Seconde DS de Mathématiques 29 mars H

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Seconde DS de Mathématiques 29 mars 2010 1 H"

Transcription

1 Seconde DS de Mathématiques 29 mars H NOM : A traiter directement sur l énoncé EXERCICE I ( 4 poiuts ) On lance deux dés ( bien équilibrés et à 6 faces numérotées de 1 à 6) et on fait le produit des résultats obtenus. - Si le résultat est un nombre pair, on perd 2. - Par contre, si le résultat est un nombre impair, on gagne 5. Le but de l'exercice est d'étudier si ce jeu est intéressant pour le joueur. 1. Une simulation de 100 parties avec un tableur a donné les résultats suivants : Gain du joueur -2 (Pair) 5 (Impair) Total Effectif Calculer avec le tableau ci-dessus le gain moyen du joueur : D'après cette simulation, le jeu est-il favorable au joueur? 3. On va maintenant étudier les fréquences théoriques. a. Compléter le tableau suivant donnant tous les produits possibles en lançant deux dés : b. En déduire la distribution des fréquences théoriques ( en pourcentage ) pour les résultats pairs et impairs : Gain du joueur -2 (Pair) 5 (Impair) Total Fréquences Calculer le gain moyen du joueur à partir des fréquences théoriques : D'après la théorie, le jeu est-il favorable au joueur? 4. Quel phénomène permet d'expliquer la différence entre la conclusion obtenue après simulation et la conclusion obtenue après étude théorique?

2 EXERCICE II ( 3 poiuts ) On tire au hasard une carte dans un jeu de 32 cartes. Quelle est la probabilité de tirer : 1) A : «Le valet de trèfle»? 2) B : «Un valet»? 3) C : «Une figure (roi, dame, valet)»? 4) D : «Un cœur»? 5) E : «Un figure qui soit un carreau»? 6) F : «Une figure ou un pique»? EXERCICE III ( 4 poiuts ) Examinons le classique jeu de «pile ou face». On lance trois fois de suite une pièce de monnaie bien équilibrée. 1) Donner l ensemble E des issues. 2) Quelle est la probabilité d obtenir deux faces exactement sur les trois résultats? 3) Quelle est la probabilité d obtenir au moins un pile sur les trois résultats? 4) Quelle est la probabilité d obtenir un seul pile sur les trois résultats? EXERCICE IV ( 3 poiuts ) Dans une classe de 28 élèves, 12 d entre eux pratiquent la natation, 7 le volley-ball et 13 ne pratiquent ni le volley, ni la natation. On interroge au hasard un élève de cette classe. Calculer la probabilité qu il pratique : 1. l un au moins des deux sports 2. les deux sports.

3 EXERCICE V ( 6 poiuts ) On a réalisé une étude statistique sur la durée des communications d'un standard téléphonique. Les durées (en secondes) des communications du standard sont regroupées en classes de même amplitude. 1. Compléter le tableau des effectifs cumulés croissants ci-dessous : Durée de la communication (en s) [30 ; 50[ [50 ; 70[ [70 ; 90[ [90 ; 110[ [110 ; 130[ [130 ; 150[ [150 ; 170] Effectifs Effectifs cumulés croissants Compléter, ci-dessous, le polygone des effectifs cumulés croissants de cette série. Effectifs cumulés Déterminer, à l'aide du graphique : (on fera apparaître les traits de construction) Durée a. la valeur médiane de cette série : Me =.. ; b. le nombre de communications dont la durée est inférieure à une minute :.. ; c. le nombre de communications dont la durée est comprise entre 60 et 80 secondes :.. ; 3. Calculer la moyenne de cette série (on arrondira à 1 s près) :.. ;

4 CORRIGE EXERCICE I On lance deux dés ( bien équilibrés et à 6 faces numérotées de 1 à 6) et on fait le produit des résultats obtenus. - Si le résultat est un nombre pair, on perd 2. - Par contre, si le résultat est un nombre impair, on gagne 5. Le but de l'exercice est d'étudier si ce jeu est intéressant pour le joueur. 1. Une simulation de 100 parties avec un tableur a donné les résultats suivants : Gain du joueur -2 (Pair) 5 (Impair) Total Effectif Calculer avec le tableau ci-dessus le gain moyen du joueur : 70 ( 2) = = 0, D'après cette simulation, le jeu est-il favorable au joueur? oui 3. On va maintenant étudier les fréquences théoriques. a. Compléter le tableau suivant donnant tous les produits possibles en lançant deux dés : b. En déduire la distribution des fréquences théoriques ( en pourcentage ) pour les résultats pairs et impairs : Gain du joueur -2 (Pair) 5 (Impair) Total Fréquences % 36 = % 36 = 100 % Calculer le gain moyen du joueur à partir des fréquences théoriques : = = -0, D'après la théorie, le jeu est-il favorable au joueur? non 4. Quel phénomène permet d'expliquer la différence entre la conclusion obtenue après simulation et la conclusion obtenue après étude théorique? les fluctuations d échantillonnage ( )

5 EXERCICE II EXERCICE III On lance trois fois de suite une pièce de monnaie bien équilibrée. 1) Donner l ensemble E des issues. 2) Quelle est la probabilité d obtenir deux faces exactement sur les trois résultats? 3) Quelle est la probabilité d obtenir au moins un pile sur les trois résultats? 4) Quelle est la probabilité d obtenir un seul pile sur les trois résultats? EXERCICE IV Dans une classe de 28 élèves, 12 d entre eux pratiquent la natation, 7 le volley-ball et 13 ne pratiquent ni le volley, ni la natation. On interroge au hasard un élève de cette classe. Calculer la probabilité qu il pratique : 1. l un au moins des deux sports p = p(n V)= les deux sports : p(n V)= p(n) + p(v) - p(n V)= en bleu : 13 en rouge : = 15 donc card ( N V ) = = = 1 7

6 EXERCICE V On a réalisé une étude statistique sur la durée des communications d'un standard téléphonique. Les durées (en secondes) des communications du standard sont regroupées en classes de même amplitude. 1. Compléter le tableau des effectifs cumulés croissants ci-dessous : Durée de la communication (en s) [30 ; 50[ [50 ; 70[ [70 ; 90[ [90 ; 110[ [110 ; 130[ [130 ; 150[ [150 ; 170] Effectifs Effectifs cumulés croissants Compléter, ci-dessous, le polygone des effectifs cumulés croissants de cette série. Déterminer, à l'aide du graphique : (on fera apparaître les traits de construction) a. la valeur médiane de cette série : Me = 101 s.. ; b. le nombre de communications dont la durée est inférieure à une minute : 10.. ; c. le nombre de communications dont la durée est comprise entre 60 et 80 secondes : 30.. ; 3. Calculer la moyenne de cette série (on arrondira à 1 s près) : on calcule les centres des classes La moyenne est égale à 102,22 s

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison.

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison. Énoncés Exercice 1 Le tableau ci-contre indique des grandeurs physiques et démographiques des territoires constituant la Mélanésie. 1. Rédiger une phrase commençant par «Il y a» et contenant le nombre

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

1- exercices de la fiche photocopiée- corrections ci-dessous :

1- exercices de la fiche photocopiée- corrections ci-dessous : STATISTIQUES-SEMAINE DU 28 AVRIL AU 5 MAI 1ère S Durant mon absence, pour ne pas prendre de retard, je vous demande de faire les exercices et activités suivantes 1- exercices de la fiche photocopiée- corrections

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Exercices : Analyse combinatoire et probabilité

Exercices : Analyse combinatoire et probabilité Exercices : Analyse combinatoire et probabilité 1. Le jeu de Cluedo consiste à retrouver l assassin du Dr. Lenoir, l arme et le lieu du crime. Sachant qu il y a six armes, neuf lieux et six suspects, de

Plus en détail

Corrigés TABLEUR Page 1

Corrigés TABLEUR Page 1 Corrigés TABLEUR Page 1 Fonctions 9 4) a) En D2 =B1 ; en D3 =B1+$B$2 ou =B1+B$2 ; en E2 =2*B1^2+B1-3 ; on recopie les cellules D3 et E2 vers le bas. 15 2) On propose : 10 3) On propose : En D2 =B1 ; en

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante :

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante : 8.1 Notations Notations: : vénement : vénement contraire à : ou (ou les deux), correspond à l union : et, correspond à l intersection U : L univers contient tous les événements possibles xercice 1 : Je

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6 BACCALAURÉAT BLANC 21 février 2013 MATHÉMATIQUES Série : STG DURÉE DE L ÉPREUVE : 3 heures Ce sujet comporte 6 pages, numérotées de 1 à 6 L utilisation d une calculatrice est autorisée, mais aucun prêt

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

S initier aux probabilités simples «Jets de dé»

S initier aux probabilités simples «Jets de dé» «Jets de dé» 29-21 Niveau 2 Entraînement 1 Objectifs - S entraîner à être capable de déterminer une probabilité. - S initier aux fractions. Applications En classe : envisager un résultat sous l angle d

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Statistiques Pourcentages et probabilité

Statistiques Pourcentages et probabilité 6 septembre 2014 Statistiques Pourcentages et probabilité Moyenne EXERCICE 1 On connaît la répartition des notes à un test. Calculer la moyenne des notes. Notes 4 6 8 9 10 11 12 14 16 Effectifs 13 23 28

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques CRPE S0. Autour de la GESTION DE DONNEES Probabilités, Statistiques om Mise en route1 A. Alimentation L étiquette d'un paquet de céréales affiche : «30g de muesli croustillant dans 100g de lait donnent

Plus en détail

RALLYE MATHÉMATIQUE DE FRANCHE-COMTÉ Qualifications du mardi 7 février 2006

RALLYE MATHÉMATIQUE DE FRANCHE-COMTÉ Qualifications du mardi 7 février 2006 RALLYE MATHÉMATIQUE DE FRANCHE-COMTÉ Qualifications du mardi 7 février 2006 Les classes de troisième doivent résoudre les exercices à 6. Les classes de seconde doivent résoudre les exercices 4 à 9. La

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours. Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible

Plus en détail

BREVET BLANC DE MATHEMATIQUES MAI 2012

BREVET BLANC DE MATHEMATIQUES MAI 2012 BREVET BLANC DE MATHEMATIQUES MAI 2012 DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur la copie qui lui est fournie. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que le sujet lui est remis,

Plus en détail

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses LES ABEILLES D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses 1. Présentation de la trame : Recherche et synthèse d infos Notion d optimisation Intérêt et

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Coordination : Jean-Denis Poignet, responsable de formation

Coordination : Jean-Denis Poignet, responsable de formation Mathématiques 3 e Livret de corrigés Rédaction : Nicole Cantelou Hélène Lecoq Fabienne Meille Jean-Denis Poignet Coordination : Jean-Denis Poignet, responsable de formation Ce cours est la propriété du

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Brevet Blanc de Mathématiques

Brevet Blanc de Mathématiques Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 (En précisant les différentes étapes du calcul): 1. Calculer le nombre A et donner

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de

Plus en détail

b) Transforme cette probabilité en «chances pour» et en «chances contre».

b) Transforme cette probabilité en «chances pour» et en «chances contre». 1. Quel type de probabilité (théorique, fréquentielle ou subjective) est le plus approprié pour chacune des situations suivantes si l on veut en déterminer la probabilité? a) Lancer 20 fois un ballon vers

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée.

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée. Statistiques Échauffez-vous! Pour les trois situations, reliez chaque information à sa signification statistique. a) Situation : on réalise une étude statistique sur les 5 élèves d une classe. 5 Population

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

Exercices de Mathématiques BTS CGO 2

Exercices de Mathématiques BTS CGO 2 Exercices de Mathématiques BTS CGO 2 Page 1 sur 18 20002/2003 Page 2 sur 18 20002/2003 Exercices de probabilités Exercice 1 Un lot de pièces fabriquées comporte 5% de pièces défectueuses. Un contrôleur

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

Probabilité. Durée suggérée: 3-3½ semaines

Probabilité. Durée suggérée: 3-3½ semaines Probabilité Durée suggérée: 3-3½ semaines Aperçu du chapitre Orientation et contexte Le calcul des probabilités est la branche des mathématiques qui étudie les phénomènes aléatoires. Plus particulièrement,

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Leçon n 11 Statistiques et simulations

Leçon n 11 Statistiques et simulations Leçon n 11 Statistiques et simulations C est une leçon qui se prolongera les années suivantes. Il s agit de rapprocher «les statistiques» d une notion qui sera étudiée en première «les probabilités» et

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

FFB. Jeux mathématiques

FFB. Jeux mathématiques FFB Jeux mathématiques Bridge et programmes scolaires Utilisation d activités mathématiques fondées sur le Bridge : Arithmétique Raisonnement et mémoire Algorithmes Probabilités Statistiques Activités

Plus en détail

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux Cours 9 Les tableaux croisés et le test d indépendance du Chi-deux 1 Retour sur TP1 et Cours 8 Les tableaux croisés et le test du Chi-deux Utilité, postulats d utilisation et logique Exemple de calcul

Plus en détail

Baccalauréat STG Mercatique Métropole 23 juin 2009

Baccalauréat STG Mercatique Métropole 23 juin 2009 Baccalauréat STG Mercatique Métropole 23 juin 2009 EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule des trois réponses proposées est correcte.

Plus en détail

LOI DE PROBABILITÉ PROBABILITÉS CONDITIONNELLES Sommaire. Logiciels

LOI DE PROBABILITÉ PROBABILITÉS CONDITIONNELLES Sommaire. Logiciels LOI D PROILITÉ PROILITÉS CONDITIONNLLS Sommaire. spérance et variance d une loi. déquation à une loi équirépartie. Probabilité conditionnelle 4. Indépendance. Loi inomiale Logiciels. déquation à une loi

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Échantillonnage Équipe Académique Mathématiques - 2011

Échantillonnage Équipe Académique Mathématiques - 2011 Échantillonnage Équipe Académique Mathématiques - 2011 Fluctuation des échantillons Considérons une urne «de Bernoulli» (la population) contenant une proportion p de boules blanches, dont on extrait n

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 010 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

INTRODUCTION À L ALGORITHMIQUE

INTRODUCTION À L ALGORITHMIQUE INTRODUCTION À L ALGORITHMIQUE Table des matières 1. Introduction 1 2. Les éléments de base d un algorithme simple 2 2.1. Préparation du traitement 2 2.2. Le traitement 2 2.3. La sortie des résultats 2

Plus en détail

Corrigé des exercices

Corrigé des exercices THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5

Plus en détail

MATHÉMATIQUES Série ST2S. Sciences et Technologies de la Santé et du Social

MATHÉMATIQUES Série ST2S. Sciences et Technologies de la Santé et du Social BACCALAURÉAT TECHNOLOGIQUE Session 2016 MATHÉMATIQUES Série ST2S Sciences et Technologies de la Santé et du Social Durée de l épreuve : 2 heures Coefficient : 3 Ce sujet comporte 7 pages numérotées de

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Projet Techniques de Programmation en C

Projet Techniques de Programmation en C Projet Techniques de Programmation en C PokerStat DESCRIPTION DU PROJET : 1 REALISATION DU PROJET 2 ROBUSTESSE DU GENERATEUR DE HASARD DE L'ORDINATEUR PROBABILITE BRUTE D'OBTENIR UNE COMBINAISON CALCUL

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation sur 7 ECHANTILLONNAGE Le principe : On considère par exemple l'expérience suivante consistant à lancer plusieurs fois un dé et à noter si la face supérieure affichée est un 4 ou un autre nombre. La valeur

Plus en détail

Les probabilités dans nos familles

Les probabilités dans nos familles Les probabilités dans nos familles en groupe-classe en équipe individuelle Activité 2 Au cours de cette activité, l élève construit un diagramme en arbre dans le but de trouver les différentes combinaisons

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Collège Victor Hugo Puiseaux Année Scolaire 2014-2015 Brevet Blanc Deuxième Session Épreuve de Mathématiques Durée : 2 heures Matériel autorisé : calculatrice, matériel de géométrie Exercice 1 : Voici

Plus en détail

Feuille d exercice n 22 : Probabilités

Feuille d exercice n 22 : Probabilités Lycée La Martinière Monplaisir Année 2015/2016 MPSI - Mathématiques Second Semestre Feuille d exercice n 22 : Probabilités Exercice 1 On se donne N N. Deux joueurs lancent tour à tour un dé. Le premier

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Contrôle C8 STATISTIQUES DESCRIPTIVES (1h05) Calculatrice autorisée Répondez par des phrases. Relisez-vous! Note attendue :

Contrôle C8 STATISTIQUES DESCRIPTIVES (1h05) Calculatrice autorisée Répondez par des phrases. Relisez-vous! Note attendue : Contrôle C8 STATISTIQUES DESCRIPTIVES (1h05) Calculatrice autorisée Répondez par des phrases. Relisez-vous! Note attendue : Bon courage! Exercice n 1 (.... / 4 points) : Maths et sécurité routière : Analyse

Plus en détail

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences.

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemple 1 Voici une situation pouvant être utilisée

Plus en détail

NOMBRES et CALCULS GEOMETRIE

NOMBRES et CALCULS GEOMETRIE NOMBRES et CALCULS 1. Ecris les nombres dictés en chiffres (chaque nombre est répété deux fois). a) six cent cinquante-quatre mille douze b) trente quatre millions c) trois milliards cinq cent millions

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Diplôme intermédiaire BEP MSA/ MRCU

Diplôme intermédiaire BEP MSA/ MRCU Session 2011 Diplôme intermédiaire BEP MSA/ MRCU CCF de MATHEMATIQUES N 1 Classe : 2 nde Période : 2 ème Semestre 2009-2010 LP Les Charmilles BAC PRO Comptabilité Secrétariat Commerce/Vente Service/Accueil

Plus en détail

ÉPREUVE DE MATHÉMATIQUES

ÉPREUVE DE MATHÉMATIQUES R É P U B L I Q U E F R A N Ç A I S E CONCOURS D'ADMINISTRATEUR-ADJOINT 2012-2013 DIRECTION DES RESSOURCES HUMAINES ET DE LA FORMATION Épreuves d'admissibilité 30 janvier 2013 ÉPREUVE DE MATHÉMATIQUES

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

BACCALAUREAT PROFESSIONNEL SEN Session 2014. Situation d évaluation de Sciences Physiques et Chimiques SUJET DESTINÉ AU CANDIDAT

BACCALAUREAT PROFESSIONNEL SEN Session 2014. Situation d évaluation de Sciences Physiques et Chimiques SUJET DESTINÉ AU CANDIDAT LOGO Académie BACCALAUREAT PROFESSIONNEL SEN Session 2014 Contrôle en cours de formation Situation d évaluation de Sciences Physiques et Chimiques Séquence Durée :./. 45 min SUJET DESTINÉ AU CANDIDAT Établissement

Plus en détail

42$ 66$ 36$ 84$ Exemple : 5/10 min. 5/10 max. Sélectionnez le cercle de votre choix

42$ 66$ 36$ 84$ Exemple : 5/10 min. 5/10 max. Sélectionnez le cercle de votre choix Dans la prochaine série de décisions, vous aurez la chance de gagner aujourd hui un prix en argent comptant. Dans chaque cas, vous aurez à choisir entre l option de gauche et l option de droite. Les résultats

Plus en détail

Simulations de jeux de pile ou face : distribution de fréquences du nombre maximum de coups consécutifs égaux dans

Simulations de jeux de pile ou face : distribution de fréquences du nombre maximum de coups consécutifs égaux dans SIMULATION ET TABLEUR EN CLASSE DE SECONDE Sommaire A Les instructions officielles 1 B Le tableur 2 B.1 Présentation...................................................... 2 B.2 Prise en mains.....................................................

Plus en détail

D I P L Ô M E N AT I O N A L D U B R E V E T

D I P L Ô M E N AT I O N A L D U B R E V E T REPÈRE 15DNBGENMATMEAG1 D I P L Ô M E N AT I O N A L D U B R E V E T SESSION 2015 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Session 2011

BACCALAURÉAT TECHNOLOGIQUE Session 2011 BACCALAURÉAT TECHNOLOGIQUE Session 2011 Épreuve : MATHÉMATIQUES Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialités : Mercatique (coefficient : 3) Comptabilité et finance d entreprise (coefficient

Plus en détail

Veillée Casino. I) Le jeu des gobelets. Machine à sous. Tchic tchic

Veillée Casino. I) Le jeu des gobelets. Machine à sous. Tchic tchic Veillée Casino Cette veillée va se dérouler autour du thème des jeux de casino. Organisation : les enfants se mettent en groupe de 3 sur une table. Sur chaque table sera disposé un jeu. Le budget de départs

Plus en détail

Données & statistique

Données & statistique Données & statistique Il s'agit, dans ce document, de prendre en mains les outils de statistiques de TI-Nspire ; il reste au professeur à exploiter et enrichir les situations proposées. Activité 1 Sur

Plus en détail