DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations."

Transcription

1 DOSSIER N 01 Question : Présenter un choix d exercices sur le thème suivant : Exemples simples de problèmes de dénombrement dans différentes situations. Consignes de l épreuve : Pendant votre préparation (deux heures), vous devez rédiger sur les fiches mises à votre disposition, un résumé des commentaires que vous développerez dans votre exposé et les énoncés de vos exercices. La qualité de ces fiches interviendra dans l appréciation de votre épreuve. Le terme exercice est à prendre au sens large ; il peut s agir d applications directes du cours, d exemples ou contre-exemples venant éclairer une méthode, de situations plus globales ou plus complexes utilisant éventuellement des notions prises dans d autres disciplines. Vous expliquerez dans votre exposé (25 minutes maximum) la façon dont vous avez compris le sujet et les objectifs recherchés dans les exercices présentés : acquisition de connaissances, de méthodes, de techniques, évaluation. Vous analyserez la pertinence des différents outils mis en jeu. Cet exposé est suivi d un entretien (20 minutes minimum). Annexes : Vous trouverez page suivante, en annexe, quelques références aux programmes ainsi qu une documentation conseillée. Ces indications ne sont ni exhaustives, ni impératives ; en particulier, les références au programme ne constituent pas le plan de l exposé. 1

2 2 ANNEXE DU DOSSIER N 01 Références aux programmes : Contenu Capacités attendues Commentaires Première L : Combinatoire Introduction des combinaisons par le triangle de Pascal. Notation ( n. Formule du binôme. Les calculs de ( n pour des valeurs de n inférieures à 10 seront faits à partir du triangle de Pascal. On introduira la formule : ( n n! = p!(n!. On proposera des dénombrements utilisant les combinaisons et des arbres. On pourra utiliser le triangle de Pascal pour : - le décompte des parties de p éléments d un ensemble à n éléments, - le calcul des coefficients de la décomposition de (a + b) n. Le symbole ( n sera désigné par la locution p parmi n. Terminale S : Introduction des combinaisons, notées ( n. Formule du binôme. On introduira la notation n!. L élève devra savoir retrouver les formules : ( n ( = n 1 ) ( + n 1 ) p 1 ( n ( = n ) n p p ( Le symbole n ) p peut être désigné par la locution p parmi n. Pour les dénombrements intervenant dans les problèmes, on en restera à des situations élémentaires résolubles à l aide d arbres, de diagrammes ou de combinaisons. Documentation conseillée : Manuels de Premières, de Terminales S, ES, L. Annales de baccalauréats.

3 3 Il ne s agit en aucun cas d une correction, mais seulement de mon point de vue sur le sujet. Les problèmes de dénombrement sont souvent ressentis comme difficiles par les élèves, mais aussi les enseignants. Pour les premiers, cette difficulté provient immanquablement du fait que, si l énoncé est souvent élémentaire, il ne suggère aucune méthode ; comment aborder le problème? Pour les second, c est l angoisse d une autre solution proposée par un élève et qu il faudra savoir valider ou infirmer : est-ce que c est faux si je dis... Ces activités de dénombrement sont pourtant présentes de la sixième à la terminale. Elle peuvent avoir un caractère ludique et permettent de mettre en valeur le raisonnement. On ne dispose cependant que de peu d outils pour les aborder. I. Les méthodes de dénombrement. La première méthode utilisée et ce dès le primaire est l énumération. Cette méthode nécessite une organisation précise (en ordre croissant) des objets à dénombrer. Pour mener à bien cette organisation, on dispose d outils de représentation : arbres, tableaux... Cette méthode échoue dès que l ensemble à dénombrer dépend d un paramètre (ensemble des combinaisons). Vient ensuite la méthode de partitionnement. C est une généralisation de l énumération qui est un partitionnement par des singletons. Elle s appuie sur l additivité du cardinal : Card(A B) = Card(A) + Card(B) Card(A B) On utilise le fait que le cardinal du produit cartésien de deux ensembles est le produit de leurs cardinaux : Card(E F ) = Card(E) Card(F ) Les trois outils précédents sont les seuls dont on dispose dans le secondaire avant la classe de Terminale. On introduit en Première L et en Terminale S quelques outils de combinatoire : les combinaisons. La résolution d un exercice de dénombrement consistera donc en une application directe ou une combinaison de ces différentes méthodes pour arriver au résultat. On sera souvent amener à effectuer une partition de l ensemble à dénombrer en parties dont le cardinal et plus accessible. II. Sur la difficulté des problèmes de dénombrement. La résolution d un problème de dénombrement nécessite deux modélisations. La première consiste à mathématiser le problème, à donner un sens mathématique à l énoncé. Il s agit de proposer un modèle mathématique adapté. Il faut alors

4 4 bien comprendre l énoncé, quelques fois lire entre les lignes pour débusquer des hypothèses implicites. La deuxième modélisation est, par nature, plus mathématique. Un fois l ensemble à dénombrer défini mathématiquement, il faut le mettre en bijection avec un ensemble dont le cardinal est plus accessible. Il s agit donc de trouver un modèle de notre ensemble construit par union et produit cartésien d ensembles dont le cardinal est connu. C est dans ces deux modélisation que réside la difficulté d un exercice de dénombrement. Dans chacun des cas, on doit s assurer de la correction du modèle utilisé. Pour le première modélisation, la bonne compréhension de l énoncé est en général suffisante. Pour la deuxième, il faut souvent faire preuve d imagination et être d une rigueur sans faille pour être sur de ne rien avoir oublier et de ne rien compter deux fois. Ce deuxième modèle, n a, de plus, aucune raison d être unique, d où la multiplicité des solutions proposées. III. Choix des exercices. A travers le choix de mes exercices, j ai essayé d illustrer les différentes méthodes mentionnées ci-dessus, de donner un aperçu de la diversité des exercices que l ont peut rencontrer et de la mutiplité des solutions qu ils peuvent avoir. Le premier exercice consiste à faire une énumération après avoir organiser les éléments de l ensemble à dénombrer dans une arborescence. Le deuxième utilise la partition de l ensemble total à l aide de trois parties en position générale. Le troisième illustre la diversité des modélisations possibles en ramenant le problème initial à des dénombrements de points entiers dans des triangles de R 2. Le quatrième montre la limite de la méthode énumérative qui, dès que la complexité augmente, reste sans voix face à la question Êtes-vous sur de ne rien avoir oublié et de ne rien avoir compter deux fois?. Le cinquième montre la force du raisonnement (ici par récurrence) qui permet d aboutir à un résultat inaccessible à toute méthode énumérative. Le dernier est un exemple de la diversité des situations mathématiques donnant lieu à des problèmes de dénombrement.

5 5 EXERCICES : Exercice 1 : Un arbre pour compter. Un livreur de lait doit livrer 4 maisons différentes A, B, C et D. Il est hésitant sur son trajet. De combien de manières différentes peut-il organiser ses livraisons? Exercice 2 : Réunions et intersections. Bréal Tle S, TP 2 page 276. Les élèves d une classe pratiquent tous au moins une des trois langues vivantes suivantes : allemand, anglais ou espagnol. On sait de plus que : deux d entre eux pratiquent les trois langues, quinze suivent les cours d allemand et d anglais, sept suivent les cours d allemand et d espagnol, dix suivent les cours d anglais et d espagnol, vingt-deux suivent les cours d allemand, vingt-six suivent les cours d anglais, seize suivent les cours d espagnol. 1-) Combien d élèves pratiquent l anglais et l allemand sans l espagnol? Combien d élèves pratiquent l anglais et l espagnol sans l allemand? 2-) Combien d élèves étudient seulement l allemand? l espagnol? 3-) Combien y-a-t il d élèves dans la classe? Exercice 3 : Horodateur, inéquations et dénombrements. Terracher Tle S, TP 1.1. page 272. A un horodateur, on doit s acquitter de la somme de 1 Euro 80. La machine ne rend pas la monnaie et accepte les pièces de 1 Euro, 50, 20, et 10 centimes d Euro. De combien de manières différentes peut-on payer? Exercice 4 : Des triangles dans tous leurs états. Terracher Tle S, n 63 page 280. Combien de triangles non aplatis dont les cotés sont tracés sur la figure ci-dessous peut-on compter? A B C

6 6 Exercice 5 : Initiation à la récurrence. On considère un polygone convexe à n sommets. Combien possède-t il de diagonales (droites joignant deux sommets distincts non voisins)? Exercice 6 : Point entiers sur une courbe. Combien y-a-t il de points à coordonnées entières sur la courbe représentative de la fonction définie sur R + par x 2x/(1 + x).

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

LA RÉSOLUTION DE PROBLÈME

LA RÉSOLUTION DE PROBLÈME 1 LA RÉSOLUTION DE PROBLÈME CYCLES 2 ET 3 Circonscription de Grenoble 4 Evelyne TOUCHARD conseillère pédagogique Mots clé Démarche d enseignement - catégories de problèmes (typologie)- problème du jour-

Plus en détail

Synthèse «Le Plus Grand Produit»

Synthèse «Le Plus Grand Produit» Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Partiel - 12 mars 2014

Partiel - 12 mars 2014 Licence STS, semestre 4 013 14 Mathématiques pour l Informatique (Info 9) 1 mars 014 http://www.lri.fr/~paulin/mathinfo Partiel - 1 mars 014 L examen dure heures. L énoncé est composé de 5 pages. Toutes

Plus en détail

Mathématiques - OPTION TECHNOLOGIQUE

Mathématiques - OPTION TECHNOLOGIQUE ESPRIT GENERAL Objectifs de l épreuve Vérifier chez les candidats l existence des bases nécessaires pour des études supérieures de management. Apprécier l aptitude à lire et comprendre un énoncé, choisir

Plus en détail

Elaboration d une séquence d apprentissage

Elaboration d une séquence d apprentissage Elaboration d une séquence d apprentissage La séquence propose de présenter le passage du retour à l unité lors de résolution de problèmes de proportionnalité puis, à partir de cette situation, de retrouver

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

TRAAM 2011/2012 «Formation au calcul et résolution de problèmes» Des tables de multiplication aux expressions littérales

TRAAM 2011/2012 «Formation au calcul et résolution de problèmes» Des tables de multiplication aux expressions littérales TRAAM 2011/2012 «Formation au calcul et résolution de problèmes» Des tables de multiplication aux expressions littérales Introduction Le constat Le constat est unanime : «Les élèves ne connaissent plus

Plus en détail

ANIMATION PEDAGOGIQUE Le calcul mental Cycle 2 Mercredi 31 mars 2010 IUFM

ANIMATION PEDAGOGIQUE Le calcul mental Cycle 2 Mercredi 31 mars 2010 IUFM ANIMATION PEDAGOGIQUE Le calcul mental Cycle 2 Mercredi 31 mars 2010 IUFM Détour historique En 1909:«Les exercices de calcul mental figureront à l emploi du temps et ne devront pas être sacrifiés à des

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500. References

NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500. References NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500 ABRAHAM BROER References [R] Kenneth H. Rosen, Mathématiques discrètes, Édition révisée Chenelière McGraw-Hill, 2002. 1. But

Plus en détail

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice La démarche d investigation en mathématiques 1) Qu est ce que la démarche d investigation en sciences? 2) Qu est-ce que faire des mathématiques? - Pour un chercheur Plan de cette intervention - Dans l

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves (atelier animé par l académie de Besançon) Le fil conducteur

Plus en détail

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire L2-S4 : 2014-2015 Suort de cours Statistique & Probabilités Chaitre 1 : Analyse combinatoire R. Abdesselam UFR de Sciences Economiques et de Gestion Université Lumière Lyon 2, Camus Berges du Rhône Rafik.abdesselam@univ-lyon2.fr

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Pré requis à retenir I Le plan de rénovation de l enseignement des langues vivantes :

Pré requis à retenir I Le plan de rénovation de l enseignement des langues vivantes : Pré requis à retenir I Le plan de rénovation de l enseignement des langues vivantes : Ce plan énumère cinq priorités (BO du 8 juin 2006, circulaire AEFE du 11 septembre 2012) Priorité donnée à l apprentissage

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Mathématiques 1er Grade aperçu du programme (exemple)

Mathématiques 1er Grade aperçu du programme (exemple) 1er Grade aperçu du programme (exemple) Unité 1 Unité 2 Unité 3 Unité 4 Unité 5 Unité 6 Addition et Soustraction des nombres jusqu à 10 et fluence Position et valeurs, Comparaison, Addition et Soustraction

Plus en détail

Spécialité auxiliaire en prothèse dentaire du brevet d études professionnelles. ANNEXE IIb DEFINITION DES EPREUVES

Spécialité auxiliaire en prothèse dentaire du brevet d études professionnelles. ANNEXE IIb DEFINITION DES EPREUVES ANNEXE IIb DEFINITION DES EPREUVES 51 Epreuve EP1 : ANALYSE ET COMMUNICATION TECHNOLOGIQUES UP1 Coefficient 4 Finalité et objectifs de l épreuve L épreuve vise à évaluer la capacité du candidat à mobiliser

Plus en détail

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique?

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique? Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir Enoncé : d une même problématique? Une histoire de boîtes (cinquième) On dispose d une feuille

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Méthode universitaire du commentaire de texte

Méthode universitaire du commentaire de texte Méthode universitaire du commentaire de texte Baptiste Mélès Novembre 2014 L objectif du commentaire de texte est de décrire la structure argumentative et de mettre au jour les concepts qui permettent

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique - IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Document d accompagnement. de la 1 re à la 8 e année. Exemples de tâches et corrigés. 1 re année Tâche 1... 5 Corrigé... 7 Tâche 2... 8 Corrigé...

Document d accompagnement. de la 1 re à la 8 e année. Exemples de tâches et corrigés. 1 re année Tâche 1... 5 Corrigé... 7 Tâche 2... 8 Corrigé... Normes de performance de la Colombie-Britannique Document d accompagnement Mathématiques de la 1 re à la 8 e année Exemples de tâches et corrigés 1 re année Tâche 1... 5 Corrigé... 7 Tâche 2... 8 Corrigé...

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,

Plus en détail

UPMC Master informatique 2 STL NI503 Conception de langages Notes I

UPMC Master informatique 2 STL NI503 Conception de langages Notes I UPMC Master informatique 2 STL NI503 Conception de langages Notes I 2012 1 Évaluer Un langage Le langage Logo est composé commandes permettant de diriger le déplacement d un point sur un plan cartésien

Plus en détail

PLAN DE COURS. TITRE DU COURS : Mise à niveau pour mathématique 536

PLAN DE COURS. TITRE DU COURS : Mise à niveau pour mathématique 536 100, rue Duquet, Sainte-Thérèse (Québec) J7E 3G6 Téléphone : (450) 430-3120 Télécopieur : (450) 971-7883 Internet : http://www.clg.qc.ca SESSION : H-2009 NO DE COURS : 201-009-50 PRÉALABLE(S) : Math 436

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

SMPMKOM. råáí =ÇÛbåëÉáÖåÉãÉåí=_= rb=_=j=i~åöìé=sáî~åíé=bìêçé ÉååÉ

SMPMKOM. råáí =ÇÛbåëÉáÖåÉãÉåí=_= rb=_=j=i~åöìé=sáî~åíé=bìêçé ÉååÉ SMPMKOM råáí =ÇÛbåëÉáÖåÉãÉåí=_= rb=_=j=i~åöìé=sáî~åíé=bìêçé ÉååÉ SMPMKOMN UC B3 - Langue Vivante Européenne Utilisateur indépendant - Niveau B1 du CECR A - Référentiel de formation UC B31 Langue Vivante

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

ÉPREUVE EXTERNE COMMUNE. Mathématiques DOSSIER DE L'ENSEIGNANT

ÉPREUVE EXTERNE COMMUNE. Mathématiques DOSSIER DE L'ENSEIGNANT ÉPREUVE EXTERNE COMMUNE Mathématiques CE1D2011 DOSSIER DE L'ENSEIGNANT Ministère de la Communauté française Administration générale de l Enseignement et de la Recherche scientifique Service général du

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE. alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT

SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE. alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT SOCLE COMMUN ET PROGRAMMES La référence pour la rédaction

Plus en détail

1. ASPECTS MATHÉMATIQUES

1. ASPECTS MATHÉMATIQUES LE PROGRAMME ENSEMBLE DES NOMBRES ENTIERS NATURELS 1. ASPECTS MATHÉMATIQUES 1.1. Rappels 1.1.1. Les nombres entiers Définitions et propriétés Ensemble des nombres entiers naturels 15 On note! l ensemble

Plus en détail

O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée

O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée O b s e r v a t o i r e E V A P M É q u i p e d e R e c h e r c h e a s s o c i é e à l ' I N R P Taxonomie R. Gras - développée Grille d'analyse des objectifs du domaine mathématique et de leurs relations

Plus en détail

ETABLIR UN DEVIS Fiche professeur

ETABLIR UN DEVIS Fiche professeur Fiche professeur NIVEAU Classe de 6 ème MODALITES DE GESTION POSSIBLES Travail individuel ou en binôme 1 ère étape : distribution, lecture et compréhension du sujet 2 ème étape : temps de recherche des

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa

Plus en détail

Formulaire de Mathématique

Formulaire de Mathématique COLLECTION LES LEXIQUES DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Mathématique par Xavier Chauvet LEXIQUE N 17 COLLECTION DIRIGÉE PAR

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

2ème place A B C A C B

2ème place A B C A C B ANALYSE COMBINATOIRE L analyse combinatoire est l étude des différentes manières de ranger des objets et permet de répondre à des questions telles que: Combien de nombres différents de 4 chiffres peut-on

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Épreuves pour la session 2015

Épreuves pour la session 2015 Épreuves d admissibilité Concours Centrale-Supélec Épreuves pour la session 2015 Les épreuves d admissibilité, qui sont toutes des épreuves écrites longues (trois ou quatre heures), visent à évaluer les

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Principe et règles d audit

Principe et règles d audit CHAPITRE 2 Principe et règles d audit 2.1. Principe d audit Le principe et les règles d audit suivent logiquement l exposé précédent. D abord, comme dans toute branche de l activité d une entreprise, l

Plus en détail

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Unité Systèmes d'information CM : 45h - TD : 60h - TP : 12h - Coeff 2 Systèmes de Gestion de Bases de Données Modéliser

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail