Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens."

Transcription

1 Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur de Rayleigh, ouverture angulaire...). Connaître la forme de l intensité d un faisceau gaussien. Comprendre le lien entre le "pincement" du faisceau et sa divergence angulaire. Comprendre la marche des rayons et les spécificités de la focalisation d un faisceau gaussien à travers une lentille mince. Comprendre comment transformer un faisceau cylindrique en faisceau conique et réciproquement. Comprendre pourquoi la tache de focalisation d un faisceau laser a une surface minimale de l ordre de 2. Introduction. Le mot "laser" est l acronyme anglais de Light Amplification by Stimulated Emission of Radiation signifiant amplification de la lumière par émission stimulée de radiation. Le premier rayonnement laser a été réalisé le 16 mai 1960 par l américain Théodore Maiman, mais l histoire commence 43 ans plus tôt avec Albert Einstein. Cette réalisation a pu être effectuée d une part par amplification du rayonnement grâce à une inversion de population, rendue possible par le pompage optique découvert en 1950 par le français Alfred Kastler, et d autre part par une condition d oscillation dans le domaine optique à l aide d une cavité Perot - Fabry (travaux de Gordon Gould en 1954), qui se comporte comme un filtre à bande étroite (travaux de Charles Townes et Arthur Schawlow en 1958). On compte à ce jour pas moins de doue prix Nobel attribués à la fois pour les travaux fondateurs du laser et pour des résultats obtenus grâce à celui-ci. Les propriétés spécifiques des lasers : il existe plusieurs familles de lasers selon leur mode de fonctionnement (en continu ou en impulsions) selon leur nature (solide, liquide, gaeuse), selon leur puissance, leur monochromaticité et leur accordabilité en fréquence. Une source laser présente par rapport aux autre sources de lumière une forte monochromaticité, donc une grande cohérence temporelle (typiquement l C = 30 cm), une forte directivité, donc une grande cohérence spatiale (typiquement l S = qqs mm) et une forte puissance (typiquement de 1000 W/m 2 ). 1 Structure des faisceaux gaussiens. 1.1 Insuffisances du modèle de l onde plane. On a déjà rencontré les ondes planes parmi les solutions les plus simples de l équation des ondes : ces ondes sont non limitées transversalement et caractérisées par une amplitude constante, transportant de ce fait une puissance en théorie infinie (puisque non limitée spatialement). Ce modèle des ondes planes ne peut être qu une approximation plus ou moins adaptée à la propagation des ondes. En particulier, il est très mal adapté à la propagation en milieu confiné, comme par exemple dans un guide d ondes ou dans une cavité, comme c est le cas pour les lasers. 1.2 Structure gaussienne d un faisceau laser ; mode fondamental. La lumière appartient au domaine des ondes électromagnétiques, et peut être entièrement caractérisée par la connaissance de son vecteur champ électrique E, lui même solution dans un milieu linéaire et transparent d une équation des ondes à trois dimensions, dont la structure dépend des conditions aux limites. De manière à tenir compte de la structure confinée caractéristique des faisceaux lasers, on montre que l équation d ondes vérifiée par E admet comme solution dans l approximation de l optique paraxiale, des ondes dont le profil d intensité est de forme gaussienne (on dit aussi modes gaussiens). Nous nous limiterons à la recherche de la solution la plus simple présentant la symétrie cylindrique (E(r, )), connu sous le nom de mode fondamental (d autres solutions existent appelées modes d ordre supérieur). 1/ 5

2 L intensité lumineuse du mode fondamental d un faisceau gaussien (Figure 1.1) peut s écrire sous la forme ) I(r, ) = I M () exp ( 2r2 w 2 () avec [ ] 2 ( ) 2 w0 I M () = I 0 et w() = w w() R Figure 1.1 profil axial du mode fondamental où w 0, homogène à une longueur est appelée rayon de ceinture (ou rayon de pincement) ou waist en anglais, R homogène à une longueur est appelée longueur de Rayleigh (notée aussi L R ), avec R = πw2 0, où est la longueur d onde du laser, w() caractérise l extension radiale du faisceau (pour fixé, I est divisée par le facteur 1/e 2 13, 5 % à la distance r = w() par rapport à sa valeur sur l axe I M ()). L intensité lumineuse contenue dans le cercle de rayon w() est à peu près égale à 86 % de l intensité totale. Profil longitudinal d un faisceau gaussien (Figure 1.2). Figure 1.2 évolution d un faisceau gaussien Le waist, placé conventionnellement dans le plan = 0, est une grandeur clé d un faisceau laser. En pratique le plan du waist est situé à l intérieur de la cavité laser (souvent au milieu mais pas forcément), voire dans le plan de sortie du laser. L évolution de w() fait apparaître deux ones : R : w() varie peu et on peut considérer le faisceau comme cylindrique de rayon w 0. R : w() w 0 : le rayon croît linéairement avec. On obtient un faisceau divergent dont le R demi-angle d ouverture est tan(θ) θ = w 0 R = ainsi, plus le faisceau est pincé, plus il est divergent (à la distance = R, le rayon prend la valeur w( R ) = w 0 2). L angle θ est appelé angle de divergence du faisceau ou plus couramment divergence du faisceau. La relation θ met en évidence une analogie avec la diffraction par un trou de rayon w 0 qui diffracterait une onde plane incidente dans un cône de demi-angle au sommet θ 0, 61 w 0. Ceci montre que la diffraction est une propriété attachée à la propagation d un faisceau confiné : dans le cas du laser, tout se passe comme si le faisceau diffractait sur son propre bord dans la one cylindrique : ainsi, il est impossible de concentrer autant qu on le veut la puissance d un faisceau. Bien avoir à l esprit que les hyperboles représentant les équations r() = ±w() dessinent l enveloppe du faisceau gaussien mais ne représentent en rien la trajectoire des rayons lumineux! 2/ 5

3 Longueur de Rayleigh. La longueur de Rayleigh est une mesure de la divergence du faisceau R πθ 2 : le faisceau est d autant plus divergent que R est petit. Le plus souvent, les constructeurs n indiquent que la divergence du faisceau, comprise typiquement entre 0, 2 mrad et 2, 0 mrad. Ainsi, pour un laser hélium - néon ( = 633 nm) du laboratoire d optique, en prenant θ 1, 5 mrad, le waist vaut typiquement w µm et R 90 mm. avec θ = 0, 5 mrad, on obtient w 0 = 0, 4 mm et R 80 cm. Pour un pointeur laser émettant un faisceau dans le rouge ( = 700 nm), on a typiquement θ 0, 2 mrad qui donne un waist w 0 1 mm et R 4, 5 m. On notera la grande amplitude de variations de la longueur de Rayleigh pour des valeurs asse proches de celles du waist. 1.3 Complément HP : Phase d un faisceau gaussien. On montre que la phase totale du champ électrique associé à un faisceau gaussien (terme en exp [ iφ(r, )]) est du type ( ) kr φ(r, ) = k arctan + [ 2 ( R R ) ] Par rapport à une onde plane, la phase comporte deux contributions supplémentaires : l une, longitudinale ϕ() = arctan(/ R ) est la phase de Gouy, caractéristique de l onde gaussienne, l autre, radiale donne au front d onde sa forme sphérique. Ce n est que dans le plan du waist = 0 que l onde est plane. Les surfaces d ondes sont sphériques, de rayon R() = + 2 R. On voit que R() ne varie pas linéairement avec, donc la position du centre de courbure varie avec. De manière générale, on peut assimiler le faisceau laser à une onde plane tant que R. Le rayon de courbure décroît lorsqu on s approche de = R. Le rayon de courbure est minimal pour = R où il vaut 2 R. Lorsque continue d augmenter au-delà de R, le rayon de courbure réaugmente. Pour R, on a R() : loin de la distance de Rayleigh, l onde est sphérique de centre O. Les caractéristiques d un faisceau gaussien : divergence, distance de Rayleigh, diamètre en un point, et rayon de courbure des surfaces d onde dépendent uniquement du waist et de la longueur d onde. Ces deux grandeurs suffisent donc à caractériser un faisceau gaussien. Mais si on connaît la longueur d onde et la divergence ou la distance de Rayleigh, on peut en déduire le waist. 2 Image d un faisceau gaussien par un système optique. 2.1 Image par une lentille. Un faisceau gaussien est entièrement déterminé par sa longueur d onde et son waist. Le problème qui se pose est le suivant : étant donné un faisceau gaussien incident dont le waist w 0 est situé à la distance d une lentille mince de focale f, quelles sont la position et la valeur w 0 du waist du faisceau image? On comptera les distances algébriquement à partir du centre de la lentille comme en optique géométrique. Il s avère que le waist image n est pas l image géométrique du waist objet. En ce sens, le faisceau gaussien ne suit pas les lois de l optique géométrique. En effet, en optique géométrique, les ondes sont considérées comme sphériques (voire planes), dont le centre de courbure est fixe et la focalisation du rayonnement se fait au centre de courbure de l onde sphérique émergente. En optique gaussienne, il faut remarquer que : le centre de courbure de l onde n est pas fixe (cf l expression de R()). l onde se focalise sur le plan du waist image (Figure 1.3). En optique gaussienne, les centres de courbure des ondes incidente et émergente sont conjugués, mais pas les plans des waists (et dans certains cas il sont très loin de l être!). 3/ 5

4 À noter que l image d un objet éclairé par un faisceau laser reste de toutes façons déterminée en grandeur et en position par les lois de l optique géométrique. Figure 2.1 focalisation d un faisceau gaussien par une lentille On établit la relation de conjugaison en raisonnant de la manière suivante : Une onde sphérique gaussienne divergente est transformée par la lentille en une onde gaussienne convergente. Leurs centres de courbures sont images l un de l autre par la lentille. Les rayons de courbure des deux ondes gaussiennes au niveau de la lentille vérifient donc la relation de Descartes pour les lentilles minces. Les diamètres 2w et 2w des deux faisceaux sont égaux sur la lentille. La résolution de ce système est un peu technique et sort du cadre du programme. On trouve = f (f + ) + 2 R (f + ) R où R est la longueur de Rayleigh du faisceau objet. 2.2 Quelques particuliers importants. et w 0 f = w 0 (f + ) 2 + R 2 1. Si, f R. C est le cas d une lentille de courte focale éclairée par un faisceau dont le waist est proche de la lentille. On trouve f, c est-à-dire que le waist image est au foyer image, et w 0/w 0 = f / R 1 donc le waist image est très petit. On a w 0 = w 0f = f typiquement de l ordre de w 0 avec une lentille R dont la focale est de quelques millimètres. On a focalisé le faisceau incident au foyer de la lentille (en théorie toutefois toujours en avant du plan focal image de la lentille!), ce qui se comprend car dans cette situation le faisceau incident est parallèle et formé d une onde plane. f' q F' Figure 2.2 focalisation d un faisceau gaussien avec la waist dans le plan de la lentille. On peut comprendre ce résultat sans disposer des formules donnant et w 0 à l aide du raisonnement semiqualitatif suivant : L onde incidente éclairant la lentille est une onde plane (dans le plan du waist) et les rayons sont parallèles à l axe optique. Ils convergent donc tous vers le foyer image F au sens de l optique géométrique, donnant un faisceau émergent conique de demi-angle au sommet θ = w 0. Mais ce faisceau émergent est un faisceau f gaussien et en appliquant le principe du retour inverse de la lumière, on en déduit que le faisceau conique ne peut pas converger en F, mais qu il y atteint un rayon minimal, égal au waist (ici le waist image w 0). L angle θ forme alors l angle de divergence du faisceau, relié à son waist par la relation θ = πw 0 w 0 = πθ soit w 0 = f. On retrouve bien l expression établie précédemment pour w 0. 4/ 5

5 2. Waist objet au foyer objet. Si on place le waist du faisceau incident au foyer objet de la lentille, on a = f. Alors = f et le waist image se trouve à nouveau au foyer image de la lentille. Le grandissement est w 0/w 0 = f / R. Si f R, ce grandissement est grand (Figure 1.5). F 2w 0 2w' 0 F' Figure 2.3 waist objet dans le pan focal Dans ce cas, le waist image est large et le faisceau image diverge peu. Le faisceau sortant est quasiment parallèle dans ce cas. On voit aussi que w 0 = f : plus le waist objet est petit (petit point lumineux au foyer objet) et plus le waist image est large (faisceau sortant très parallèle). 3. Si R. Dans cette limite, l onde incidente sur la lentille est une onde sphérique divergente centrée sur le waist objet, qui vérifie alors les lois de l optique géométrique. Dans ce cas limite, la position et le grandissement du waist image sont donnés par l optique géométrique. 2.3 Image d un faisceau gaussien par un système afocal. Un système afocal est constitué de deux lentilles L 1 et L 2 de distances focales f 1 et f 2, avec le foyer image de la première au foyer objet de la deuxième. La distance entre les deux lentilles est donc f 1 + f 2. On peut utiliser soit deux lentilles convergentes, soit une lentille divergente de courte focale et une convergente de plus grande focale (c est moins encombrant). En optique géométrique, l image d un faisceau parallèle par un afocal est un faisceau parallèle au faisceau incident, élargi d un facteur f 2/f 1. La question est de savoir si on peut élargir ou rétrécir un faisceau gaussien avec un tel système, et si oui, avec quel grandissement. Il y a deux manières de procéder. Nous commençons par la moins fréquente, et finissons par la plus fréquente (de loin). 1. Waist du faisceau incident au foyer objet de L 1. Ce réglage est asse difficile à réaliser, car on ne sait pas où précisément se trouve le waist issu d un laser. Par contre la situation est théoriquement possible. Après la traversée de L 1, le waist w 0 se trouve au foyer image de L 1, c est-à-dire aussi au foyer objet de L 2 (Figure 1.6). Après la traversée de L 2, le waist image w 0 se trouve au foyer image de L 2 et sa largeur est w 0 = f 2 = f 2 πf 1 /() = f 2 w 0. f 1 Le waist image se trouve donc au foyer image de L 2, et est élargi d un facteur f 2/f 1. Il en résulte que la divergence du faisceau image est θ = f 1 θ, où est la divergence du faisceau incident. La raison est que la divergence est inversement proportionnelle au waist. f 2 F' 1 =F 2 f' 2 L 2 Figure 2.4 faisceau émergent d un télescope laser 2. Waist proche de L 1. Dans cette situation, on place le waist à une distance de L 1 petite devant la longueur de Rayleigh. Cela peut se faire en plaçant L 1 directement à la sortie du laser. On a vu que dans ce cas, le waist w 0 se trouve au foyer image de L 1 (c est-à-dire aussi au foyer objet de L 2 ) après la traversée de L 1, et que w 0 = f w 0 / R = f /( ). La situation est alors la même que dans le cas précédent : le faisceau sortant de L 2 aura son waist au foyer image de L 2, avec une largeur w 0 = w 0 f 2/f 1 et une divergence θ = θf 1/f 2. On constate qu un système afocal permet d élargir un faisceau gaussien conformément à l optique géométrique et de diminuer d autant sa divergence. On peut aussi s en servir pour diminuer le diamètre d un faisceau laser, mais en augmentant d autant sa divergence. 5/ 5

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

X LENTILLES SPHERIQUES MINCES

X LENTILLES SPHERIQUES MINCES X LENTILLES SPHERIQUES MINCES Exercices de niveau Dans ces exercices vous apprendrez à manipuler correctement les relations de conjugaison et de grandissement, d abord dans des cas très simples puis plus

Plus en détail

Sources - Techniques de projection - Lentilles

Sources - Techniques de projection - Lentilles TPC2 TP - Sciences Physiques Sources - Techniques de projection - Lentilles Objectifs généraux de formation Formation disciplinaire - Capacités exigibles Caractériser une source lumineuse par son spectre.

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique Programme de khôlle - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique 1. Savoir que la lumière est une onde électromagnétique, se propagent de manière omnidirectionnelle à partir d une

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Chapitre II: lentilles

Chapitre II: lentilles Chapitre II: lentilles II.1) Système optique idéal II.2) Les lentilles et les miroirs II.1) Système optique idéal Surface d onde (1) Surface d onde S: Tous les points de S sont en phase Dans ce cas, S

Plus en détail

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES page XII- XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES Le but de ce chapitre est de rencontrer quelques-unes des nombreuses associations de lentilles sphériques minces tout en manipulant les connaissances

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

Formation des images dans les conditions de Gauss

Formation des images dans les conditions de Gauss ormation des images dans les conditions de Gauss Table des matières 1 Définitions 3 1.1 Système optique............................... 3 1.2 Objet-Image................................. 3 1.2.1 Objet................................

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

Feuille d'exercices : optique géométrique

Feuille d'exercices : optique géométrique Feuille d'exercices : optique géométrique P Colin 2015/2016 Formulaire : Rappel des relations de conjugaison pour une lentille mince L de centre O, de foyer objet F, de foyer image F et de distance focale

Plus en détail

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles?

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? PENET François LAMARCQ Simon DELAHAYE Nicolas Les lentilles optiques Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? Sommaire : Introduction

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

Exercices, dioptres sphériques et lentilles

Exercices, dioptres sphériques et lentilles 1 exercices, dioptres sphériques et lentilles Exercices, dioptres sphériques et lentilles 1 Lentille demi-boule Considérons une lentille demi-boule de centre O, de sommet S, de rayon R = OS = 5cm, et d'indice

Plus en détail

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille 1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille Cours 1. Vision d un objet : Un objet ne peut être vu que s il émet de la lumière et que celle-ci pénètre dans l

Plus en détail

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale Automne 2011 Nom : Chaque question à choix multiples vaut 3 points 1. Une lentille convergente dont l indice de réfraction est de 1,5 initialement

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

LA LUMIERE. J observe l expérience p 190 Je réponds aux questions 1 à 7. Chapitre 13

LA LUMIERE. J observe l expérience p 190 Je réponds aux questions 1 à 7. Chapitre 13 LA LUMIERE : Les lentilles (p 188) I Lentille convergente et lentille divergente Quelle est l action d une lentille sur un faisceau de lumière parallèle? Activité 1 p 190 J observe l expérience p 190 Je

Plus en détail

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques DNS Sujet Optique géométrique de base... 1 I.Miroirs sphériques...1 A.Position de l image et grandissement transversal... 1 B.Le télescope de Cassegrain...2 II.Lentilles minces... 3 A.Position de l image

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Chap. II suite : IV LES LENTILLES MINCES

Chap. II suite : IV LES LENTILLES MINCES Chap. II suite : IV LES LENTILLES MINCES 1 Définitions: Qu est ce qu une lentille? 1 Chap. II suite : IV LES LENTILLES MINCES 1 Définitions: Rappel: dioptre =???? Lentille =?? dioptres Lentille mince =??

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Miroirs sphériques et lentilles minces dans l approximation de Gauss

Miroirs sphériques et lentilles minces dans l approximation de Gauss MP - Optique - Miroirs sphériques et lentilles minces dans l approximation de Gauss page /7 Miroirs sphériques et lentilles minces dans l approximation de Gauss Expériences et simulations permettent de

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES Professeur M. CHEREF Faculté de Médecine Alger I Université d Alger I- Les Lentilles (1) : Généralités (1) Lentille : définition MILIEU

Plus en détail

Introduction à l optique : approche ondulatoire

Introduction à l optique : approche ondulatoire PCSI1-Lycée Michelet 2015-2016 Introduction à l optique : approche ondulatoire I. Bref historique La nature de la lumière a fait l objet d une controverse dès le XVII eme siècle : Descartes puis Newton

Plus en détail

Les lentilles minces TP 3

Les lentilles minces TP 3 TP 3 Les lentilles minces Mots-clefs : lentille convergente, lentille divergente, distance focale, équation de conjugaison, réel, virtuel, méthode de Silbermann, autocollimation. Vous disposez de : un

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

ANNALE 2005-2006 FILERE FAS

ANNALE 2005-2006 FILERE FAS Première Année Premier Cycle ANNALE 2005-2006 FILERE FAS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON Par M.Rey marie.rey@insa-lyon Physique 1 Filière FAS TABLE DES MATIERES PROPAGATION DE LA LUMIERE...

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Université Bordeaux Segalen Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2011/2012 OPTIQUE GEOMETRIQUE

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

La correction de la myopie grâce au laser

La correction de la myopie grâce au laser La correction de la myopie grâce au laser Au fil du temps, les gens atteints de myopie en ont assez de devoir porter des lunettes ou des lentilles cornéennes qui les empêchent de profiter de leurs activités

Plus en détail

Devoir Surveillé n 3

Devoir Surveillé n 3 Devoir Surveillé n 3 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

TD d optique n o 3 Lentilles sphériques minces

TD d optique n o 3 Lentilles sphériques minces Lycée rançois Arago Perpignan M.P.S.I. - TD d optique n o Lentilles sphériques minces Exercice - Constructions de rayons émergents. Représenter les rayons émergents correspondants aux rayons incidents

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Les lentilles sont des volumes de substances transparentes limitées par deux surfaces sphériques, l une au plus pouvant être plane.

Les lentilles sont des volumes de substances transparentes limitées par deux surfaces sphériques, l une au plus pouvant être plane. Chapitre 6 Les lentilles I. Définitions des lentilles Les lentilles sont des volumes de substances transparentes limitées par deux surfaces sphériques, l une au plus pouvant être plane. L épaisseur d une

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

Vision industrielle Dispositif optique

Vision industrielle Dispositif optique Vision industrielle Dispositif optique Plan du cours L objectif La focale L ouverture La mise au point Qualité d image Choix de l objectif Cours de Vision Industrielle Nicolas Vandenbroucke 2 Constitution

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Repère : SESSION 2008 Durée : 3 H Page : 0/7 Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Page : 1/7 Coefficient : 2

Plus en détail

Chapitre 2 : Les mécanismes optiques de l œil (p. 19)

Chapitre 2 : Les mécanismes optiques de l œil (p. 19) THÈME 1 : REPRÉSENTATION VISUELLE Chapitre 2 : Les mécanismes optiques de l œil (p. 19) Savoir-faire : Reconnaître la nature convergente ou divergente d une lentille. Représenter symboliquement une lentille

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

Les lasers : quoi, comment, pourquoi?

Les lasers : quoi, comment, pourquoi? Les lasers : quoi, comment, pourquoi? Thierry Lahaye LCAR, UMR 5589 du CNRS, Toulouse Délégation régionale du CNRS 8 novembre 2010 Il y a 50 ans naissait le laser 16 mai 1960, Theodor Maiman (Hughes Research

Plus en détail

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3 Cours d'optique non linéaire Table des matières Chapitre 1 Introduction à l optique géométrique...1 Chapitre 2 Formation des images... 13 Chapitre 3 Lentilles minces sphériques... 21 1. Propagation de

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

Chapitre 4 Les lentilles minces

Chapitre 4 Les lentilles minces Chapitre 4 Les lentilles minces Sidi M. Khefif Département de Physique EPST Tlemcen 10 février 2013 1. Généralités 1.1. Description Définition : Une lentille est un milieu transparent limité par deux dioptres,

Plus en détail

SYSTÈMES CENTRÉS DANS LES CONDITIONS

SYSTÈMES CENTRÉS DANS LES CONDITIONS YTÈME ENTRÉ DAN LE ONDITION DE GAU Table des matières 1 ystèmes centrés focaux 2 1.1 oyer image Plan focal image................................ 2 1.2 oyer objet Plan focal objet.................................

Plus en détail

OBS.2 UN MODÈLE POUR L ŒIL exercices

OBS.2 UN MODÈLE POUR L ŒIL exercices OBS.2 UN MODÈLE POUR L ŒIL eercices SAVOIR SON COURS ❶ Mots manquants Les rayons de lumière en provenance d un objet pénètrent dans l œil, traversent plusieurs milieu transparents et forment l image de

Plus en détail

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière Physique 51421 Module 3 Lumière et optique géométrique Rappel : les ondes Il existe deux types d ondes : Ondes transversale : les déformations sont perpendiculaire au déplacement de l onde. (ex : lumière)

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 Optique 2 Mariano-Goulart QCM n 1 : A, C A. Vrai. Hz.m -1.s => B. Faux.. C. Vrai. L'équation donnée montre que l onde électrique

Plus en détail

ETUDE DES LENTILLES MINCES

ETUDE DES LENTILLES MINCES ETUDE DES LENTILLES MINCES I ) Définitions Une lentille est un milieu transparent limité par deux surfaces dont l une au moins n est pas plane. Parmi les lentilles minces, on distingue deux catégories

Plus en détail

L œil ; un système optique

L œil ; un système optique Première L/ES - AP SPC 1 L œil ; un système optique 1/ Des notions à avoir bien comprises Propagation de la lumière : dans un milieu homogène (même propriété en tous points), la lumière se propage en ligne

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

Le modèle des lentilles minces convergentes

Le modèle des lentilles minces convergentes 1 Le modèle des lentilles minces convergentes LES LENTILLES MINCES CNVERGENTES résumés de cours Définition Une lentille est un milieu transparent limité par deux faces dont l'une au moins est sphérique.

Plus en détail

MIROIRS SPHÉRIQUES ET LENTILLES

MIROIRS SPHÉRIQUES ET LENTILLES EXPÉRIENCE 5 MIROIRS SPHÉRIQUES ET LENTILLES I. Introduction et objectifs Les miroirs et les lentilles sont des objets utilisés quotidiennement. Le miroir le plus répandu (et le plus simple) est le miroir

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

Optique géométrique. La lumière est à la fois une onde et un corpuscule!

Optique géométrique. La lumière est à la fois une onde et un corpuscule! Optique géométrique UE3 Voir est un phénomène complexe qui implique une succession d événement qui permettent de détecter, localiser et identifier un objet éclairé par une source de lumière. L œil est

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

SP4 Formation des images & Approximation de Gauss

SP4 Formation des images & Approximation de Gauss SP4 Formation des images & Approximation de Gauss Objectifs de cette leçon : Définitions d un objet, d une image et d un système optique. Notions d objets et d images étendues Notions d objets et d images

Plus en détail

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono!. Mots manquants a. transparents ; rétine b. le centre optique c. à l'axe optique d. le foyer objet e. OF ' f. l'ensemble des milieux transparents; la

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE I Qu est-ce que la lumière? Historique : théorie ondulatoire et théorie corpusculaire II Aspect ondulatoire Figure 1-1 : (a) Onde plane électromagnétique

Plus en détail

Fiche à destination des enseignants TS 2 CD ou DVD?

Fiche à destination des enseignants TS 2 CD ou DVD? Fiche à destination des enseignants TS 2 CD ou DVD? Type d'activité Activité expérimentale ou évaluation expérimentale, type ECE Objectifs Pré-requis Conditions de mise en œuvre Liste du matériel, par

Plus en détail

Chapitre 6 : LES LENTILLES MINCES S 3 F

Chapitre 6 : LES LENTILLES MINCES S 3 F Chapitre 6 : LES LENTILLES MINCES S 3 F I) Généralité sur l optique géométrique : 1) Rappel sur les faisceaux lumineux : A partir d'une source de lumière, nous observons un faisceau lumineux qui peut être

Plus en détail

Approche documentaire n 1 : autour de l appareil photographique numérique

Approche documentaire n 1 : autour de l appareil photographique numérique Approche documentaire n 1 : autour de l appareil photographique numérique But : «En comparant des images produites par un appareil photographique numérique, discuter l influence de la focale, de la durée

Plus en détail

Fiche guide Formation des images

Fiche guide Formation des images Fiche guide Formation des images Cette fiche guide «Formation des images» vous sera utile pour les TP O1 et O2. Elle contient l essentiel de ce que vous devez savoir et savoir-faire. Vous n y aurez pas

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Filières SMP & SMIA, année 2012-2013 Optique Géométrique Pr. Khalid ASSALAOU FPL, Maroc

Filières SMP & SMIA, année 2012-2013 Optique Géométrique Pr. Khalid ASSALAOU FPL, Maroc Filières SMP & SMIA, année 202-203 Optique Géométrique Pr. Khalid ASSALAOU, Maroc Les lentilles minces (suite) 2 Construction du rayon émergent correspondant à un rayon incident donné lentille convergente

Plus en détail

obs.4 Un modèle pour l œil exercices

obs.4 Un modèle pour l œil exercices obs.4 Un modèle pour l œil eercices Savoir son cours Mots manquants Les rayons de lumière en provenance d un objet pénètrent dans l œil, traversent plusieurs milieu transparents et forment l image de l

Plus en détail

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts 1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts Cours I. Modélisation d un œil : 1. Schéma de l œil et vision : L œil est un récepteur de lumière sensible aux radiations lumineuses

Plus en détail

Sciences Physiques 1ES S. Zayyani. Fiche de Cours

Sciences Physiques 1ES S. Zayyani. Fiche de Cours Sciences Physiques 1ES S. Zayyani Fiche de Cours Unité : Représentation visuelle Chapitre: Chapitre 1 L œil Voir un objet Pour que l on puisse «voir un objet», il faut certaines conditions. Il faut surtout

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique et et 1/21 1 / 21 et Lumière blanche Lampe à incandescence : lumière blanche Source thermique : Fonctionnement basé sur le rayonnement électromagnétique spontané d un corps chauffé à haute température,

Plus en détail

Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours

Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours Plan du chapitre : I. Présentation et conditions d utilisation 1. Définitions 2. Types de lentilles minces 3. Conditions

Plus en détail

Module 1, chapitre 4 : LES LENTILLES

Module 1, chapitre 4 : LES LENTILLES Module 1, chapitre 4 : LES LENTILLES Nom : 4.1 Les différents types de lentilles Laboratoire: Les types de lentilles But : Découvrir les caractéristiques principales de divers types de lentilles. Matériel

Plus en détail

LES LENTILLES MINCES

LES LENTILLES MINCES LES LENTILLES MINCES I. GÉNÉRALITÉS Une lentille est un milieu transparent, homogène et isotrope limité par deux dioptres sphériques ou un dioptre sphérique et un dioptre plan. n distingue deux types de

Plus en détail

Chapitre 12 Physique quantique

Chapitre 12 Physique quantique DERNIÈRE IMPRESSION LE 29 août 2013 à 13:52 Chapitre 12 Physique quantique Table des matières 1 Les niveaux d énergie 2 1.1 Une énergie quantifiée.......................... 2 1.2 Énergie de rayonnement

Plus en détail

Chapitre 7 Lentilles minces

Chapitre 7 Lentilles minces Chapitre 7 Introduction Nombreuses applications: équipent quasiment tous les instruments d optique Définition Une lentille est un système centré défini par un MHIT limité par 2 dioptres (sphérique/sphérique

Plus en détail

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

Question O1. Réponse. Petit schéma : miroir

Question O1. Réponse. Petit schéma : miroir Question O1 Vous mesurez 180 cm, vous vous tenez debout face à un miroir plan dressé verticalement. Quelle doit être la hauteur minimale du miroir pour que vous puissiez vous y voir des pieds à la tête,

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Formation des images, lentilles et miroirs

Formation des images, lentilles et miroirs Formation des images, lentilles et miroirs 1 Pourquoi faut-il une optique afin de créer une image? 2 Préambule: chaque point d un dun objet et la source d un ensembles de rayons Point source fronts d onde

Plus en détail