ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

Dimension: px
Commencer à balayer dès la page:

Download "ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes"

Transcription

1 ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité, de l intervalle de temps séparant le versement de deux annuités, du nombre de versements ainsi que de la date de versement de la première annuité. Deux cas peuvent se présenter : -annuités constantes -annuités non constantes En d autres termes, il s agit d un versement régulier d un certains capital, qui capitalisé, atteint une valeur acquise croissante au fur et à mesure que le temps passe. b. Bref rappel sur les suites Dans cette leçon, nous considérerons des suites dont les indices de définition seront des entiers naturels, et dont les valeurs seront données dans l ensemble des réels. *Suite arithmétique Une suite arithmétique de terme général est définie par la donnée du premier terme, la raison r, et le numéro n du terme considéré.

2 Nous obtenons ainsi l expression : Considérons désormais la somme de plusieurs termes d une suite arithmétique. Soit S la somme de n termes définie par Du fait de la commutativité, cette somme peut être exprimée en sens inverse : En additionnant les deux équations, nous obtenons donc, C est ainsi qu en connaissant uniquement le premier terme d une suite ainsi que le nombre de termes et la raison de la suite nous pouvons connaître la somme. *Suite géométrique Nous définissons une suite géométrique de terme général terme, de la raison q et du numéro du nième terme n. par la donné de son premier Nous obtenons donc l expression :

3 Là aussi nous pouvons déterminer la somme d une suite de n termes d une suite géométrique. Tout d abord, considérons l expression suivante appelée somme télescopique ; Si l on développe cette expression nous obtenons le résultat suivant : Ainsi, Nous pouvons ainsi formaliser le tout par : Et isoler la somme des puissances croissantes de x : Ainsi en appliquant cette formule aux suites géométriques, où Soit S la somme des termes d une suite géométrique de puissances croissantes

4 Soit après remplacement par leurs formules explicites, après simplification, II Valeur Acquise par une suite de n annuités a.valeur Acquise de n annuités a le montant de l annuité. n le nombre d annuités. i le taux de placement Si l on considère un processus de versements d annuités constantes sur n périodes. La première annuité versée à la date 1 sera capitalisée pendant n-1 périodes, soit La deuxième annuité versée à la date 2 sera capitalisée pendant n-2 périodes, soit La n-1ième annuité versée à la date n-1 sera capitalisée pendant 1 période, soit La nième annuité versée à la date n sera capitalisée pendant 0 périodes, soit

5 Au final si l on nomme la valeur acquise par cette suite d annuités, nous obtenons : En appliquant le résultat de la somme géométrique. Exemple Un créancier décide de placer 1000 par mois au taux mensuel de 1% pendant 10 mois. Calculer la valeur acquise par cette suite d annuités. Il s agit d un simple exercice d application de formule. b.valeur acquise d une suite d annuités après le versement de la nième annuité. Si l on se place en qualité de créancier versant une somme régulièrement tous les mois jusqu à une certaine période. A la fin de cette période pour des raisons ou autres il décide d interrompre le versement régulier de mensualité mais décide de laisser la valeur acquise par ces différentes mensualité. Cette valeur acquise forme un capital qui va ainsi être capitalisé. Supposons que ce dernier décide de laisser ce nouveau capital pendant «d» périodes après le versement de la dernière annuité. Le capital acquis sera déterminé par la formule :

6 Exemple Calculer la valeur acquise de 10 annuités de 1000 chacune au taux de 1%, 5 période après le placement de la 10 ème annuité. Dans cet exercice nous pouvons utiliser la formule : Mais nous pouvons également utiliser le résultat de l exemple précédent où : Dans ce cas, III Valeur Actuelle Commerciale d une suite d annuités a.valeur Actuelle Commerciale de n annuités Si l on considère un processus de versements d annuités constantes sur n périodes.

7 La première annuité versée à la date 1 est située à une période de l origine, sa valeur actuelle commerciale est donc La deuxième annuité versée à la date 2 est située à deux périodes de l origine, sa valeur actuelle commerciale est donc La nième annuité versée à la date n est située à Au final si l on nomme obtenons : la valeur actuelle commerciale de cette suite d annuités, nous Mais est la valeur à l origine du capital acquis par la suite de n annuités. Nous avons donc : Exemple Déterminer la valeur actuelle commerciale (valeur à l origine) d une suite de 10 annuités de 1000 chacune au taux d escompte de 9%.

8 Nous utilisons donc la formule précédente et nous obtenons : b.valeur d une suite d annuités avant la date d origine En supposant que l on se situe désormais à «d» périodes avant la date d origine et en notant la valeur d une suite d annuités d période avant la date d origine, nous obtenons la formule : Exemple Une suite de 10 annuités de 1000 chacune est escomptée au taux de 9%. Calculer la valeur de cette suite d annuités 5 périodes avant l origine. En utilisant directement la formule, nous obtenons : IV Echeance moyenne d une suite d annuités

9 Soit n annuités constantes de valeur nominale a d origine 0. En substituant cette suite de versement par un montant unique de valeur «na» à x périodes de l origine, nous obtenons à l origine, l équation : Cette équation nous permet ainsi de déterminer l échéance moyenne définie par x. V Annuités Variables a.annuités en progression arithmétique *Valeur Acquise Considérons n annuités en progression arithmétique de premier terme a et de raison r. Si nous établissons la valeur acquise, nous obtenons :

10 Nous avons donc en séparant les termes en a et les termes en r Or nous remarquons que le premier terme : Considérons désormais le deuxième terme que nous nommerons S, soit : Si nous multiplions cette expression par (1+i) de part et d autre de l égalité nous obtenons : Désormais si l on retranche cette nouvelle expression par l expression précédente : Les premiers termes de cette suite correspondent à une suite en progression géométrique et nous obtenons ainsi : D où en factorisant par S, nous avons : S[(1+i)-1]=

11 Ainsi la formule de est la somme de S et de l expression, soit : après factorisation : Exemple Etablir la valeur acquise d une suite de 20 annuités variables en progression arithmétique, sachant que la première annuité a pour valeur 1000 de raison 100 et de taux 12%. Dans cet exercice nous utilisons directement la formule : Ainsi en établissant l application numérique nous obtenons : * Valeur Actuelle Commerciale

12 Pour obtenir la valeur actuelle d une suite arithmétique d annuités, il suffit tout comme dans le cadre des annuités constantes de multiplier la valeur acquise par pour en fait «décapitaliser» la valeur acquise. Nous obtenons donc : Là encore il existe une manière de simplifier cette formule et de donner une expression directement utilisable. Si l on ajoute et l on retranche nous obtenons : Or, Nous pouvons donc factoriser l expression : Exemple

13 Calculer la valeur actuelle commerciale d une suite arithmétique de 20 annuités dont le premier terme est de 1000 et de raison 100 dont le taux est de 10%. Il s agit là encore dans cet exercice d appliquer directement la formule de la valeur actuelle commerciale. b.suite en progression géométrique *Valeur acquise Considérons la suite des valeurs acquise d annuités en progression géométrique. La somme en est : Nous remarquons que la raison de la suite est. Le premier terme est Nous pouvons ainsi simplifier l expression en utilisant la formule d une suite géométrique : Soit en résolvant au même dénominateur pour le numérateur et le dénominateur de l expression originelle ;

14 après simplification en multipliant par l inverse du dénominateur, nous obtenons ; Exemple Etablir la valeur acquise d une suite de 20 annuités en progression géométrique dont le premier terme est 1000 de raison 1,5 et de taux 10%. Dans cet exercice il s agit là aussi d appliquer directement la formule : *Valeur Actuelle Commerciale Là aussi pour obtenir la valeur actuelle commerciale il suffit de multiplier le résultat obtenu dans le calcul de la valeur acquise.

15 EXERCICES D APPLICATION Exercice 1 Un créancier décide de se constituer un capital de au 1 er janvier Pour cela il place un montant constant chaque année au taux annuel de 10%. Il décide de commencer l opération le 1 er janvier Calculer le montant de l annuité annuelle. Exercice 2 Une suite de 12 annuités est constituée de 4 annuités de 1000 puis de 4 annuités de 1500, puis de 4 annuités de Calculer la valeur acquise de cette suite d annuités ainsi que sa valeur actuelle. Taux de 10% Exercice 3 Une suite de 15 annuités se décompose de la façon suivante : 5 annuités égales entre elles

16 5 annuités égales au double des 5 premières et égales entre elles. 5 autres annuités égales entre elles et égales au triple des premières. La valeur à l origine de ces 15 annuités est de avec un taux de 9%. Calculer le montant des 5 premières annuités. Exercice 4 Un créancier décide de placer tous les 5ans un capital de au taux de 5%. Calculer la valeur acquise d une suite de 4 versements. Exercice 5 a.calculer la valeur acquise et la valeur actuelle d une suite de 25 annuités en progression arithmétique dont le taux est de 9% et dont la première annuité est de 1000 et la raison de 80. b. Même question si la suite d annuités avait été géométrique et la raison de 2. Exercice 6 a.calculer la valeur acquise et la valeur actuelle d une suite de 10 annuités en progression arithmétique dont le taux est de 9% et dont la première annuité est de 2500 et la raison de b. Même question si la suite d annuités avait été géométrique et la raison de 1/2.

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16 Chapitre 1 La valeur et le temps 1 Exercice 01-16 16 Échéance commune de plusieurs effets Définition. L échéance commune de plusieurs effets est l échéance d un effet unique qui, le jour de l équivalence,

Plus en détail

I Suites géométriques, maths fi (1 + α + α 2 + + α n )

I Suites géométriques, maths fi (1 + α + α 2 + + α n ) UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Cinquième cours Taux instantané constant Taux instantané constant Date de comparaison Taux instantané constant Date de comparaison Diagramme d entrées et sorties Taux instantané

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Intérêts composés - Amortissements

Intérêts composés - Amortissements Intérêts composés - Amortissements Objectif : - Etudier et calculer les éléments d un placement à intérêts composés. - Effectuer un tableau d amortissement. I - Approche : Examinons la publicité suivante

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Les mathématiques financières

Les mathématiques financières Chapitre 13 Les mathématiques financières Gérer ses finances personnelles ou jouer le rôle de conseiller dans ce domaine demande que l on ait une bonne connaissance des produits financiers et des marchés

Plus en détail

Mathématiques financières

Mathématiques financières Ecole Nationale de Commerce et de Gestion de Kénitra Mathématiques financières Enseignant: Mr. Bouasabah Mohammed ) بوعصابة محمد ( ECOLE NATIONALE DE COMMERCE ET DE GESTION -KENITRA- Année universitaire:

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Cet ouvrage couvre totalement le programme de l UE 6 Finance

Cet ouvrage couvre totalement le programme de l UE 6 Finance Cet ouvrage couvre totalement le programme de l UE 6 Finance d entreprise du Diplôme de Comptabilité et de Gestion (DCG) des études de l expertise comptable. Il s inscrit également dans le cadre des programmes

Plus en détail

Chapitre II : Les emprunts indivis

Chapitre II : Les emprunts indivis Chapitre II : Les emprunts indivis I. Caractéristiques générales On appelle emprunt indivis, un contrat entre un et un seul prêteur et un et un seul emprunteur. Un tel emprunt fait l objet d un remboursement

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE)

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE) 3/$,78'RF) 0DWKpPDWTXHVGHO DUJHQW HW OHVpWXGHVWHFKQTXHVpFRQRPTXHV édité par Mr. G.Moumoulidis (OTE) 8,2,7(5$7,2$/('(67(/(&2008,&$7,26,7(5$7,2$/7(/(&2008,&$7,28,2 8,2,7(5$&,2$/'(7(/(&208,&$&,2(6 - - 0DWKpPDWTXHVGHO

Plus en détail

Annuités. Administration Économique et Sociale. Mathématiques XA100M

Annuités. Administration Économique et Sociale. Mathématiques XA100M Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital

Plus en détail

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE 1 Factures de doit p. 9 Processus 1 2 Réductions sur factures de doit p. 11 Processus 1 3 Frais accessoires sur factures p. 13 Processus 1 4 Comptabilisation

Plus en détail

Formules et Approches Utilisées dans le Calcul du Coût Réel

Formules et Approches Utilisées dans le Calcul du Coût Réel Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,

Plus en détail

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières Olympiades Suisses de Mathématiques Inéquations Thomas Huber Actualisé: 5 juin 04 Table des matières Transformations algébriques. Il n eiste pas de carrés négatifs Nous allons commencer ce script par la

Plus en détail

Opérations financières à intérêts simples

Opérations financières à intérêts simples 9 Opérations financières à intérêts simples cχ Activité 1 Placement à la banque Intérêts simples Baptiste a en sa possession 15 000. En prévision de l acquisition d une voiture, il place cette somme pendant

Plus en détail

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Emprunts indivis (amortissement)

Emprunts indivis (amortissement) 1. Amortissement constant : a) Activité : Une entreprise souhaite renouveler son parc informatique. Elle estime qu elle doit dépenser 5 000 ; elle emprunte cette somme au taux de 5 % annuel le 1 er janvier

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur 2 I. Génération des matrices : Le code de Golay, comme le code de

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Théorie Financière 2. Valeur actuelle Evaluation d obligations

Théorie Financière 2. Valeur actuelle Evaluation d obligations Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount

Plus en détail

CH X Intérêts composés - Amortissements

CH X Intérêts composés - Amortissements CH X Intérêts composés - Amortissements I) Les intérêts composés : 1) Situation : Un capital de 20 000,00 est placé à un taux d intérêts de 4 % l an pendant 5 ans. Chaque année les intérêts produits viennent

Plus en détail

II. Les intérêts composés

II. Les intérêts composés P6C03 Les calculs financiers Les intérêts représentent le loyer de l argent et correspondent à la rémunération du prêteur. I. Les intérêts simples Les intérêts simples sont utilisés pour des opérations

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Utilisation des fonctions financières d Excel

Utilisation des fonctions financières d Excel Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts

Plus en détail

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants?

EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants? EMPRUNT INDIVIS Objectifs : - Savoir calculer une annuité de remboursement constante ; - Dresser un tableau d amortissement d emprunt par annuités constantes ou par amortissements constants ; - Calculer

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

COURS 470 Série 17. Comptabilité Générale

COURS 470 Série 17. Comptabilité Générale COURS 470 Série 17 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de

Plus en détail

Série d exercices 4. /s k

Série d exercices 4. /s k ACT-10412 Mathématiques financières Série d exercices 4 1. Un prêt est remboursé à l aide de n paiements annuels égaux. Après n 1 années, le montant total de capital remboursé s élève à 3 955,20. La part

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

L addition et la multiplication en binaire

L addition et la multiplication en binaire Objectifs : Leçon A1-1 : L addition et la multiplication en binaire OS 1 - Exécuter en binaire une opération arithmétique de base. OS 2 - Représenter un nombre entier relatif. OS 3 - Mettre en œuvre un

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Plan Actualisation et capitalisation Calculs sur le taux d intérêt et la période Modalités de calcul des taux d intérêts

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

DES FONCTIONS FINANCIERES SUR EXCEL

DES FONCTIONS FINANCIERES SUR EXCEL BIOVA CONSULTING DES FONCTIONS FINANCIERES SUR EXCEL Messanh Ametepe Kouevidjin BIOVA CONSULTING Liberte 5-studio 5393/0-dakar-senegal BIOVA CONSULTING/ biovaconsulting@gmail.com / amk_consulting@yahoo.fr

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Chapitre : Annuités. I/ Généralités : Professeur : AUOATIF MAJID. A/ Définition : B/ types d annuités : A/ Valeur acquise : 1) Exemple :

Chapitre : Annuités. I/ Généralités : Professeur : AUOATIF MAJID. A/ Définition : B/ types d annuités : A/ Valeur acquise : 1) Exemple : I/ Généralités : A/ Définition : Une annuité est une suite de versements faits à intervalles. La période de l'annuité est l'intervalle de temps qui sépare. consécutifs. La période peut avoir une durée

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

La révision des indices du cours du franc suisse, nominaux et réels, pondérés par les exportations

La révision des indices du cours du franc suisse, nominaux et réels, pondérés par les exportations La révision des indices du cours du franc suisse, nominaux et réels, pondérés par les exportations par Robert Fluri et Robert Müller, Direction de la statistique, Banque nationale suisse, Zurich BNS 42

Plus en détail

Éléments de calcul actuariel

Éléments de calcul actuariel Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Type de document : Cours

Type de document : Cours Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Les opérations arithmétiques sur les nombres binaires Domaine d application : Traitement programmé de l information Type de document

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

٥١٢ كورنيش النهر. ص.ب.: ٥٨٧٠-١٦.بيروت.لبنان.تلفون: ٠١-٤٢٥١٤٧/٩.فاكس: ٤٢٦٨٦٠-٠١ 512, Corniche al-naher. B.P. 16-5870. Beyrouth. Liban.

٥١٢ كورنيش النهر. ص.ب.: ٥٨٧٠-١٦.بيروت.لبنان.تلفون: ٠١-٤٢٥١٤٧/٩.فاكس: ٤٢٦٨٦٠-٠١ 512, Corniche al-naher. B.P. 16-5870. Beyrouth. Liban. البرنامج التحضيري لمباراة مجلس الخدمة المدنية للوظاي ف الشاغرة في وزارة المالية مراقب ضراي ب ري يسي ومراقب تحقق وري يس محاسبة في الفي ة الثالثة في ملاك مديرية المالية العامة فرنسي مادة الرياضيات المالية

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Taux d intérêts simples

Taux d intérêts simples Taux d intérêts simples Les caractéristiques : - < à 1 ans - Rémunération calculée uniquement sur investissement initial. Période de préférence = période sur laquelle on définit le taux de l opération

Plus en détail

Un peu de calculs financiers

Un peu de calculs financiers Un peu de calculs financiers 1. Les intérêts simples Intérêt : somme rapportée par le prêt d un capital. Il est proportionnel au montant de la somme prêtée et à la durée du prêt Période : le temps est

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

L emprunt indivis - généralités

L emprunt indivis - généralités L emprunt indivis - généralités Les modalités de calcul d un échéancier de remboursement d un emprunt indivis forment un thème d étude des outils de gestion en BTS HR (partie mathématiques financières)

Plus en détail

Excel Avancé. Plan. Outils de résolution. Interactivité dans les feuilles. Outils de simulation. La valeur cible Le solveur

Excel Avancé. Plan. Outils de résolution. Interactivité dans les feuilles. Outils de simulation. La valeur cible Le solveur Excel Avancé Plan Outils de résolution La valeur cible Le solveur Interactivité dans les feuilles Fonctions de recherche (ex: RechercheV) Utilisation de la barre d outils «Formulaires» Outils de simulation

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1 ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir

Plus en détail