) = 2 (-5)² - 3 = 47. III Courbes et résolutions graphiques a) Courbe représentative d'une fonction f est une fonction définie sur D. Dans un repère, la courbe représentative de la fonction f est l ensemble des points M(x ;y) tels que : o L abscisse x décrit l ensemble de définition D. o et l ordonnée y est l image de x par f. Autrement dit, x D et y = f(x) Vocabulaire : On dit que la courbe C a pour équation y = f(x) dans le repère choisi. 6

7 Exemple 1 : f est la fonction définie par f(x) = -x² + 3x Voici sa courbe P représentée dans un repère. Le point A(2;2) appartient à P car f(2) = -2² = 2 Le point B(-1;-6) n'appartient pas à P. car f(-1) = -(-1)² + 3 (-1) = -1 4 = -5 Exemple 2 : g est la fonction définie sur par f(x) = k où k est un nombre donné. Cette fonction affine est dite constante. Sa courbe est la droite d'équation y = k représentée cicontre. k b) Résolution graphique d'équations C f et C g sont les courbes représentatives des fonctions f et g dans un repère. Equation f(x) = k (avec k réel) Equation f(x) = g(x) Les solutions sont les abscisses des points d intersection de C f avec la droite d équation y = k. Les solutions sont les abscisses des points d intersection des deux courbes C f et C g. 7

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

ENSEMBLES DE NOMBRES

ENSEMBLES DE NOMBRES 1 sur 8 ENSEMBLES DE NOMBRES I. Définitions et notations Non exigible 1. Nombres entiers naturels Un nombre entier naturel est un nombre entier qui est positif. L'ensemble des nombres entiers naturels

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Intervalles Cours. Intervalles Cours. SOS DEVOIRS CORRIGES (marque déposée)

Intervalles Cours. Intervalles Cours. SOS DEVOIRS CORRIGES (marque déposée) Intervalles Cours CHAPITRE 1 : Notion d intervalle 1) Définition 2) Représentations d intervalles 3) Vocabulaire 4) Notations d ensembles CHAPITRE 2 : Intersection d intervalles 1) Définition 2) Intervalles

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Equations de droites. Coefficient directeur

Equations de droites. Coefficient directeur Equations de droites. Coefficient directeur I) Caractérisation analytique d une droite m, p et c désignent des nombres réels. 1) Propriété : Dans un repère l ensemble des points M de coordonnées ( ; )

Plus en détail

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x FONCTION LINEAIRE & FONCTION AFFINE 3 e I. Fonction linéaire a désigne un nombre relatif. Définition La fonction qui, à tout nombre x, associe le produit de a par x est appelée fonction linéaire de coefficient

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

Cours : Généralités sur les fonctions

Cours : Généralités sur les fonctions I Ensemble Y et intervalles a) Définitions L'ensemble des abscisses des points d'une droite graduée est appelé l'ensemble des nombres réels. On note Y l'ensemble de tous ces nombres. Remarques : On note

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS On peut effectuer les quatre opérations de base sur des fonctions, c est-à-dire les additionner, les soustraire,

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b 27 5. Inéquations 5.1. Définition Exemple : x < 4 + 2x La droite réelle Le symbole utilisé pour les intervalles infinis est une notation et ne représente pas un nombre réel. Une inéquation affirme que

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R.

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R. I. Opérations de base Calculs dans R : 1- Opérations dans R Activité 1 Compléter : 3 1 1) + =... 2 4 3 On dit que est la. de 2 et 1 4 (3 2 et 1 sont les de cette ) 4 3 2 3 2) =... ; On dit que est la de

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S b.delap@wanadoo.fr Utiliser un graphique pour résoudre des inéquations à une seule inconnue. 1 er cas : les valeurs sont toutes positives : Sur

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Fonctions affines. Notation1 Notation 2

Fonctions affines. Notation1 Notation 2 I/ Fonctions affines 1 ) Définition Fonctions affines Une fonction est affine lorsque l image d un nombre où a et b sont deux nombres quelconques connus. peut s écrire sous la forme Les nombres a et b

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser THEME : Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation Appellation Vocabulaire à utiliser < plus petit inférieur strictement inférieur strictement inférieur plus petit ou égal

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Table des matières LES FONCTIONS POLYNOMIALES

Table des matières LES FONCTIONS POLYNOMIALES Table des matières LES FONCTIONS POLYNOMIALES 1 Différents types de fonctions polynomiales Étude des différentes fonctions polynomiales.1 Les fonctions constantes.1.1 La fonction constante de base.1. La

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x.

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x. Exercice 4 page 142 Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) b) 9 1x 9x 5 > c) 2x+6 2 4x d) ( 3x 9)(7x 8) < a) Résolution de l inéquation (5x 9)(5x 8)

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Fonctions linéaires et affines

Fonctions linéaires et affines Fonctions linéaires et affines I. Fonctions linéaires 1/ Activités Première étape Revoyons d'abord, sur un exemple, en quoi consiste la proportionnalité. On considère pour cela un triangle équilatéral

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

EQUATIONS, INEQUATIONS

EQUATIONS, INEQUATIONS 1 sur 13 EQUATIONS, INEQUATIONS I. Résolution d équations Activité conseillée p126 activité1 : Notion d équation et d inéquation Activité conseillée p60 activité1 : Notion d équation et d inéquation -p140

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Approfondissement algébrique

Approfondissement algébrique 2 nde, novembre 2010 Approfondissement algébrique Ce petit livret d exercices vous sera utile pour approfondir et améliorer vos méthodes de calcul. Certaines des exercices sont corrigés, d autres ont juste

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Inéquations Etude de signe. Vocabulaire : (x+2) est le premier facteur et (x+5) est le deuxième facteur.

Inéquations Etude de signe. Vocabulaire : (x+2) est le premier facteur et (x+5) est le deuxième facteur. Inéquations Etude de signe I Rappels : Factoriser une expression, c est la transformer en un produit de facteur. Exemple : A ( x) ( x + 2)² + 3( x + 2) On remarque que (x+2) est commun aux 2 termes alors

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes.

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. FONCTIONS DE REFERENCE Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. I. LES FONCTIONS ELEMENTAIRES ce sont les touches «fct» de la calculatrice

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul :

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Sous-thèmes Compétences de calcul travaillées Notion de Fonctions : Introduction du vocabulaire

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Cours de mathématiques Seconde

Cours de mathématiques Seconde Cours de mathématiques Seconde Chapitre Vecteurs et translations...4 I Définitions et premières propriétés...4 a) Rappels sur le parallélogramme...4 b) Translation...4 c) Vecteur...5 d) Vecteurs égaux...5

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Courbes représentatives de fonctions

Courbes représentatives de fonctions Courbes représentatives de fonctions I) Définitions. Soit une fonction définie sur un intervalle, à valeurs dans. 1) Graphe de la fonction. a) Définition. Le graphe de la fonction est l ensemble des couples

Plus en détail

MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia

MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia Philippe MORVAN Dimitar KOLEV Rennes/Sofia 2007 Table des matières 1

Plus en détail

Révisions Mathématiques CAP-BEP

Révisions Mathématiques CAP-BEP Révisions Mathématiques CAP-BEP Exercice 1 : On considère le triangle ABC rectangle en A. C 1 / Si AB = 12 et AC = 5, calculer BC....... 2 / Si AB = 7 et BC = 9,22, calculer AC. Exercice 2 : Dans un CFA,

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Présentation du logiciel Xcas

Présentation du logiciel Xcas Présentation du logiciel Xcas Xcas est un logiciel très complet qui permet d effectuer : Du calcul numérique, valeur exactes ou approchées ; Du calcul formel, du plus simple, développer factoriser jusqu

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction S Cours Les fonctions affines Par cœur : définition d une fonction affine Soit a et b deux réels. Une fonction définie sur R par : f(x) = ax + b est appelée fonction affine. De plus, a = Variation des

Plus en détail

Leçon : Les fonctions

Leçon : Les fonctions Leçon : Les fonctions 1. Notion de fonction et généralités 1.a) Fonction Soit D une partie R. Définir une fonction sur un ensemble D, c est associer à chaque réel x de D, un unique réel, appelé image de

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée ChN8 FONCTIONS AFFINES progression séance 0 test d'entrée séance 1 exercice complémentaire 1 activité 1 (intro fonctions affines) cours : I. Définition séance 2 exercice complémentaire 2 fiche ex. 1 ex

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

CH VI Notion de fonctions : les fonctions linéaires et affines.

CH VI Notion de fonctions : les fonctions linéaires et affines. CH VI Notion de fonctions : les fonctions linéaires et affines. I) Activités : Activité 1 : Relier les points correspondants. [- ; 3] Ensemble des réels x tels que x [ ; + [ Ensemble des réels x tels que

Plus en détail