ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes
|
|
- Fabrice Olivier
- il y a 2 ans
- Total affichages :
Transcription
1 ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité, de l intervalle de temps séparant le versement de deux annuités, du nombre de versements ainsi que de la date de versement de la première annuité. Deux cas peuvent se présenter : -annuités constantes -annuités non constantes En d autres termes, il s agit d un versement régulier d un certains capital, qui capitalisé, atteint une valeur acquise croissante au fur et à mesure que le temps passe. b. Bref rappel sur les suites Dans cette leçon, nous considérerons des suites dont les indices de définition seront des entiers naturels, et dont les valeurs seront données dans l ensemble des réels. *Suite arithmétique Une suite arithmétique de terme général est définie par la donnée du premier terme, la raison r, et le numéro n du terme considéré.
2 Nous obtenons ainsi l expression : Considérons désormais la somme de plusieurs termes d une suite arithmétique. Soit S la somme de n termes définie par Du fait de la commutativité, cette somme peut être exprimée en sens inverse : En additionnant les deux équations, nous obtenons donc, C est ainsi qu en connaissant uniquement le premier terme d une suite ainsi que le nombre de termes et la raison de la suite nous pouvons connaître la somme. *Suite géométrique Nous définissons une suite géométrique de terme général terme, de la raison q et du numéro du nième terme n. par la donné de son premier Nous obtenons donc l expression :
3 Là aussi nous pouvons déterminer la somme d une suite de n termes d une suite géométrique. Tout d abord, considérons l expression suivante appelée somme télescopique ; Si l on développe cette expression nous obtenons le résultat suivant : Ainsi, Nous pouvons ainsi formaliser le tout par : Et isoler la somme des puissances croissantes de x : Ainsi en appliquant cette formule aux suites géométriques, où Soit S la somme des termes d une suite géométrique de puissances croissantes
4 Soit après remplacement par leurs formules explicites, après simplification, II Valeur Acquise par une suite de n annuités a.valeur Acquise de n annuités a le montant de l annuité. n le nombre d annuités. i le taux de placement Si l on considère un processus de versements d annuités constantes sur n périodes. La première annuité versée à la date 1 sera capitalisée pendant n-1 périodes, soit La deuxième annuité versée à la date 2 sera capitalisée pendant n-2 périodes, soit La n-1ième annuité versée à la date n-1 sera capitalisée pendant 1 période, soit La nième annuité versée à la date n sera capitalisée pendant 0 périodes, soit
5 Au final si l on nomme la valeur acquise par cette suite d annuités, nous obtenons : En appliquant le résultat de la somme géométrique. Exemple Un créancier décide de placer 1000 par mois au taux mensuel de 1% pendant 10 mois. Calculer la valeur acquise par cette suite d annuités. Il s agit d un simple exercice d application de formule. b.valeur acquise d une suite d annuités après le versement de la nième annuité. Si l on se place en qualité de créancier versant une somme régulièrement tous les mois jusqu à une certaine période. A la fin de cette période pour des raisons ou autres il décide d interrompre le versement régulier de mensualité mais décide de laisser la valeur acquise par ces différentes mensualité. Cette valeur acquise forme un capital qui va ainsi être capitalisé. Supposons que ce dernier décide de laisser ce nouveau capital pendant «d» périodes après le versement de la dernière annuité. Le capital acquis sera déterminé par la formule :
6 Exemple Calculer la valeur acquise de 10 annuités de 1000 chacune au taux de 1%, 5 période après le placement de la 10 ème annuité. Dans cet exercice nous pouvons utiliser la formule : Mais nous pouvons également utiliser le résultat de l exemple précédent où : Dans ce cas, III Valeur Actuelle Commerciale d une suite d annuités a.valeur Actuelle Commerciale de n annuités Si l on considère un processus de versements d annuités constantes sur n périodes.
7 La première annuité versée à la date 1 est située à une période de l origine, sa valeur actuelle commerciale est donc La deuxième annuité versée à la date 2 est située à deux périodes de l origine, sa valeur actuelle commerciale est donc La nième annuité versée à la date n est située à Au final si l on nomme obtenons : la valeur actuelle commerciale de cette suite d annuités, nous Mais est la valeur à l origine du capital acquis par la suite de n annuités. Nous avons donc : Exemple Déterminer la valeur actuelle commerciale (valeur à l origine) d une suite de 10 annuités de 1000 chacune au taux d escompte de 9%.
8 Nous utilisons donc la formule précédente et nous obtenons : b.valeur d une suite d annuités avant la date d origine En supposant que l on se situe désormais à «d» périodes avant la date d origine et en notant la valeur d une suite d annuités d période avant la date d origine, nous obtenons la formule : Exemple Une suite de 10 annuités de 1000 chacune est escomptée au taux de 9%. Calculer la valeur de cette suite d annuités 5 périodes avant l origine. En utilisant directement la formule, nous obtenons : IV Echeance moyenne d une suite d annuités
9 Soit n annuités constantes de valeur nominale a d origine 0. En substituant cette suite de versement par un montant unique de valeur «na» à x périodes de l origine, nous obtenons à l origine, l équation : Cette équation nous permet ainsi de déterminer l échéance moyenne définie par x. V Annuités Variables a.annuités en progression arithmétique *Valeur Acquise Considérons n annuités en progression arithmétique de premier terme a et de raison r. Si nous établissons la valeur acquise, nous obtenons :
10 Nous avons donc en séparant les termes en a et les termes en r Or nous remarquons que le premier terme : Considérons désormais le deuxième terme que nous nommerons S, soit : Si nous multiplions cette expression par (1+i) de part et d autre de l égalité nous obtenons : Désormais si l on retranche cette nouvelle expression par l expression précédente : Les premiers termes de cette suite correspondent à une suite en progression géométrique et nous obtenons ainsi : D où en factorisant par S, nous avons : S[(1+i)-1]=
11 Ainsi la formule de est la somme de S et de l expression, soit : après factorisation : Exemple Etablir la valeur acquise d une suite de 20 annuités variables en progression arithmétique, sachant que la première annuité a pour valeur 1000 de raison 100 et de taux 12%. Dans cet exercice nous utilisons directement la formule : Ainsi en établissant l application numérique nous obtenons : * Valeur Actuelle Commerciale
12 Pour obtenir la valeur actuelle d une suite arithmétique d annuités, il suffit tout comme dans le cadre des annuités constantes de multiplier la valeur acquise par pour en fait «décapitaliser» la valeur acquise. Nous obtenons donc : Là encore il existe une manière de simplifier cette formule et de donner une expression directement utilisable. Si l on ajoute et l on retranche nous obtenons : Or, Nous pouvons donc factoriser l expression : Exemple
13 Calculer la valeur actuelle commerciale d une suite arithmétique de 20 annuités dont le premier terme est de 1000 et de raison 100 dont le taux est de 10%. Il s agit là encore dans cet exercice d appliquer directement la formule de la valeur actuelle commerciale. b.suite en progression géométrique *Valeur acquise Considérons la suite des valeurs acquise d annuités en progression géométrique. La somme en est : Nous remarquons que la raison de la suite est. Le premier terme est Nous pouvons ainsi simplifier l expression en utilisant la formule d une suite géométrique : Soit en résolvant au même dénominateur pour le numérateur et le dénominateur de l expression originelle ;
14 après simplification en multipliant par l inverse du dénominateur, nous obtenons ; Exemple Etablir la valeur acquise d une suite de 20 annuités en progression géométrique dont le premier terme est 1000 de raison 1,5 et de taux 10%. Dans cet exercice il s agit là aussi d appliquer directement la formule : *Valeur Actuelle Commerciale Là aussi pour obtenir la valeur actuelle commerciale il suffit de multiplier le résultat obtenu dans le calcul de la valeur acquise.
15 EXERCICES D APPLICATION Exercice 1 Un créancier décide de se constituer un capital de au 1 er janvier Pour cela il place un montant constant chaque année au taux annuel de 10%. Il décide de commencer l opération le 1 er janvier Calculer le montant de l annuité annuelle. Exercice 2 Une suite de 12 annuités est constituée de 4 annuités de 1000 puis de 4 annuités de 1500, puis de 4 annuités de Calculer la valeur acquise de cette suite d annuités ainsi que sa valeur actuelle. Taux de 10% Exercice 3 Une suite de 15 annuités se décompose de la façon suivante : 5 annuités égales entre elles
16 5 annuités égales au double des 5 premières et égales entre elles. 5 autres annuités égales entre elles et égales au triple des premières. La valeur à l origine de ces 15 annuités est de avec un taux de 9%. Calculer le montant des 5 premières annuités. Exercice 4 Un créancier décide de placer tous les 5ans un capital de au taux de 5%. Calculer la valeur acquise d une suite de 4 versements. Exercice 5 a.calculer la valeur acquise et la valeur actuelle d une suite de 25 annuités en progression arithmétique dont le taux est de 9% et dont la première annuité est de 1000 et la raison de 80. b. Même question si la suite d annuités avait été géométrique et la raison de 2. Exercice 6 a.calculer la valeur acquise et la valeur actuelle d une suite de 10 annuités en progression arithmétique dont le taux est de 9% et dont la première annuité est de 2500 et la raison de b. Même question si la suite d annuités avait été géométrique et la raison de 1/2.
MATHÉMATIQUES FINANCIÈRES I
MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation
Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16
Chapitre 1 La valeur et le temps 1 Exercice 01-16 16 Échéance commune de plusieurs effets Définition. L échéance commune de plusieurs effets est l échéance d un effet unique qui, le jour de l équivalence,
Chapitre 5. Calculs financiers. 5.1 Introduction - notations
Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement
MATHÉMATIQUES FINANCIÈRES I
MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation
Intérêts composés - Amortissements
Intérêts composés - Amortissements Objectif : - Etudier et calculer les éléments d un placement à intérêts composés. - Effectuer un tableau d amortissement. I - Approche : Examinons la publicité suivante
nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an
Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long
I Suites géométriques, maths fi (1 + α + α 2 + + α n )
UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs
Cours de mathématiques - Alternance Gea
Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre 2005 1 Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite.
Annuités. Administration Économique et Sociale. Mathématiques XA100M
Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital
Suites numériques. Quelques rappels
Suites numériques 1 Quelques rappels Trouver pour chacune des suites suivantes les termes manquants. Lesquelles sont des suites arithmétiques? (Préciser le premier terme et la raison) Lesquelles sont des
Mathématiques financières
Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice
MATHÉMATIQUES FINANCIÈRES
MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................
EXERCICES - ANALYSE GÉNÉRALE
EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par
Apllication au calcul financier
Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts
SUITES ET SÉRIES GÉOMÉTRIQUES
SUITES ET SÉRIES GÉOMÉTRIQUES Sommaire 1. Suites géométriques... 2 2. Exercice... 6 3. Application des suites géométriques aux mathématiques financières... 7 4. Vocabulaire... 7 5. Exercices :... 8 6.
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
MATHÉMATIQUES FINANCIÈRES I. CHAPITRE I Intérêt et escompte. L intérêt et sa mesure. (ACT2025) Robert Bédard
MATHÉMATIQUES FINANCIÈRES I (ACT2025) Robert Bédard CHAPITRE I Intérêt et escompte L intérêt et sa mesure L'intérêt est ce qu'un emprunteur d'un capital versera à un prêteur pour l'utilisation de cette
RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92)
RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) 1. Suites géométriques Définition Suite Une suite,,,, est un ensemble de nombres. L indice de chaque terme de la suite indique la ou l
Chapitre : Annuités. I/ Généralités : Professeur : AUOATIF MAJID. A/ Définition : B/ types d annuités : A/ Valeur acquise : 1) Exemple :
I/ Généralités : A/ Définition : Une annuité est une suite de versements faits à intervalles. La période de l'annuité est l'intervalle de temps qui sépare. consécutifs. La période peut avoir une durée
Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.
Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
Chapitre II : Les emprunts indivis
Chapitre II : Les emprunts indivis I. Caractéristiques générales On appelle emprunt indivis, un contrat entre un et un seul prêteur et un et un seul emprunteur. Un tel emprunt fait l objet d un remboursement
MATHÉMATIQUES FINANCIÈRES I
MATHÉMATIQUES FINANCIÈRES I Cinquième cours Taux instantané constant Taux instantané constant Date de comparaison Taux instantané constant Date de comparaison Diagramme d entrées et sorties Taux instantané
2. Les exponentielles
- 1 - Les eponentielles. Les eponentielles.1 Introduction et définitions Eemple 1 : On veut faire un élevage de souris. Pour cela on achète 1 souris grises, souris blanches et 1 souris brunes. Les souris
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat
T.D. 1. Licence 2, 2014 15 - Université Paris 8
Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?
Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.
Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée
Cours de mathématiques : Equation du second degré
Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre
A propos du calcul des rentabilités des actions et des rentabilités moyennes
A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que
Mathématiques financières
Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................
Utilisation des fonctions financières d Excel
Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts
Suites numériques 2. n=0
Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Opérations financières à intérêts simples
9 Opérations financières à intérêts simples cχ Activité 1 Placement à la banque Intérêts simples Baptiste a en sa possession 15 000. En prévision de l acquisition d une voiture, il place cette somme pendant
15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples
Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un
) est une suite croissante si et seulement si, pour tout entier n, u n + 1
1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement
Un peu de calculs financiers
Un peu de calculs financiers 1. Les intérêts simples Intérêt : somme rapportée par le prêt d un capital. Il est proportionnel au montant de la somme prêtée et à la durée du prêt Période : le temps est
Emprunts indivis (amortissement)
1. Amortissement constant : a) Activité : Une entreprise souhaite renouveler son parc informatique. Elle estime qu elle doit dépenser 5 000 ; elle emprunte cette somme au taux de 5 % annuel le 1 er janvier
COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES
COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot
SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n
GEOSI. Les intérêts et les Emprunts
GEOSI Les intérêts et les Emprunts 1.Définition Lorsque qu une personne (prêteur) prête une somme à une autre personne (emprunteur) il est généralement convenu de rembourser, à l échéance, cet emprunt
Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés
Chapitre 1 - Suites I Suites géométriques I.1 Définition et propriétés TD 1 : Évolutions de populations Le premier janvier 2011, une ville A compte 350 000 habitants. A la même date, une ville B compte
EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants?
EMPRUNT INDIVIS Objectifs : - Savoir calculer une annuité de remboursement constante ; - Dresser un tableau d amortissement d emprunt par annuités constantes ou par amortissements constants ; - Calculer
CH X Intérêts composés - Amortissements
CH X Intérêts composés - Amortissements I) Les intérêts composés : 1) Situation : Un capital de 20 000,00 est placé à un taux d intérêts de 4 % l an pendant 5 ans. Chaque année les intérêts produits viennent
SENS DE VARIATION D UNE SUITE
1 Les suites SENS DE VARIATION D UNE SUITE La suite (u n ) est croissante lorsque pour tout entier n, u n + 1 u n. La suite (u n ) est décroissante lorsque pour tout entier n, u n + 1 u n. La suite (u
Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :
Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la
LISTE D EXERCICES 2 (à la maison)
Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros
Chapitre 2 La valeur des flux monétaires actualisés
T2 Organisation du chapitre Chapitre 2 La valeur des flux monétaires actualisés Organisation du chapitre! 2.1 Les valeurs capitalisées et actualisées de flux monétaires multiples! 2.2 L évaluation de flux
II. Les intérêts composés
P6C03 Les calculs financiers Les intérêts représentent le loyer de l argent et correspondent à la rémunération du prêteur. I. Les intérêts simples Les intérêts simples sont utilisés pour des opérations
Mathématiques financières
Ecole Nationale de Commerce et de Gestion de Kénitra Mathématiques financières Enseignant: Mr. Bouasabah Mohammed ) بوعصابة محمد ( ECOLE NATIONALE DE COMMERCE ET DE GESTION -KENITRA- Année universitaire:
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences
Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières I - Généralités LES INTERETS COMPOSES 1) Définitions
DES FONCTIONS FINANCIERES SUR EXCEL
BIOVA CONSULTING DES FONCTIONS FINANCIERES SUR EXCEL Messanh Ametepe Kouevidjin BIOVA CONSULTING Liberte 5-studio 5393/0-dakar-senegal BIOVA CONSULTING/ biovaconsulting@gmail.com / amk_consulting@yahoo.fr
5) À la fin de l examen, insérer votre questionnaire dans votre cahier d examen.
ACT2025 groupes 20, 21, 22. Mathématiques financières I EXAMEN DE MI-SESSION mercredi 4 novembre 2009 Professeurs: Version 2. Robert Bédard Claude Pichet Nom de famille (en lettres majuscules): Prénom:
Intérêts. Administration Économique et Sociale. Mathématiques XA100M
Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique
Calculs financiers (1) : intérêts simples, composés.
Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).
Ma banque, mes emprunts et mes intérêts
Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,
Fiche d entraînement sur : LE CALCUL LITTERAL
Fiche d entraînement sur : LE CALCUL LITTERAL Collège Exercices d entraînement personnel, classés par compétences. Compétence n 1 : savoir simplifier et réduire une expression littérale. 1.a) Simplifier
Fonctions homographiques
Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.
LES INFORMATIONS GÉNÉRALES
GUIDE D UTILISATION Calculatrice Texas Instrument BA II Plus Avril 2007 LES INFORMATIONS GÉNÉRALES La calculatrice financière Texas Instrument BA II Plus a été conçue pour satisfaire aux diverses applications
Thème 3: Les mathématiques financières. D eux concepts im portants : Les tables financières et la calculatrice: Sharp EL-733A
Thème 3: Les mathématiques financières D eux concepts im portants : Le calcul des intérêts L anuité Les tables financières et la calculatrice: Sharp EL-733A Cinq concepts importants d un emprunts Capitalisation
Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL
Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond
Cours de Mathématiques Financières 3è année
Cours de Mathématiques Financières 3è année MATHEMATIQUES FINANCIERES PLAN DU COURS 1 ère PARTIE: Les intérêts simples Objectifs Section 1 : l intérêt simple 1- Définition 2- Application Section 2 : application
Le financement des investissements par emprunts
Le financement des investissements par emprunts Définition Pour bien démarrer I) Les emprunts a) Remboursables par amortissements constants b) Remboursables par échéances constantes c) Conclusion sur les
Mathématiques Ch. 1 : Suites arithmétiques et géométriques
1 - LYCÉE LOUIS PAYEN - BTS CGO Mathématiques Ch. 1 : Suites arithmétiques et géométriques Cours J-L NEULAT 1 Généralités sur les suites 1.1 Les différents modes de génération d une suite Un suite peut
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 31 août 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat 31
Série d exercices 4. /s k
ACT-10412 Mathématiques financières Série d exercices 4 1. Un prêt est remboursé à l aide de n paiements annuels égaux. Après n 1 années, le montant total de capital remboursé s élève à 3 955,20. La part
Correction Baccalauréat STMG Antilles Guyane 18 juin 2015
Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements
Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES BASES DE L EVALUATION DES INVESTISSEMENTS Les
CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48
1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles
COURS 470 Série 17. Comptabilité Générale
COURS 470 Série 17 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de
DCG 6. Finance d entreprise CORRIGÉS DU MANUEL
DCG 6 Finance d entreprise CORRIGÉS DU MANUEL EXPERT SUP L expérience de l expertise Les manuels DCG DCG 1 Introduction au droit, Manuel et Applications corrigées Jean-François Bocquillon, Martine Mariage
Formules et Approches Utilisées dans le Calcul du Coût Réel
Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Équations et inéquations du 1 er degré
Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Chapitre 15 : Les techniques de financement
Chapitre 15 : Les techniques de financement I. Les intérêts composés On utilise les intérêts composés au lieu des intérêts simples lorsque la durée d un placement ou d un emprunt dépasse un an. A. La valeur
CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts
CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.
CH VII Les intérêts simples
CH VII Les intérêts simples I) Capital, intérêts, valeur acquise : Un capital est une somme d argent qui rapporte un loyer que l on appelle intérêts. Un capital peut être placé ou emprunté. L intérêt est
Chapitre 2. Valeur acquise par un capital
MATHEMATIQUES FINANCIERES Le temps, c'est de l'argent Si un capital est placé pendant "un temps assez long", on utilise les intérêts composés. En règle générale, à moins d'être complètement étranger aux
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
FONCTIONS FINANCIÈRES
FONCTIONS FINANCIÈRES Les fonctions financières d Excel permettent de calculer des mensualités, des taux d intérêts, des durées, etc. À chaque fois, il faudra faire très attention au niveau de la durée
MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES
MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale
Leçon N 1 : Taux d évolution et indices
Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une
La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires
CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 11 février 2015 à 9 h 30 «La revalorisation des pensions et des droits à la retraite : problématique et résultats de projection» Document N 5 Document
COURS GESTION FINANCIERE SEANCE 6 DECISIONS D INVESTISSEMENT
COURS GESTION FINANCIERE SEANCE 6 DECISIONS D INVESTISSEMENT SEANCE 6 DECISIONS D INVESTISSEMENT EFFET DE LEVIER La séance 6 (première partie) traite des décisions d investissement. Il s agit d optimiser
Fiche PanaMaths Calculs avec les fonctions sous Xcas
Fiche PanaMaths Calculs avec les fonctions sous Xcas Cette fiche destinée aux élèves des classes de Terminale requiert un premier niveau de connaissance du logiciel Xcas. Définition d une fonction Fonctions
Chapitre 4 : cas Transversaux. Cas d Emprunts
Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de
L emprunt indivis - généralités
L emprunt indivis - généralités Les modalités de calcul d un échéancier de remboursement d un emprunt indivis forment un thème d étude des outils de gestion en BTS HR (partie mathématiques financières)
Numération C.M.1. Ecole primaire de Provenchères sur Fave
Numération C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Les nombres entiers Chiffres et nombres p. 03 Le système de numération des nombres entiers p. 04 La lecture des nombres entiers p. 05 L
I. Génération d une suite
I. Génération d une suite a. Activité 1 : Suite fonctionnelle 1. Qu est-ce qu une suite? 2. Représenter avec la calculatrice une représentation graphique des termes des suites suivantes : a) u n = n 2
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 15 septembre 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat
MATHEMATIQUES FINANCIERES
MATHEMATIQUES FINANCIERES V 3.3 Marc MENOU Décembre 2008 TABLE DES MATIERES TABLE DES MATIERES 2 1 INTRODUCTION 7 2 DEFINITIONS 10 2.1 CONCERNANT LE TEMPS 10 2.2 CONCERNANT L INTERET 11 3 SOMME UNIQUE
Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R.
I. Opérations de base Calculs dans R : 1- Opérations dans R Activité 1 Compléter : 3 1 1) + =... 2 4 3 On dit que est la. de 2 et 1 4 (3 2 et 1 sont les de cette ) 4 3 2 3 2) =... ; On dit que est la de
L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux
L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.
52321 - Informatique 2. Tableur. Emploi usuel d un tableur 26.02.2007. Emploi usuel d un tableur Autres emplois Simulation Scénario Exercices
52321 - Informatique 2 26.02.2007 Peter DAEHNE Emploi usuel d un tableur Autres emplois Simulation Peter DAEHNE -2- Emploi usuel d un tableur Créer des tableaux comprenant: des cellules contenant des valeurs
Chapitre I : Annuité et Rente
Chapitre I : Annuité et Rente I. Généralités On appelle annuité une suite de règlements effectuée à intervalle de temps égaux. On dit que cette suite de règlements constitue une rente pour celle ou celui