(Statistical Package for the Social Sciences)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(Statistical Package for the Social Sciences)"

Transcription

1 Initiation à l utilisation de SPSS (Statistical Package for the Social Sciences) 1

2 SPSS 2

3 3

4 Plan de l exposé Faire une recherche (bibliographique) sur le test; Définir le test à mesurer; Expliquer les relations pouvant exister entre les facteurs du test; Décrire le test et les étapes de sa préparation: nombre d items; échelle de mesure; études préalables; Administrer le test à un échantillon restreint du public visé (public cible): Feed-back; Procéder aux changements des items qui ne sont pas clairs (stéréotypés); 4

5 Plan de l exposé Présenter le test à un panel d experts: discussions + changement ou suppression d items..; Délimiter les items du test: nombre d items restants/facteurs; Décrire l échantillon à standardiser: Nombre/genre/type de fonction; Totaux ; Déterminer les caractéristiques métrologiques (psychométrique) du test: 5

6 Plan de l exposé I. La Validité: 1- Calcul de la validité du construit par la méthode de la consistance interne: calculer le coefficient de corrélation entre le score de chaque item et le score total du test Interprétation: Le test a une très bonne validité si toutes les corrélations entre les scores des items et le score total du test sont significatives (0.01, 0.05); On dit que le test jouit d une bonne consistance interne: il est donc valide. 6

7 Les qualités métrologiques (psychométrique) du test: La Validité (suite) Il faut calculer aussi les coefficients de corrélations entre les différents facteurs du test; Si toutes les corrélations entre les facteurs sont significatives (au degré 0.01 et ou 0.05): Cela prouve la validité du test,mesurant un trait donné, à travers ses différentes dimensions; 7

8 Les qualités métrologiques (psychométrique) du test: La Validité (suite) La validité du critère (concomitante): Méthode: 1- Appliquer un test (connu par sa validité) dont le caractère est compatible (dépression anxiété suicide) au trait du test à valider; 2- Calculer les corrélations (Carl Pearson): Si les corrélations sont significatives, alors le test est valide; 3- Il est toujours très important de comparer les résultats trouvés avec d autres recherches (conformité ou non); 8

9 Les qualités métrologiques (psychométrique) du test: La Validité (suite) La validité discriminante: comparaison des groupes extrêmes Méthode: Après avoir classé les scores des individus dans un ordre croissant, on prend 27% de la population des deux extrems: Exemple: pour une population de 230 individus on a : (230 x 27) / 100 = 62,1 Donc on tire après avoir classé les individus: 144 ( 62 individus de chaque extrême). Après on vérifie si le test a la capacité de distinguer entre les deux extrêmes de la population: on calcule pour chaque extrême, la moyenne, l écartype et le test «t» pour vérifier la signification entre les différences des deux moyennes. 9

10 Les qualités métrologiques (psychométrique) du test: La Validité (suite) En comparant le degré de signification statistique de «t» à la valeur 0.01 des deux moyennes, on peut conclure quant à la capacité du test de séparer ou de distinguer entre les deux extrêmes, et donc de l affirmation de la validité du test. Le test est valide auprès de l échantillon auquel il a été adressé. 10

11 Les qualités métrologiques (psychométrique) du test: La Fidélité (suite) II. La fidélité Le calcul de la fidélité peut se faire de trois façons: 1- Calcul du coefficient de la consistance interne (dans le temps): Méthode: on applique le test retest et on calcule ensuite le coefficient de corrélation entre les deux tests. Si ce coefficient a une signification au niveau (0.01), alors le test jouit d une bonne fidélité 11

12 Les qualités métrologiques (psychométrique) du test: La Fidélité (suite) 1- Méthode de la bissection (pair-impair): on divise le test on deux sous-test (items-pairs et items-impairs), puis on calcule la corrélation de Pearson entre les deux sous tests. Après on corrige le coefficient obtenu par l équation de Sperman-Brown. NB: le logiciel SPSS génère toute la procédure 12

13 Les qualités métrologiques (psychométrique) du test: La Fidélité (suite) 2- Méthode de la consistance interne: l alpha de cronbach Calculer les coefficients de l alpha de cronbach de tous les facteurs; Calcul du coefficient de l alpha de cronbach du test: Cette méthode est basée sur la cohérence du répondant d un item à un autre; Tous les coefficients calculés doivent être supérieurs ou égaux à 0.8: le test jouit d une grande fidélité et peut être utiliser dans d autres recherche. NB: On peut également trouver les items déviants en utilisant l alpha de cronbach. 13

14 Règle de décision pour le coefficient alpha : 14

15 L examen de la concordance des jugements réfère à une sorte de fidélité inter-juges. Le W de Kendall est une statistique appropriée pour examiner la fidélité inter-juges (exemple suivant). Ce degré de concordance sera d'autant plus élevé que la valeur du coefficient W est proche de 1 Exemple fictif: 3 juges experts doivent évaluer la pertinence de 3 items en utilisant une échelle de pertinence 1 à 5 de type Likert. 15

16 Fidélité inter-juges (degré d'accord entre les juges) 16

17 17

18 Les différentes analyses de la fidélité Alpha de Chronbach : ce modèle est basé sur la moyenne des corrélations inter-items.(pour les données dichotomiques, il s'agit d'un équivalent du coefficient Kuder-Richardson 20 (KR20). Split-half : ce modèle sépare l'échelle en deux et examine les corrélations entre les deux parties. Guttman : ce modèle utilise la statistique de Guttman pour la fidélité réelle. (inégalité des deux sous tests) Parallèle : ce modèle assume que tous les items ont une variance et une erreur de variance égales à travers les différentes passations. Parallèle stricte : ce modèle part du modèle précédent et suppose que les moyennes sont égales à travers les éléments. 18

19 Echelle dichotomique: Kuder et Richardson Parmi les autres méthodes d estimation de la cohérence interne du score total d un test, il y a les formules développées par Kuder et Richardson, qui calculent la moyenne de tous les partages possibles. Alors qu il devrait être systématiquement utilisé pour les échelles dichotomiques, le coefficient de Kuder- Richardson est très peu rapporté. En effet, peu de monde le connaît alors que tout le monde connaît le coefficient alpha. 19

20 Echelle dichotomique: Kuder et Richardson Où j=nombre d items, s 2 x=variance x des scores totaux au test, Le produit pq correspond à la variance d une variable dichotomique dont les deux valeurs possibles sont zéro et un. Le coefficient de Kuder-Richardson est acceptable s il est supérieur à 0.70 Appliqués aux mêmes données, la formule 20 de Kuder- Richardson et l alpha de Cronbach produisent des résultats numériquement identiques. 20

21 Analyse factorielle L'analyse factorielle cherche à réduire un nombre important d'informations (prenant la forme de valeurs sur des variables) à quelques grandes dimensions. Comme dans toute analyse statistique, on tente donc d'expliquer la plus forte proportion de la variance (de la covariance dans le cas de l'analyse factorielle) par un nombre aussi restreint que possible de variables (appelées ici composantes ou facteurs). On utilise le terme de variables latentes pour parler de ces variables qui existent au plan conceptuel seul et qui ne sont pas mesurées. 21

22 Deux types de rotations: Analyse factorielle 1- Rotation orthogonale: On utilise cette rotation avec l'acp2 et avec l'analyse factorielle (AF) lorsque l'on croit qu'il est possible de déterminer des facteurs qui soient indépendants les uns des autres. Une solution orthogonale est toujours préférable parce qu'une telle solution indique que chaque facteur apporte une information unique, non partagée par un autre facteur. Toutefois, ce type de solution est rarement possible en sciences sociales puisque habituellement, il existe des liens conceptuels entre les facteurs. Il existe trois méthodes pour produire une rotation orthogonale; la plus fréquemment utilisée est VARIMAX. 22

23 Analyse factorielle 2-Rotation oblique: La rotation oblique, utilisée surtout avec l'a.f. puisqu elle est conceptuellement plus appropriée dans ce cas, permet qu'il y ait corrélation entre les facteurs. Comme elle correspond habituellement mieux à la réalité, elle est fréquemment utilisée en sciences sociales. La méthode utilisée est OBLIMIN. 23

24 Répartition des items Quand on repère les différents items, on les répartie sur les facteurs: Facter 1: item1, item2. Facteur 2: item7, item8. etc 24

25 Administration, correction du test et estimation du score Indiquer comment le test doit être administré; (individuellement ou en groupe); Expliquer comment répondre aux différents items du test; Expliquer la correction du test (attribution des scores); Indiquer et expliquer les différents intervalles: (score maximal, score minimal) 25

26 Rapport (bilan) psychométrique Expliquer les résultats en terme du score total; Expliquer les résultats en terme de chaque facteur: un individu peut avoir un score sup dans un facteur et un autre inf dans un autre trait; Domaine d utilisation du test: psychologie, psychopathologie, Domaine de la recherche: trouver les qualités métrologique du test sur l échantillon de la recherche; 26

27 Rapport (bilan) psychométrique Domaine du diagnostic: Le spécialiste (psychologue) ne doit s éloigner de la tranche d âge de l échantillon standardisé. Sinon, et si l âge de l individu-examiné ne se trouve dans les âge de l échantillon standardisé, le spécialiste doit trouver d autres critères. 27

28 Les critères Les moyennes statistiques: X = S / N Les déviations standards: T = S² - X² N Critères: la moyenne, le mode, l écartype.. Déciles, les centilles, les quartilles.. 28

29 Etalonnage L'étalonnage est la procédure qui va être utilisée pour permettre qu'un score soit interprétable. Méthode: On regroupe les scores en fonction de leur fréquence d'apparition dans la population de référence. La population de référence est constituée d'un échantillon représentatif de personnes qui partagent les mêmes caractéristiques sociologiques (âge, niveau d'études, genre,...) que la personne qui passe le test. Un score étalonné permet de situer le score de la personne par rapport à sa population. (On parlera dès lors de mesure normative. ) 29

30 Quantilage et étalonnage en échelles normalisées La principale caractéristique des quantilages est la proportion identique de sujets dans chaque classe. Il s'agit de définir la taille d'intervalles des scores pour lesquels le même nombre de personnes a un score dans cet intervalle que dans les autres. Il existe plusieurs type de quantilages selon le nombre de classes choisi. - Quartilage : 4 classes (= 4 interquartiles) de 25% des effectifs totaux. On définit 3 quartiles (limites); - Quantilage : 5 interquintiles de 20% des effectifs et 4 quintiles; - Décilage : 10 interdéciles de 10%; - Centilage : 100 intercentiles et 99 centiles. 30

31 Intérêts et résltats Les étalonnages vont permettre des comparaisons inter-tâches pour un sujet, on pourra réaliser un profil individuel en mettant tous les tests sur un même niveau d'interprétation. Par exemple, un sujet a des scores brut de 32 sur 160 à un test verbal et 20 sur 80 à un test spatial. Au vu de l'étalonnage, il obtient respectivement les notes de 2/20 et 4/20 : il est donc meilleur au test spatial. 31

32 Exepmle 32

LA CLAIRVOYANCE NORMATIVE : UNE QUESTION D INTELLIGENCE? PAR

LA CLAIRVOYANCE NORMATIVE : UNE QUESTION D INTELLIGENCE? PAR LA CLAIRVOYANCE NORMATIVE : UNE QUESTION D INTELLIGENCE? PAR DANIEL PASQUIER, CABINET AVENIR & ENTREPRISE, SAINT-JEAN DE BRAYE LABORATOIRE P.R.I.S., ROUEN & PATRICK VALÉAU, UNIVERSITE DE SAINT-DENIS DE

Plus en détail

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens.

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens. Questionnaire de Motivation à la réussite en Formation Yann FORNER RÉSULTATS Nom: Sexe: 15/04/2010 Féminin Âge: 17 Étalonnage: Lycéens Introduction Le Questionnaire de Motivation en situation de Formation

Plus en détail

Rapport. Analyse scientifique du basic-check

Rapport. Analyse scientifique du basic-check Rapport Analyse scientifique du basic-check Suisse romande Mars 2009 Donneur d ordre Urs Martini, CEO basic-check sa Tellistrasse 58 5004 Aarau info@basic-check.ch www.basic-check.ch Auteur Dr. Daniel

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Module 2: Les échelles

Module 2: Les échelles Module 2: Les échelles Echelles et mesure en sciences sociales - Mesurer des concepts abstraits/complexes (p.ex. attitudes) - Mesures et questionnaires (questions Echelles (tests, indices) - Echelles conceptuelles

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Critères de Choix d une Echelle de Qualité De Vie. Etudes cliniques dans l autisme. Introduction

Critères de Choix d une Echelle de Qualité De Vie. Etudes cliniques dans l autisme. Introduction Critères de Choix d une Echelle de Qualité De Vie Etudes cliniques dans l autisme Marie-Christine Picot Congrès Epsylon 5 avril 2013 Introduction Mesurer la Qualité de Vie liée à la Santé : Evaluer les

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Statistiques de groupe

Statistiques de groupe Système Méthodologique d Aide à la Réalisation de Tests Statistiques de groupe et analyse des questions de votre épreuve Une unité de soutien de l IFRES Université de Liège L analyse des statistiques de

Plus en détail

Construction à partir d une régression logistique

Construction à partir d une régression logistique Construction à partir d une régression logistique Ricco RAKOTOMALALA Université Lumière Lyon 2 Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 PLAN 1. Position du problème Grille de score?

Plus en détail

Rapport sur la formation «Méthodes d analyses quantitatives pour la psychologie» (du 24/10 au 27/10/2011, Oran, Algérie)

Rapport sur la formation «Méthodes d analyses quantitatives pour la psychologie» (du 24/10 au 27/10/2011, Oran, Algérie) Rapport sur la formation «Méthodes d analyses quantitatives pour la psychologie» (du 24/10 au 27/10/2011, Oran, Algérie) Introduction Dans le cadre du projet Européen Tempus 159287-2009 «Développement

Plus en détail

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages S. Winandy, R. Palm OCA GxABT/ULg oca.gembloux@ulg.ac.be décembre 2011 1 Introduction La Direction Générale Statistique

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle :

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : a. Une opération de «production» b. Visant l ensemble des variables d une enquête c. Recherchant

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

L ACP sous SPSS. À Propos de ce document. Introduction

L ACP sous SPSS. À Propos de ce document. Introduction L ACP sous SPSS À Propos de ce document... Introduction... La démarche à suivre sous SPSS.... «Descriptives».... «Extraction».... «Rotation».... «Scores».... «Options»... Analyse des résultats.... Les

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

T.S.A T E S T S E N I O R A T T I T U D E S. Un test de personnalité spécifiquement conçu pour le recrutement et le bilan professionnel des seniors

T.S.A T E S T S E N I O R A T T I T U D E S. Un test de personnalité spécifiquement conçu pour le recrutement et le bilan professionnel des seniors T.S.A T E S T S E N I O R A T T I T U D E S Un test de personnalité spécifiquement conçu pour le recrutement et le bilan professionnel des seniors Une analyse fonctionnelle de l image de soi et des compétences

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

Chronique R LAtent VAriables ANalysis - Le package lavaan pour les modèles d'équations structurelles

Chronique R LAtent VAriables ANalysis - Le package lavaan pour les modèles d'équations structurelles Chronique R LAtent VAriables ANalysis - Le package lavaan pour les modèles d'équations structurelles Les modèles d'équations structurelles sont des modèles statistiques initialement créés afin de combiner

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Heidi WECHTLER. Octobre 2005

Heidi WECHTLER. Octobre 2005 Heidi WECHTLER Le support aux analyses de données Séminaire GREGOR Octobre 2005 Support aux analyse de données du GREGOR Le poste Chargée d étude statistiques au GREGOR, bureau B126 (wechtler.iae@univ-paris1.fr)

Plus en détail

Partie 2 L étalonnage

Partie 2 L étalonnage Partie 2 L étalonnage 1. Définition Lorsqu on obtient un score, on veut pouvoir faire une interprétation en termes de «c est beaucoup / c est pas beaucoup». Pour pouvoir faire cette interprétation, il

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire?

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Cyril Ferdynus, USM, CHU RECUEIL DE DONNEES Recueil hors ligne Epidata (http://www.epiconcept.fr/html/epidata.html)

Plus en détail

Analyse factorielle des correspondances de Benzécri

Analyse factorielle des correspondances de Benzécri Analyse factorielle des correspondances de Benzécri One Pager Décembre 2013 Vol. 8 Num. 011 Copyright Laréq 2013 http://www.lareq.com Analyse Factorielle des Correspondances de Benzécri Une illustration

Plus en détail

L ACTE DE MESURER ET D ÉVALUER

L ACTE DE MESURER ET D ÉVALUER SECTION 1 L ACTE DE MESURER ET D ÉVALUER OBJECTIF RECHERCHÉ L acte de mesurer et d évaluer est plus difficile que ce qu on peut imaginer au premier abord. S il est relativement aisé de calculer quelque

Plus en détail

Guide de conception d une épreuve écrite sous la forme d un questionnaire à choix multiples

Guide de conception d une épreuve écrite sous la forme d un questionnaire à choix multiples Guide de conception d une épreuve écrite sous la forme d un questionnaire à choix multiples Aspects pratiques Aspects pédagogiques Conseils de conception 1 Introduction Terminologie spécifique à l IEP

Plus en détail

chap S1 : Statistiques descriptives Eléments de correction des exercices

chap S1 : Statistiques descriptives Eléments de correction des exercices 2ndes chap S1 : Statistiques descriptives Eléments de correction des exercices Objectifs : mieux comprendre les notions de moyenne et médiane utiliser des statistiques pour prendre des décisions Moyenne

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

OFFRE D EMPLOI. 2.1 La définition du poste

OFFRE D EMPLOI. 2.1 La définition du poste OFFRE D EMPLOI 1 Introduction Définir une offre d emploi type n est pas un processus anodin à sous-estimer. En effet, l offre que l entreprise va communiquer représente la proposition d emploi vacant.

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

POLITIQUE SUR L ÉVALUATION DES APPRENTISSAGES EN FORMATION GÉNÉRALE À L ENSEIGNEMENT PRIMAIRE ET SECONDAIRE

POLITIQUE SUR L ÉVALUATION DES APPRENTISSAGES EN FORMATION GÉNÉRALE À L ENSEIGNEMENT PRIMAIRE ET SECONDAIRE COMMISSION SCOLAIRE DE KAMOURASKA RIVIÈRE-DU-LOUP Code : SE 1998 01 En vigueur : Approbation : Marcien Proulx directeur général POLITIQUE SUR L ÉVALUATION DES APPRENTISSAGES EN FORMATION GÉNÉRALE À L ENSEIGNEMENT

Plus en détail

NORME CAMEROUNAISE NC 235 : 2005 06

NORME CAMEROUNAISE NC 235 : 2005 06 NC 235 : 2005 06 REPUBLIQUE DU CAMEROUN REPUBLIC OF CAMEROON Paix Travail Patrie Peace Work Fatherland ========= ========= MINISTERE DE L INDUSTRIE, DES MINES ET DU MINISTRY OF INDUSTRY, MINES AND DEVELOPPEMENT

Plus en détail

La définition La méthode. Les échelles de mesure L ENQUETE PAR SONDAGE : LA METHODE

La définition La méthode. Les échelles de mesure L ENQUETE PAR SONDAGE : LA METHODE L ENQUETE PAR SONDAGE : LA METHODE La définition La méthode Le questionnaire Les biais La passation du questionnaire La validité des réponses Les échelles de mesure Les échelles d évaluation Les échelles

Plus en détail

Procédure pour évaluer et/ou éditer un article

Procédure pour évaluer et/ou éditer un article Procédure pour évaluer et/ou éditer un article Rôle des membres du comité de rédaction dans le processus de révision d un article : 1. Rôle de la Rédactrice en chef 2. Rôle des Rédacteurs adjoints 3. Rôle

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable MODULE 3. Les appareils de mesure. Performances-seuils. L élève sera capable 1. de choisir un appareil de mesure ; 2. d utiliser correctement un appareil de mesure ; 3. de mesurer courant, tension et résistance.

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Méthodologie d échantillonnage et Échantillonneur ASDE

Méthodologie d échantillonnage et Échantillonneur ASDE Méthodologie d échantillonnage et Échantillonneur ASDE Par Michel Rochon L énoncé suivant définit de façon générale la méthodologie utilisée par Échantillonneur ASDE pour tirer des échantillons téléphoniques.

Plus en détail

Responsable grands comptes / comptes clés

Responsable grands comptes / comptes clés Responsable grands comptes / comptes clés DEFINITION DE FONCTION ET ETUDE DE REMUNERATIONS Le responsable grands comptes assure le suivi commercial des comptes clients ayant une importance stratégique

Plus en détail

CHAINE D ANALYSES INTER-LABORATOIRES BOUCHONS PLAN DE CAMPAGNE

CHAINE D ANALYSES INTER-LABORATOIRES BOUCHONS PLAN DE CAMPAGNE CHAINE D ANALYSES INTER-LABORATOIRES BOUCHONS PLAN DE CAMPAGNE 2015 BOUCHONS EN LIEGE POUR VINS TRANQUILLES MESURE DES PARAMETRES MECANIQUES ET PHYSIQUES Version 01 du 01/12/14 Ce document présente notre

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Le test triangulaire

Le test triangulaire Le test triangulaire Objectif : Détecter l absence ou la présence de différences sensorielles entre 2 produits. «les 2 produits sont-ils perçus comme différents?» Contexte : la différence sensorielle entre

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Gestion des risques en stérilisation

Gestion des risques en stérilisation Gestion des risques en stérilisation 1. Définition de base AMDEC: Analyse des Modes de Défaillance, de leurs Effets et de leur Criticité. 2. Type d AMDEC : domaine d application L AMDEC procédé L AMDEC

Plus en détail

Enquête mensuelle de conjoncture auprès des ménages

Enquête mensuelle de conjoncture auprès des ménages Note Méthodologique Dernière mise à jour : 27-1-214 Enquête mensuelle de conjoncture auprès des ménages Présentation de l enquête L Insee réalise depuis janvier 1987 l enquête mensuelle de conjoncture

Plus en détail

GUIDE D ACCOMPAGNEMENT DES OUTILS D EVALUATION DE COMPETENCES. AU SERVICE DES ENSEIGNANTS DU 1 er DEGRE SECONDAIRE

GUIDE D ACCOMPAGNEMENT DES OUTILS D EVALUATION DE COMPETENCES. AU SERVICE DES ENSEIGNANTS DU 1 er DEGRE SECONDAIRE GUIDE D ACCOMPAGNEMENT DES OUTILS D EVALUATION DE COMPETENCES AU SERVICE DES ENSEIGNANTS DU 1 er DEGRE SECONDAIRE I. CADRE LÉGAL Développer des compétences, telle est désormais la mission de l école. Le

Plus en détail

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier Christophe Fournier Clinique de Thuys Aunége - Christophe Fournier 2 Table des matières Information sur l'échantillon 3 Structure de l'échantillon...4 Point méthodologique 6 Point méthodologique...7 Représentativité

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Structure du patrimoine des ménages et assurance vie

Structure du patrimoine des ménages et assurance vie Structure du patrimoine des ménages et assurance vie Résumé L assurance-vie est une composante essentielle du patrimoine financier des ménages. Les encours d assurance-vie atteignaient 1 391 milliards

Plus en détail

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

Analyse des données - Logiciel R

Analyse des données - Logiciel R Université de Strasbourg Analyse des données Master de Sciences, Spécialité Statistique 2012/13 Master Actuariat Emmanuel Périnel Analyse des données - Logiciel R TP n 2. L Analyse en Composantes Principales

Plus en détail

NORME INTERNATIONALE D AUDIT 501 ELEMENTS PROBANTS CONSIDERATIONS SUPPLEMENTAIRES SUR DES ASPECTS SPECIFIQUES

NORME INTERNATIONALE D AUDIT 501 ELEMENTS PROBANTS CONSIDERATIONS SUPPLEMENTAIRES SUR DES ASPECTS SPECIFIQUES NORME INTERNATIONALE D AUDIT 501 ELEMENTS PROBANTS CONSIDERATIONS Introduction (Applicable aux audits d états financiers pour les périodes ouvertes à compter du 15 décembre 2009) SOMMAIRE Paragraphe Champ

Plus en détail

Nous concluons au travers de quatre axes principaux qui ont guidé la. 1) La théorie du regret de Loomes et Sugden comme théorie de la décision

Nous concluons au travers de quatre axes principaux qui ont guidé la. 1) La théorie du regret de Loomes et Sugden comme théorie de la décision Conclusion générale Nous concluons au travers de quatre axes principaux qui ont guidé la rédaction de cette thèse. 1) La théorie du regret de Loomes et Sugden comme théorie de la décision rationnelle compatible

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Présentation des données pour une analyse statistique

Présentation des données pour une analyse statistique Présentation des données pour une analyse statistique Ce document décrit les points essentiels à vérifier avant d analyser des données par un logiciel statistique. Sommaire I. Règles à respecter lors de

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Facteurs liés au rendement des élèves au Test de mathématiques, 9 e année, de l OQRE

Facteurs liés au rendement des élèves au Test de mathématiques, 9 e année, de l OQRE n Quelles sont les différences et les similarités, d après certaines caractéristiques du milieu familial et les réponses au questionnaire, entre les élèves de 9 e année inscrits au cours théorique et au

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

AVIS SR-20041223-32 SERVICE REGULATION

AVIS SR-20041223-32 SERVICE REGULATION SERVICE REGULATION AVIS SR-20041223-32 concernant la reconnaissance des certificats verts wallons en vue de permettre leur comptabilisation pour l obligation de quota de certificats verts mise à charge

Plus en détail

MESURER ET REPRÉSENTER LES INÉGALITÉS

MESURER ET REPRÉSENTER LES INÉGALITÉS MESURER ET REPRÉSENTER LES INÉGALITÉS I - DISPARITÉ ET DISPERSION La disparité consiste à mesurer l écart entre les valeurs centrales qui caractérisent une ou plusieurs populations statistiques. (exemple

Plus en détail

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7 TABLE DES MATIÈRES Avant-propos... 5 Sommaire... 7 CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9 1. Le processus de construction d un test... 9 2. La construction d un test d acquis scolaires...

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail