I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E "."

Transcription

1 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages Ordre Successifs O tiet compte avec remise de l'ordre Successifs sas O tiet compte remise de l'ordre simultaés L'ordre 'iterviet pas Répititio d'élémets Déombremet U élémet peut être p tiré plusieurs fois U élémet 'est tiré A p ( )( p ) qu'ue seule fois U élémet 'est tiré p p A qu'ue seule fois C p! I- Vocabulaire : Soit l'uivers d'ue exprériece aléatoire O écrit,,, où chaque i est ue des issues de cette expériece aléatoire U évéemet est u sous-esemble de Ue probabilité P défiie sur P () est ue applicatio de P () das [0, ] vérifiat les deux axiomes suivats : - P() = ; - Pour tous évéemets A et B icompatibles A B O, o a : P A B = P(A) + P(B) Remarques : O ote A l'évéemet cotraire de A et o a: A A O et A A O dit que (A, A ) est u système complet O dit que ( E, E,E ) est u système si et seulemet si : E E E E E E et E E E Propriétés : Soit A et B deux évéemets P A P(A) et PO 0 P(A\B) = P(A) - P A B P A B = P(A) + P(B) - P A B 4 Si ( E, E,E ) est u système complet alors pour tout évéemet B P(B) = PB E PB E PB E Lorsque P i, o dit que P est la probabilité uiforme ou l'équiprobabilité Card(A) Card(A) et das ce cas là : P(A) = Card( )

2 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F Exercice : U sac cotiet jetos idiscerables au toucher : jetos oirs marqués A, B et C et 0 jetos blacs umérotés de à 0 O cosidère les évéemets suivats : R :" obteir les jetos oirs parmi les jetos extraits " S : " obteir le jetos marqué C parmi les jetos extraits " T : " obteir au mois u jeto oir parmi les jetos extraits " Calculer la probabilité de chacu des évéemets R, S et T Solutio : U tirage correspod au choix de jetos parmi les jetos se trouvat das le sac Doc : Card() = C 8 P(R) = C C 0 4 C 4 49 ; P(S) = C P(S) = - P S = Exercice : Ue ure cotiet boules idiscerables au toucher : m boules blaches et boules oires ( m et sot des etiers aturels o uls ) O tire successivemet et sas remise boules de l'ure Détermier les couples (m, ) pour que la probabilité p d'obteir boules de couleurs 6 différetes soit égales à O pred désormais : m = 8 et = 4 O tire successivemet et avec remise boules de l'ure a) Calculer la probabilité p' d'obteir exactemet ue boule blache b) Calculer la probabilité p" d'obteir au mois ue boule blache et au mois ue boule oire Solutio : Le ombre de tirage possible est A Soit p la probabilité d'obteir deux boules de couleurs différetes est : m m m p = 66 m m Doc tous les couples (m, ) vérifiet : m 6 m 66 D'où m et sot les solutios de l'équatio : x² - x + = 0 O obtiet que : (m, ) = (4, 8) ou (m, ) = (8, 4) a) La probabilité d'obteir exactemet ue boule blache lorsqu'o effectue trois tirages successivemet avec remise est : m 84 p' = 9 b) l'évéemet " obteir au mois ue boule blache et au mois ue oire " est la réuio des évéemets icompatibles " obteir exactemet ue boule blache " et " obteir exactemet deux boules blaches " La probabilité cherchée est doc : p" = p'

3 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F II- Evéemets idépedats III- Exemple : O lace deux fois de suite ue pièce de moaie o truquée P PP P F PF F er lacer P F e lacer La probabilité d'obteir deux fois pile est doc égale à 4 Si o ote les évéemets suivats : A : " le résultat du premier lacer est pile " B : " le résultat du secod lacer est pile " La probabilité d'obteir deux fois pile est la probabilité de l'évéemet P A B, or P(A) = et P(B) = 4 O remarque doc sur exemple que : P A B P(A)P(B) FP FF A B II- Défiitio : O dit que les évéemets A et B sot idépedats si et seulemet si P A B P(A)P(B) Activité : A et B sot deux évéemets idépedats Motrer que A et B aisi que A et B sot idépedats A et B sot-ils idépedats? Exercice : U jeto est marqué du chiffre sur ue face et du chiffre sur l'autre face U dé cubique est marqué du chiffre sur trois faces, du chiffre sur deux faces et du chiffre sur ue face O lace simultaémet le jeto et le dé et o lit les chiffres qui apparaisset sur chaque face supérieure ( a pour le jeto et b pour le dé ) Calculer la probabilité de chacu des six évéemets élémetaires Trouver la probabilité des évéemets A : " a = b" et B : " a < b " Solutio : Pour le jeto : P() = P() = Pour le dé : P() =, P() = et P() = 6 Les résultats du dé et du jeto sot supposés idépedats P( (,) ) = P( (,) ) = = 4

4 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F P( (,) ) = P( (,) ) = 6 P( (,) ) = P( (,) ) = P(A) = P( (,) ) + P( (,) ) = et P(B) = III- Probabilité coditioelle Activité : O dispose de trois boîtes B, B et B d'appareces idetiques Elles cotieet respectivemet u, deux et trois papiers ; das chaque boîte u seul papier est marqué Ue partie cosiste, pour u joueur, à désiger au hasard ue boîte et à tirer égalemet au hasard u papier de cette boîte Si le papier est marqué le joueur reçoit u cadeau Quelle est la probabilité de tirer le papier marqué sachat qu'il proviee de B? Sachat qu'il proviee de B? Sachat qu'il proviee de B? Détermier la probabilité que le joueur reçoit u cadeau Désigos par A : " le papier tiré est marqué ", par B i : " la boîte désigée est B i " et par E i : " tirer le papier marqué sachat qu'il proviet de B i " avec i,, B A B / / / B A B / / B A B Il e résulte que : (E ) P, P E et P O a : P(A) = P(A B ) PA B PA Doc P(A) = B et : P A B, P A B E 6, P B A 9 Défiitio : O appelle probabilité coditioelle de B sachat A, où A est u évéemet de probabilité o ulle, la probabilité que l'évéemet B soit réalisé sachat que A est réalisé P(A B) O ote : P(A B ) = P(A) Exercice : O dispose d'u dé cubique et homogèe dot les face sot umérotées : -, -, -, 4

5 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F 0, et O jette ce dé deux fois de suite et o ote à chaque fois le uméro de la face supérieure Détermier la probabilité de chacu des évéemets A et B suivats : A :"les deux uméros sot différets" B :" la somme des deux uméros obteus est égale à 0" Soit C l'évéemet défii par "les deux uméros obteus sot différets sachat que leur somme est ulle" Calculer P(C) Corrigé: Il suffit de dresser u tableau P(A) = P(A) ; P(B) = 8 6 P(C) PA B P(A B) P(B) Exercice : O dispose d'ue ure U coteat boules rouges et boules oires O extrait simultaémet dexu boules de cette ure ; o cosidère que tous les tirages sot équiprobables a) Quelle est la probabilité p que les deux boules tirées soiet rouges? b) Quelle est la probabilité p que les deux boules tirées soiet oires? c) Quelle est la probabilité p que les deux boules tirées soiet de même couleur? d) Quelle est la probabilité p 4 que les deux boules tirées soiet de couleur différetes? O dispose aussi d'ue deuxième ure U coteat 4 boules rouges et 6 boules oires O tire maiteat deux boules simultaémet de l'ure U et ue boule de l'ure U ; o suppose que tous les tirages sot équiprobables O cosidère les évéemets suivats : R : " les trois boules tirées sot rouges " D : " les trois boules tirées e sot pas de la même couleur " B : " la boule tirée das U est rouge " a) Calculer P(R) b) Quelle est la probabilité de tirer trois boules de même couleur? B D c) Calculer la probabilité coditioelle P Solutio : a) p ; b) p ; c) 4 4 a) P(R) = ; b) P(N) = c) P(D) = PD D p 8 p p ; d) p4 p D P(R) P(N) 8 p B D = p, P et P B 4 doc P Exercice : O dispose de deux ures A et B A cotiet boules blaches et boules oires B cotiet boules blaches et 6 boules oires O choisit l'ue des deux ures et o extrait ue boule au hasard O cosidère les évéemets suivats : A : " l'ure choisie est A " et N : " la boule tirée est oire "

6 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F Calculer P(A), P Calculer P N A A, P N A et P N A E écrivat N = N A N A, calculer P(N) puis P 4 O a costaté que la boule tirée est oire a) Quelle est la probabilité pour qu'elle soit tirée de A? b) Quelle est la probabilité pour qu'elle soit tirée de B? Solutio : P(A) = P A = 8 6 ; P A P N A P(A)PN A N et P N A P(N) = PN A PN A P(A)PN A PA P N A P N P(N) 6 P(A N) P A N P(N) 4 a) ; b) P A N PA N 6 N Coséqueces : Soit u évéemet de probabilité o ulle Pricipe de probabilité composée : PA B P(A)PB A Pricipe de probabilité totale : P(B) = PB A PB A P(A)P(B A) PA P B A Si ( E, E, E) est u système complet alors B E P B E P B P(B)P B E P(B) = P = P(B)PB E P(B)PB E E Exercice 4: Ue ure A cotiet boules rouges et boules oires, ue ure B cotiet boules rouges et boules oires O tire au hasard ue boule de l'ure A : - si elle oire, o la place das l'ure B - sio, o l'écarte du jeu O tire au hasard esuite ue boule de l'ure B O cosidère les évéemets suivats : R :" la boule tirée de A est rouge " ; N :" la boule tirée de A est oire " R :" la boule tirée de b est rouge " ; N :" la boule tirée de B est oire " a) Calculer P( R ) et P( N ) b) Calculer les probabilités des évéemets R R et R N E déduire que : P( R ) = 0 c) Calculer P( N ) O répète fois l'épreuve précédete e supposat que les différetes épreuves sot idépedates Quel est le ombre miimum d'épreuves doit-o effectuer pour que la probabilité p d'obteir au mois ue fois ue boule rouge de l'ure B soit supérieure à 0,99? 6

7 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F Solutio: a) P R ; PN b) PR R ; PR N P R PR N PR R PNP R N PRP R R 0 c) P N PR 0 p ; p 0 Log(0,0) 0,99 0,0, d'où = 6 0 Log 0 Exercice : O cosidère trois ures U, U et U telles que : U cotiet boules rouges et 6 boules blaches U cotiet boules rouges, 4 boules oires et boules blaches U cotiet ue boule rouge et 4 boules blaches O lace ue fois u dé cubique régulier dot les faces sot umérotées de à 6 Si le résultat est, o tire ue boule de U Si le résultat est, ou, o tire ue boule de U Si le résultat est 4 ou 6, o tire ue boule de U a) Calculer P( U ), P( U ) et P( U ) les probabilités de choisir respectivemet les ures U, U et U b) Calculer la probabilité des évéemets suivats : A i : " la boule tirée est rouge et proviet de U i ", où i,, a) Calculer la probabilité de l'évéemet B : " la boule tirée est rouge " b) Sachat que la boule tirée est rouge, calculer la probabilité pour qu'elle proviee de i,, U, où i Solutio : a) PU, PU et PU b) PA, PA et PA a) P(B) = P(A) P(A) P(A) 40 P b) P A P U B, P A 0 U B B P(B) P(B) et P P A 8 P(B) U Exercice 6 : Ue ure cotiet pièces équilibrées Deux de ces pièces sot ormales : elles possèdet ue face «FACE» et ue face «PILE» La troisième est truquée : elle possède deux faces «FACE» O extrait ue pièce de l ure au hasard, puis o effectue des lacers successifs et idépedats de cette pièce O cosidère les évéemets suivats : A : «la pièce extraite est ormale», A : «la pièce extraite est truquée»

8 Cours de termiales Probabilités sur u esemble fii Mr ABIDI F P : «o obtiet PILE au premier lacer», F : «o obtiet FACE aux premiers lacers» a) Calculer PP A et PP A b) E déduire P(P) Motrer que PF a) Sachat qu o a obteu FACE fois au cours des premiers lacers, quelle est la probabilité d avoir extrait la pièce truqué? b) Quelle est la limite de cette probabilité quad ted vers +? Solutio : a) PP A et PP A 0 0 b) P(P) = PP A PP A PF PF A PF A a) PA F P F A P F ; b) lim P A F 8

9 Visitez Tuisie Mathématiques à l adresse

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider),

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider), . Itroductio XV. robabilités. L'étude des probabilités couvre toutes les situatios de phéomèes ayat plusieurs issues possibles, la réalisatio de chaque résultat état due au hasard. Des exemples de calcul

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako I Itroductio : NOTION DE PROBABILITÉ Site MathsTIE de Adama Traoré Lycée Techique Bamako ) Exemple : O lace fois e l air u dé o pipé (ormal), x et y fot u pari Si 66 apparaît alors x gage 600Frs Si ou

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber Résumé : Niveau : Bac Scieces de l iformatique Réalisé par : Prof. Bejeddou Saber Tableau récapitulatif sur le déombremet: Type du tirage : Simultaé Successif sas remise Successif avec remise U tirage

Plus en détail

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance Termiale S. Lycée Desfotaies Melle Chapitre 11 Probabilité Coditioemet et idépedace I. Probabilité coditioelle 1- Exemple Das u lycée coteat N élèves, 4% des élèves sot des filles, % des garços. Parmi

Plus en détail

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako Déombremet Site MathsTIE de Adama Traoré Lycée Techique Bamako A) Parties d u esemble : Soit la représetatio sagittale des esembles E, A et B E 9 8 4 6 0 3 A B ) Existe-t-il des élémets de A qui e sot

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

I. Probabilités : petit bilan de 2 nde

I. Probabilités : petit bilan de 2 nde ère S FICHE Variables aléatoires I. Probabilités : petit bila de de EXECICE TYPE (voir évaluatio diagostique d etrée e ère S) Eocé O fait tourer ue roue équilibrée comme ci-dessous séparées e 8 secteurs

Plus en détail

Espaces probabilisés.

Espaces probabilisés. Espaces probabilisés Chapitre 6 : otes de cours Esembles déombrables Esemble fii, (hors programme) esemble ifii Esemble déombrable Eumératio des élémets d u esemble fii ou déombrable Produit cartésie d

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Probabilités élémentaires

Probabilités élémentaires 1. Exemple... p2 4. Lois de probabilité... p7 2. Vocabulaire... p4 5. Variables aléatoires... p8 3. Espaces probabilisés fiis... p4 Copyright meilleuremaths.com. Tous droits réservés 1. Exemple Probabilités

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Corrigé Exercice Sujets Bac Maths Aales Mathématiques Bac Sujets + Corrigés - Alai Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL Aales Bac Maths SESSION MATHÉMATIQUES Série S Cadidats ayat pas suivi l eseigemet

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

Parmi les malades, il y 4 non vaccinés pour un vacciné. Quelle est la probabilité pour un non vacciné de tomber malade?

Parmi les malades, il y 4 non vaccinés pour un vacciné. Quelle est la probabilité pour un non vacciné de tomber malade? Exercice : 4 d ue populatio a été vaccié Parmi les vacciés, o compte de malades 2 Parmi les malades, il y 4 o vacciés pour u vaccié Quelle est la probabilité pour u o vaccié de tomber malade? (O otera

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

COUPLES VARIABLES ALEATOIRES DISCRETES

COUPLES VARIABLES ALEATOIRES DISCRETES COUPLES VARIABLES ALEATOIRES DISCRETES EERCICE : U sac cotiet six jetos, u ortat le uméro, deux ortet le uméro et trois ortet le uméro Ces jetos sot idiscerables au toucher. Deux jetos sot rélevés de ce

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

2 Propriétés élémentaires des probabilités

2 Propriétés élémentaires des probabilités Uiversité de Reims Champage Ardee UFR Scieces Exactes et Naturelles Aée uiversitaire 2013-2014 MA 0804 - Master 1 CM1 Espaces probabilisés 1 Déitio Pour déir u espace probabilisé, o a besoi d'u esemble

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

PROBABILITES Révisions

PROBABILITES Révisions EXERCICE : Cacuer, pour Soit,,3, 4,5,6, ( ), itégrae I PROBABILITES Révisios x dx. 0 x ; détermier e rée pour que o défiisse ue probabiité p sur e posat, pour tout etier,6 p I Quee est a probabiité de

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal chapitre VIII eercices et problèmes de sythèse algorithmique et turbo-pascal Algèbre liéaire et probabilités : Chaîes de Marov (esco 93) Partie A 4 3 O cosidère la matrice M = 8 6 ) a) Détermier les valeurs

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7.

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7. Mathématiques 205-206 Colle o 22 Combiatoire. Probabilités Lycée Charlemage PCSI Exercice. Exercice 5. O dispose de différets vêtemets : quatre slips, trois patalos, deux tee-shirts et ciq paires de chaussures.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Comparaiso des suites Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités JE RAPPELLE QUE C

CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités JE RAPPELLE QUE C Cette fiche a été téléchargée sur le site http://sila.e-mosite.com CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités k JE RAPPELLE QUE C k Exercice Le ombre total de possibilités

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Probabilités & Statistiques L1: Cours. December 20, 2008

Probabilités & Statistiques L1: Cours. December 20, 2008 Probabilités & Statistiques L1: Cours December 20, 2008 Chapter 1 Déombremets I 1.1 Pricipes gééraux Règle du produit O fait deux expérieces, successives ou simultaées. Si la première doe 1 résultats possibles

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Chaînes de Markov jeudi 7 novembre 2013

Chaînes de Markov jeudi 7 novembre 2013 Chaîes de Markov jeudi 7 ovembre 203. Opératios sur les chaîes de Markov. Soit (X ) N et (Y N ) deux chaîes de Markov d espaces d états respectifs X et Y, et de matrices de trasitios respectives P et Q.

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail