Les mathématiques du calcul

Dimension: px
Commencer à balayer dès la page:

Download "Les mathématiques du calcul"

Transcription

1 Les mathématiques du calcul Module Maths Discrètes, INSA, Univ Lyon 1, Eric Tannier

2 Les mathématiques du calcul Tradition orientale Al-Khawarizmi Al-Khawarizmi, Sur l'addition et la soustraction avec les nombres indien Al jabr (algèbre), résolution d'équations Algorithmes Méthodes calculatoires

3 Les mathématiques du calcul Les racines médiévales orientales de la programmation dynamique (Bellman, RAND, 1953) Comment calculer un coefficient binomial C(n,p) : nombre de parties à p éléments d'un ensemble à n éléments Apparu en Chine et en Mésopotamie au Moyen-Age, avec une formule de récurrence pour les calculer : C(n,p) = C(n-1,p-1) + C(n-1,p) Ensemble à n éléments E Un élément Ensemble à n-1 éléments F Parties à p éléments dans E : soit p soit p-1 éléments dans F

4 Les mathématiques du calcul La révolution scientifique en occident introduction du calcul Blaise Pascal, et son triangle Gottfried von Leibniz, , et sa formule La «réduction du savoir» Isaac Newton, , et la «formule du binôme»

5 Les mathématiques du calcul Pour calculer un coefficient binomial, méthode de Pascal ou de Leibniz? Ou la méthode moderne

6 Complexité Combien d'opérations pour calculer un coefficient binomial? Notations pour la complexité : f et g sont deux fonctions f = O(g) s'il existe un nombre k tel que quel que soit x, f(x) <= k * g(x) ce qui veut dire que f ne croît pas beaucoup plus vite que g Propriétés : O(k*f) = O(f) (k est une constante et f une fonction) O(f+g) = O(f) + O(g) (f et g deux fonctions) O(f*g) = O(f) * O(g) (f et g deux fonctions) Avec la méthode de Pascal? Avec

7 Les mathématiques du calcul Gottfried von Leibniz, Calculus Ratiocinator David Hilbert, Automatisation des mathématiques : algorithmes pour résoudre des problèmes de mathématiques En particulier, existe-t-il un algorithme pour toutes les équations à coefficients entiers? En général, existe-t-il un algorithme qui pour toute proposition puisse dire si elle est vraie ou fausse?

8 Les mathématiques du calcul Ada Lovelace, Alan Turing, Formalisation du calcul dans les mathématiques Machine de Turing = automate avec mémoire

9 Les mathématiques du calcul Les paradoxes qui tuent le rêve de Hilbert Bertrand Russel, P1 : P2 est fausse P2 : P1 est vraie P1 est-elle vraie? L'ensemble de tous les ensembles qui ne se contiennent pas est-il un élément de lui-même? Kurt Gödel, P1 : P2 n'est pas démontrable P2 : P1 est vraie P2 est-elle démontrable?

10 Les mathématiques du calcul Les paradoxes qui tuent le rêve de Hilbert Alonzo Church, Alan Turing, Existe-t-il un algorithme qui prenne en entrée un algorithme A, et qui en sortie réponde à la question «A se termine-t-il?» (Il existe des algorithmes qui ne se terminent jamais, par exemple n=k=0 Tant que n < 10 : k = n+2)

11 Les mathématiques du calcul Les paradoxes qui tuent le rêve de Hilbert Existe-t-il un algorithme qui prenne en entrée un algorithme A et son entrée E, et qui en sortie réponde à la question «A se termine-t-il avec E?» Supposons l'existence d'un tel algorithme : A1 : en entrée, A et E, en sortie 1 si A se termine avec E, 0 sinon Alors on peut construire A2 : A2 : en entrée, A et E, Lance A1 sur A et E en sortie 1 si A1 retourne 0, sinon boucle indéfiniment A2 se termine-t-il avec en entrée A2?

12 Les mathématiques du calcul Emil Post Exemple de problème incalculable moins alambiqué Problème des correspondances de Post Un alphabet fini A Deux ensembles de N mots sur A : Existe-t-il une séquence telle que Exemples : A = {a,b} 1/ a,ab,bba et baa,aa,bb 2/ ab,bba et aa,bb

13 Théorie de la complexité L Euler à Königsberg, 1736

14 Théorie de la complexité WR Hamilton en Irlande, 1857

15 Théorie de la complexité WR Hamilton en Irlande, 1857

16 Théorie de la complexité Jack Edmonds, né en 1934 Un bon algorithme a sa complexité bornée par un polynôme de la taille des donnée O(log(n)), O(n), O(n 2 ), O(n 3000 ) OK O(2 n ), O(n k ), O(n!) Non

17 Théorie de la complexité log(n) n n n

18 Théorie de la complexité Les limites de la théorie O(n 3000 ) est un bon algorithme O(2 n/3000 ) Non (et un rappel : O(3000n) = O(n))

19 Théorie de la complexité Classification des problèmes de décision Problème de décision : on attend une réponse «oui» ou «non» NP : classe de problèmes pour lesquels on peut vérifier une réponse «oui» avec un bon algorithme Co-NP : classe de problèmes pour lesquels on peut vérifier une réponse «non» avec un bon algorithme P : classe de problèmes pour lesquels on peut trouver la réponse avec un bon algorithme

20 Théorie de la complexité Classification des problèmes de décision Conjecture : il existe des problèmes dans NP pour lesquels il n'existe pas de bon algorithme (P NP) Classe NP-complet : un problème X est NP-complet si X est dans P => P = NP NP-complet = Problèmes algorithmiquement difficiles

21 Théorie de la complexité Classification des problèmes de décision NP co-np NP-complet Hamilton Euler P

22 Théorie de la complexité Classification des problèmes de décision Théorème (Cook, 1971) : Il existe des problèmes NPcomplets Exemple : SAT Un ensemble de variables Un ensemble de clauses : ensemble de variables ou de leur négation Existe-t-il une affectation des variables à 0 ou 1 telle que toutes les clauses contiennent une variable à 1?

23 Théorie de la complexité Classification des problèmes de décision Réduction : On montre qu'un problème X est difficile (NPcomplet) en choisissant un autre problème Y NP-complet, et en montrant X est dans P => Y est dans P

24 Théorie de la complexité Classification des problèmes de décision Exemples de réduction : SAT Circuit hamiltonien orienté Clique maximum Circuit hamiltonien non orienté Plus longue sous-séquence commune

25 Exemple de réduction détaillée Problème X : clique maximum dans un graphe Entrée : un graphe, un entier K Sortie : existe-t-il une clique de taille K? Problème Y : SAT Entrée : des variables et des clauses Sortie : existe-t-il une assignation des variables qui satisfasse toutes les clauses? On réduit Y à X, c'est à dire qu'on prouve X est dans P => Y est dans P Attention, ce n'est pas symétrique!!!!! On suppose que X est dans P, donc qu'il existe un algorithme A qui résout X en temps polynomial. Soit E une entrée de Y c'est à dire des variables et des clauses. On construit à partir de Y une entrée de X, c'est à dire un graphe G. Pour chaque variable de chaque clause, on construit un sommet, et on relie deux sommets par une arête si - ils sont dans des clauses différentes et - ils ne sont pas la négation l'un de l'autre On a construit une entrée de X : le graphe et K=le nombre de clauses.

26 Exemple de réduction détaillée Propriété : il existe une clique de taille K dans G si et seulement si il existe il existe dans E une assignation des variables qui satisfasse toutes les clauses. Preuve : s'il existe une clique, alors elle contient exactement un sommet par clause. On met chaque variable à 1 (les variables complémentées se retrouvent à 0), c'est une bonne assignation. Inversement, s'il existe une assignation, tous les sommets correspondants aux variables si satisfont chaque clause forment une clique. On applique l'algorithme A à G et K. D'après la propriété il répond à la question pour E, donc Y est dans P. On a donc prouvé X est dans P => Y est dans P, et en supposant que Y est NPcomplet, c'est à dire Y est dans P => P=NP, on a X est dans P => P=NP, donc X est NP-complet.

27 SAT Circuit hamiltonien orienté Clique maximum Circuit hamiltonien non orienté Plus longue sous-séquence commune Plus long chemin Stable max Plus grand cycle Voyageur de commerce Transversal min Ensemble de colonnes intersectant toutes les lignes d'une matrice binaire Comité représentatif Ensemble dominant

28 Problème des correspondances de Post borné Phylogénie avec des caractères Alignement multiple États ancestraux avec des réarrangements DCJ Arbre de Steiner Colorier un graphe (en trois couleurs) Bin packing Sous-arbre commun maximum Sudoku, Tetris

29

30

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Feuille 1 : Autour du problème SAT

Feuille 1 : Autour du problème SAT Master-2 d Informatique 2014 2015 Complexit Algorithmique Applique. Feuille 1 : Autour du problème SAT 1 Rappels sur SAT Énoncé du problème. Le problème SAT (ou le problème de Satisfaisabilité) est le

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Quelques problèmes NP-complets

Quelques problèmes NP-complets Chapitre 12 Quelques problèmes NP-complets Maintenant que nous connaissons la NP-complétude d au moins un problème (SAT), nous allons montrer qu un très grand nombre de problèmes sont NP-complets. Le livre

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014

INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014 INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014 CORRIGÉ Documents non autorisés, durée: 2h45 1 Questions de cours (6 points) Question 1 (2pts) Donner quatre méthodes vues en cours pour

Plus en détail

Exemples de problèmes N P-complets

Exemples de problèmes N P-complets Exemples de problèmes N P-complets MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Exemples de problèmes NP-complets 1/22 Plan 1. Rappels essentiels 2. Problème SAT 3. Autres

Plus en détail

INF-550-3: NP-complétude et hypothèse de temps exponentiel

INF-550-3: NP-complétude et hypothèse de temps exponentiel Cours 3: NP-complétude et hypothèse de temps exponentiel Réduction polynomiale NP-complétude L hypothèse de temps exponentiel (ETH) Exploration arborescente 1-1 Complexité polynomiale On s intéresse à

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Eléments de NP-Complétude

Eléments de NP-Complétude Module d Algorithmique Avancée Année 2005-2006 Eléments de NP-Complétude Safia Kedad-Sidhoum Safia.Kedad-Sidhoum@lip6.fr Module d Algorithmique AvancéeAnnée 2005-2006 p. 1/15 Introduction Algorithmes efficaces

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

EXAMEN I31, 2015. La clarté et la concision de vos réponses est essentielle. Lisez l énoncé avant de répondre.

EXAMEN I31, 2015. La clarté et la concision de vos réponses est essentielle. Lisez l énoncé avant de répondre. EXAMEN I, 05 La clarté et la concision de vos réponses est essentielle. Lisez l énoncé avant de répondre. Euclide et Bézout Pour a = a 0 = 0,b = b 0 =. Première question. Calculez le PGCDg deaetb, ainsi

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Algorithmes efficaces : problèmes polynomiaux La classe NP. La complexité. Maria Malek. 28 novembre 2011

Algorithmes efficaces : problèmes polynomiaux La classe NP. La complexité. Maria Malek. 28 novembre 2011 28 novembre 2011 Notions générales Les transformations polynomiales -complets Notions générales en temps des algorithmes : le temps nécessaire à leurs exécutions dépend de : La machine utilisée (systèmes

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Rudiments de Calculabilité et de Complexité

Rudiments de Calculabilité et de Complexité Rudiments de Calculabilité et de Complexité Paul Gastin LSV, ENS Cachan, INRIA, CNRS, FRANCE Informatique et sciences du numérique, 2 juin 2010 http://www.lsv.ens-cachan.fr/~gastin/ 1/37 L informatique

Plus en détail

De la difficulté de colorer : de Guthrie à Karp

De la difficulté de colorer : de Guthrie à Karp De la difficulté de colorer : de Guthrie à Karp Introduction à l optimisation combinatoire : Modélisation et complexité Marc Demange ESSEC Business School Paris, Singapore demange@essec.edu Plan de la

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

ALGORITHMIQUE. Notes du cours FS/1/6584 Année préparatoire au master 60 en informatique ULB UMH Gilles GEERAERTS (Université Libre de Bruxelles)

ALGORITHMIQUE. Notes du cours FS/1/6584 Année préparatoire au master 60 en informatique ULB UMH Gilles GEERAERTS (Université Libre de Bruxelles) ALGORITHMIQUE A L G O R I T H M I Q U E Notes du cours FS/1/6584 Année préparatoire au master 60 en informatique ULB UMH Gilles GEERAERTS (Université Libre de Bruxelles) ANNÉE ACADÉMIQUE 2008 2009 (2 E

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles. Année académique 2014-2015

Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles. Année académique 2014-2015 INFO-F-302, Cours d Informatique Fondamentale Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles Année académique 2014-2015 Problèmes Indécidables : Définition

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

INFO-F-302, Cours d Informatique Fondamentale Introduction à la théorie de la complexité. Introduction à la théorie de la complexité

INFO-F-302, Cours d Informatique Fondamentale Introduction à la théorie de la complexité. Introduction à la théorie de la complexité Introduction à la théorie de la complexité Les classes P et NP 197 Problèmes de décision I Informellement, un problème de décision est un problème dont la réponse est oui ou non. I on peut définir un problème

Plus en détail

1 Comptage de solutions et escaliers

1 Comptage de solutions et escaliers Licence Informatique Systèmes polynomiaux, que signifie : résoudre? Feuille de TD numéro 11 1 Comptage de solutions et escaliers Question 1. On considère le système suivant p1 := 2*x*y^2 + 3*x^2-5*y^3

Plus en détail

Algorithmes Probabilistes COMPLEX

Algorithmes Probabilistes COMPLEX Algorithmes Probabilistes COMPLEX Ludovic Perret Université Pierre et Marie Curie (Paris VI) ludovic.perret@lip6.fr Introduction Algorithme Il retourne toujours une solution correcte, et pour une même

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Algorithmique... Complexité. Luc Brun. luc.brun@greyc.ensicaen.fr. A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p.

Algorithmique... Complexité. Luc Brun. luc.brun@greyc.ensicaen.fr. A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p. Algorithmique... Complexité Luc Brun luc.brun@greyc.ensicaen.fr A partir de travaux de Habib Abdulrab(Insa de Rouen) Complexité p.1/25 Plan... Notion de complexité Comment évaluer la complexité d un algorithme

Plus en détail

NP-complétude. Définition P est l ensemble de tous les problèmes de décision pouvant être résolu en temps polynomial.

NP-complétude. Définition P est l ensemble de tous les problèmes de décision pouvant être résolu en temps polynomial. NP-complétude et notation Un problème de décision est un problème dont la réponse est OUI ou NON. Pour un problème P, notons O(P) l ensemble des instances de P dont la réponse est OUI. Propriété Soient

Plus en détail

Complexité d un algorithme

Complexité d un algorithme La complexité Complexité d un algorithme Trouver un moyen d estimer le temps d exécution d un algorithme donné Ce temps peut s exprimer formellement en fonction du nombre d instructions exécutées par une

Plus en détail

CONTEXTE ET OBJECTIFS. Algorithmique et ComplexiTé Présentation du cours CELA POSE DE NOMBREUSES QUESTIONS ET DEMANDE UN CERTAIN SAVOIR-FAIRE.

CONTEXTE ET OBJECTIFS. Algorithmique et ComplexiTé Présentation du cours CELA POSE DE NOMBREUSES QUESTIONS ET DEMANDE UN CERTAIN SAVOIR-FAIRE. CONTEXTE ET OBJECTIFS Algorithmique et ComplexiTé Présentation du cours ACT - Master1 Informatique Sophie Tison -Lille1- sophie.tison@lifl.fr Les algorithmes sont au coeur de l informatique: tris, recherche,

Plus en détail

Introduction à la théorie de la complexité

Introduction à la théorie de la complexité Introduction à la théorie de la complexité 197 Problèmes de décision I Informellement, un problème de décision est un problème dont la réponse est oui ou non. I on peut définir un problème de décision

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ. Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité

NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ. Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité NFP136- Cours 2 ALGORITHMES ET COMPLEXITÉ PLAN Définition d'un algorithme Un exemple Présentation des algorithmes Évaluation d'un algorithme Complexité 1 DÉFINITION D'UN ALGORITHME Procédure de calcul

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Graphes et optimisation discrète : Théorie de la complexité

Graphes et optimisation discrète : Théorie de la complexité Plan Graphes et optimisation discrète : Théorie de la complexité P. Laurent Mathématiques 2 16 janvier 2006 Plan Plan 1 Introduction 2 Qu est ce qu un algorithme? Codage des données 3 Différentes notions

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

COMPLEXITÉ CLASSES P ET NP

COMPLEXITÉ CLASSES P ET NP M1if09 Calculabilité & complexité Sylvain Brandel 2016 2017 sylvain.brandel@univ-lyon1.fr CM 7 COMPLEXITÉ CLASSES P ET NP 1 2 La classe P Exemple1 : voyageur de commerce Visite de n villes en faisant le

Plus en détail

Exercices à savoir faire

Exercices à savoir faire Licence 1 Mathématiques 2014 2015 Algèbre et Arithmétique 1 Feuille n o 2 Théorie des ensembles, applications Exercices à savoir faire Théorie des ensembles Exercice 1 Soit F l ensemble des femmes. Qu

Plus en détail

Placements de tours sur les diagrammes de permutations

Placements de tours sur les diagrammes de permutations Placements de tours sur les diagrammes de permutations 5 août 0 Résumé Le problème des placements de tours consiste à compter le nombre de manières de placer k tours sur un échiquier sans que les tours

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

Mathématiques pour l'informatique? Au programme. Objectif du semestre

Mathématiques pour l'informatique? Au programme. Objectif du semestre Mathématiques pour l'informatique? Calcul des Ensembles David Teller 09/02/2007 Q L'informatique, au juste, c'est quoi? A L'informatique, c'est : de l'électronique de la théorie des processus de la linguistique

Plus en détail

Modèles de Calculs, Analyse d Algorithmes, Complexité de problèmes

Modèles de Calculs, Analyse d Algorithmes, Complexité de problèmes Modèles de Calculs, Analyse d Algorithmes, Complexité de problèmes p. Introduction & Motivations p. p. Motivation: Premier exemple Problème REACH: Instance: un graphe orienté G = (V, E),deux sommets u,

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Algorithmique dans les nouveaux programmes de Première

Algorithmique dans les nouveaux programmes de Première Algorithmique dans les nouveaux programmes de Première Journée de présentation des nouveaux programmes de Première académie de Nice Les nouveaux programmes de Première 2011 1 I. Introduction 1. Acquis

Plus en détail

INF-550-4: NP-complétude et algorithmes approchés

INF-550-4: NP-complétude et algorithmes approchés Cours 4: NP-complétude et algorithmes approchés Réduction polynomiale NP-complétude Algorithmes approchés Schémas d approximation Bin-packing: limite de l approximabilité. Voyageur de commerce : non approximabilité

Plus en détail

Introduction à l Informatique Théorique. Master Systèmes Complexes 2009/2010 Cours (20h) : Eric Thierry TD (10h) : Jonathan Grattage

Introduction à l Informatique Théorique. Master Systèmes Complexes 2009/2010 Cours (20h) : Eric Thierry TD (10h) : Jonathan Grattage Introduction à l Informatique Théorique Master Systèmes Complexes 2009/2010 Cours (20h) : Eric Thierry TD (10h) : Jonathan Grattage L informatique Usage courant : Utilisation de logiciels. Développement

Plus en détail

L ordinateur est-il tout puissant?

L ordinateur est-il tout puissant? L ordinateur est-il tout puissant? Introduction à l informatique théorique Bruno Grenet 12 octobre 2011 L Informatique, kesako? Des jeux vidéo? Navigation internet, mails? Traitement de texte, tableurs?

Plus en détail

Calculabilité, Complexité et Algorithmique

Calculabilité, Complexité et Algorithmique Calculabilité, Complexité et Algorithmique Lhouari Nourine Université Blaise Pascal, CNRS, LIMOS Janvier, 2013 Fès maroc 2/1 C est quoi? Quels sont les problèmes qu une machine peut résoudre? Trier un

Plus en détail

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Les automates Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Avril 2015 Retour sur l île et le barman Deux problèmes similaires: Des îles, des bateaux et un trésor à trouver

Plus en détail

Complexité des algorithmes

Complexité des algorithmes Complexité des algorithmes par Robert Rolland R. Rolland, Aix Marseille Université, Institut de Mathématiques de Marseille I2M Luminy Case 930, F13288 Marseille CEDEX 9 e-mail : robert.rolland@acrypta.fr

Plus en détail

Analyse de la complexité algorithmique (1)

Analyse de la complexité algorithmique (1) Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble

Plus en détail

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples CH.1 COMPLEXITÉ 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples L2-2 ch1 1 1.1 Les ordres de grandeur Chaque problème peut être résolu de différentes manières par des algorithmes

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Fondamentaux pour les Mathématiques et l Informatique :

Fondamentaux pour les Mathématiques et l Informatique : Université Bordeaux 1 Licence de Sciences, Technologies, Santé Mathématiques, Informatique, Sciences de la Matière et Ingénierie M1MI1002 Fondamentaux pour les Mathématiques et l Informatique Fondamentaux

Plus en détail

Problème : débordement de la représentation ou dépassement

Problème : débordement de la représentation ou dépassement Arithmétique entière des ordinateurs (représentation) Écriture décimale : écriture positionnelle. Ex : 128 = 1 10 2 + 2 10 1 + 8 10 0 Circuit en logique binaire Écriture binaire (base 2) Ex : (101) 2 =

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Carl-Louis-Ferdinand von Lindemann (1852-1939)

Carl-Louis-Ferdinand von Lindemann (1852-1939) Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 sai1042@ensai.fr Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Les limites théoriques de l informatique Les problèmes indécidables

Les limites théoriques de l informatique Les problèmes indécidables Les limites théoriques de l informatique Les problèmes indécidables Samuel Fiorini - Gilles Geeraerts - Jean-François Raskin Université Libre de Bruxelles Académie Royale des Sciences Bruxelles 3/3/2010

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Contagion et roue de vélo

Contagion et roue de vélo et roue de vélo P. Pansu, Université Paris-Sud 11 et Ecole Normale Supérieure 5 février 2011 Les roues de mon vélo font 1m de diamètre. Je gare mon vélo dans une flaque d eau de profondeur P. Les roues

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi - 14 Juin 2005 - - Faculté des Sciences de Luminy - 1. Introduction

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail