MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)"

Transcription

1 Dans ou le problème, n es un enier naurel supérieur ou égal à 2 On noe l ensemble des marices carrées réelles de aille n e M n ( IC ) l ensemble des marices carrées complexes de aille n On noe A la marice ransposée d une marice A On noe de( A) le déerminan d une marice A apparenan à ou ( IC ) M n Parie I - Quesions préliminaires IA - Soi E un IR -espace vecoriel de dimension n, U e V deux bases de E ; on noe la marice de passage de à P U V f E A U B V Soi un endomorphisme de, sa marice sur e sa marice sur Exprimer A en foncion de B, de P e de P 1 (On ne demande pas de démonsraion) IB - Soien M e N deux marices apparenan à ; on rappelle que M es die semblable à N s il exise une marice inversible Q apparenan à elle que M = QNQ 1 Monrer que si M es semblable à N, alors N es semblable à M On di alors, de façon abrégée, que «M e N son semblables» IC - Soi A, B e C rois marices apparenan à On suppose que A es semblable à B e que B es semblable à C Monrer que A es semblable à C Monrer aussi que A e B son semblables ID - Soi A ID1) Monrer que si A es diagonale, A e A son semblables ID2) Monrer que si A es diagonalisable, alors A e A son semblables Plus généralemen : Le bu du problème es de monrer que oue marice A apparenan à es semblable à sa ransposée Concours Cenrale-Supélec /7

2 Parie II - Cas n = 2 Dans cee parie, on fixe une marice A M 2 ( IR), non diagonale, qu on écri A ab = e on cherche à résoudre l équaion ( E) : AP = PA, cd où l inconnue P es une marice apparenan à M 2 ( IR), qu on cherchera sous la forme P = xy z IIA - Trouver un ensemble de condiions, poran sur x, y, z e, qui soi nécessaire e suffisan pour que P vérifie ( E) On ramènera ce ensemble à deux condiions, l une éan y = z e l aure ne poran que sur x, y e IIB - En prenan l un des deux nombres x ou nul, l aure égal à d a e, dans chacun des deux cas, en choisissan convenablemen y, rouver deux marices P soluions ; monrer que l une au moins de ces deux marices es inversible IIC - Monrer que A e A son semblables Parie III - Cas n = 3 Dans cee parie, on muni l espace vecoriel IR 3 de sa srucure euclidienne usuelle La base canonique es donc orhonormée Le produi scalaire de deux veceurs x e y es noé x y On fixe une marice A M 3 ( IR) On noe f e h les endomorphismes de IR 3 qui admeen respecivemen A e A pour marices sur la base canonique On désigne par id l endomorphisme idenié e par I la marice unié d ordre 3 On rappelle qu un sous-espace vecoriel V de IR 3 es di sable par f si, pour ou veceur v de V, le veceur f( v) apparien à V IIIA - Quesions préliminaires IIIA1) Monrer que oue foncion polynomiale de IR dans IR, de degré impair, adme au moins un zéro Concours Cenrale-Supélec /7

3 IIIA2) Monrer que les marices A e A on le même polynôme caracérisique e que ce polynôme adme au moins une racine réelle IIIA3) Soi ( D) une droie vecorielle de IR 3, dirigée par un veceur i Monrer que ( D) es sable par f si e seulemen si i es veceur propre de f Monrer qu il exise au moins une droie sable par f IIIA4) On suppose que le réel a es valeur propre de f, le sous-espace propre associé éan F, e valeur propre de h, le sous-espace propre associé éan H Comparer les rangs des marices A ai e A ai En déduire que F e H son de même dimension IIIA5) Soien x e y deux veceurs de IR 3, de marices X e Y sur la base canonique Comparer le produi scalaire x y e l unique erme de la marice XY Exprimer de façon analogue les produis scalaires f( x) y e x h( y) e monrer que ces deux nombres son égaux IIIA6) Soi u un veceur propre de h Monrer que le plan vecoriel orhogonal au veceur u es sable par f IIIB - Dans oue cee quesion, on suppose qu il exise une seule droie, noée ( D), sable par f On désigne par i un veceur uniaire dirigean ( D) IIIB1) Monrer qu il exise une seule droie, qu on noera ( D ), sable par h Dans oue cee quesion IIIB, on suppose que ( D ) es orhogonale à ( D) e on inrodui une base orhonormée ( i, j, k) de IR 3, le veceur k dirigean ( D ) Soi B la marice de f sur cee base IIIB2) Monrer que f( j) es orhogonal à k IIIB3) Jusifier que B es de la forme abc 0 ad 00a IIIB4) En considéran le rang de B ai, monrer que b e d son non nuls IIIB5) On pose P = 00b 0 d 0 b 00 Calculer BP e P B Monrer que A es semblable à A Concours Cenrale-Supélec /7

4 IIIC - Complémen On suppose, dans cee quesion seulemen, que 111 A = Monrer que f vérifie oues les hypohèses de IIIB IIID - Dans cee quesion, on suppose que f ne vérifie pas oues les hypohèses de la quesion IIIB IIID1) Monrer qu il exise une droie ( D) e un plan ( P) sables par f, ( D) n éan pas conenue dans ( P) IIID2) Monrer qu on peu rouver un veceur i dans ( D) e deux veceurs j e k dans ( P) els que ( i, j, k) soi une base de IR 3 Quel es l aspec de la marice B de f sur cee base? IIID3) Monrer, en calculan les produis BQ e QB e en uilisan la parie II, qu on peu rouver des réels x, y, z e els que la marice Q = xy soi inversible e vérifie BQ = QB 0 z Monrer que A es semblable à A Parie IV - Un résula uile pour la suie du problème On uilise mainenan des marices complexes On noe i le complexe usuel el que i 2 = 1 IVA - Soi M une marice apparenan à M n ( IC ) Monrer qu il exise un unique couple ( PQ, ) de marices apparenan à el que M = P+ iq IVB - Soien A e B deux marices apparenan à On suppose que ces deux marices, considérées comme élémens de M n ( IC ), son semblables IVB1) Monrer qu il exise deux marices P 1 e P 2 apparenan à elles que P 1 A = BP 1, P 2 A = BP 2 e de ( P 1 + ip 2 ) es non nul IVB2) Soi g l applicaion de IC dans IC définie par gx ( ) = de ( P 1 + xp 2 ) Monrer, par exemple par récurrence sur n, que g es une foncion polynomiale Monrer que g n es pas la foncion nulle de IC dans IC En déduire qu on peu rouver un réel x el que de ( P 1 + xp 2 ) 0 Concours Cenrale-Supélec /7

5 IVB3) Monrer que les marices A e B, considérées comme élémens de, son semblables Parie V - Cas général Dans cee parie, n es un enier quelconque supérieur ou égal à 2 Soi A M n ( IC ) e f l endomorphisme de IC n don A es la marice sur la base canonique VA - Rappeler le résula du cours sur la rigonalisaion d un endomorphisme e jusifier qu il s applique à f On admera le résula suivan, plus précis : Soi α une valeur propre de f On peu rouver une base B = ( e 1,, e n ) de IC n e un enier k enre 0 e n 1 ayan les propriéés suivanes : La marice T de f sur B es riangulaire supérieure Les k premiers ermes diagonaux son ous différens de α e les n k derniers son ous égaux à α On pose g = f α id, où id désigne l idenié de IC n VB - Dans cee quesion, k = 0 ; les ermes diagonaux de T son donc ous égaux à α VB1) Monrer que, pour ou i de 2 à n, g( e i ) apparien au sous-espace engendré par e 1, e 2,, e i 1 En déduire que l endormorphisme g n es nul ( g m désigne l endomorphisme composé go g o g, où g es uilisé m fois) Dans oue la suie de ce VB, on désigne par p le plus pei enier supérieur ou égal à 1 el que g p soi nul Monrer que si p = 1, alors A es semblable à A On coninue en supposan p 1 On a donc : 2 p n, g p 1 0 e on désigne par u un veceur el que g p 1 ( u) ne soi pas nul On pose u p = u, u p 1 = gu ( ),, u 1 = g p 1 ( u) Monrer que la famille ( u 1,, u p ) es libre VB2) On suppose que p = n Quelles son les marices de f sur les bases ( u 1, u 2,, u n ) e ( u n, u n 1,, u 1 ) de IC n? Monrer que A es semblable à A VB3) On suppose que p< n e on complèe ( u 1,, u p ) en une base ( u 1, u 2,, u n ) de IC n Concours Cenrale-Supélec /7

6 On noe U la marice de g sur cee base e P la marice carrée don la k ième ligne es égale à la première ligne de U k 1 Monrer que les lignes de cee marice P, à parir de la p + 1 ième, son nulles Que peu-on en conclure concernan le rang de P? Pour j e k enre 1 e p, préciser g k 1 ( u j ) suivan que k< j, k = j ou k> j En déduire les p premiers ermes de la k ième ligne de P Monrer que la marice P es de rang p Soi h l endomorphisme admean P pour marice sur la base ( u 1, u 2,, u n ) de IC n e soi W le sous-espace engendré par ( u 1, u 2,, u p ) Monrer que pour ou v W, on a hv ( ) = v En déduire que W e le noyau de h son deux sous-espaces supplémenaires de IC n Monrer que ces deux sous-espaces son sables par g e par f VC - Dans cee quesion, k n es pas nul VC1) Jusifier que la marice de g sur la base es de la forme T 1 B, O T 2 où les marices T 1 e T 2 son riangulaires supérieures, de ailles respecives k e n k n k Monrer que la marice T 2 es nulle e que la marice T 1 es inversible VC2) On adme que la marice de g n k sur la base es de la forme B B n k T 1 B' n k O T 2 Quel es le rang de cee marice? Quelle es la dimension du noyau G de g n k? VC3) Soi F le sous-espace de IC n engendré par ( e 1, e 2,, e k ) Monrer que F e G son supplémenaires dans IC n e que ces sous-espaces de IC n son sables par g e f Concours Cenrale-Supélec /7

7 VD - On suppose par récurrence que oue marice carrée complexe de aille comprise enre 1 e n 1 es semblable à sa ransposée VD1) On suppose ici qu il exise deux sous-espaces F e G supplémenaires dans IC n e sables par f, aucun de ces deux sous-espaces n éan rédui au veceur nul En considéran les resricions de f à F e G, monrer que A es semblable à A VD2) En rassemblan les résulas, monrer que, dans ous les cas, A es semblable à A VE - On suppose mainenan que A Monrer que A es semblable à A dans FIN Concours Cenrale-Supélec /7

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u.

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u. MATHÉMATIQUES II Dans ou le problème, n es un enier naurel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On noe ( xy) le produi scalaire de deux veceurs x e y e xa x la norme

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps MATHÉMATIQUES II Dans ou le problème, ε désigne le plan affine euclidien IR 2 rapporé à son repère orhonormé canonique ( OI ;, J) On noe i le complexe de module 1 e π d argumen -- Si z IC, on noe Mz ()

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

MATHÉMATIQUES I. Partie I - Calculs préliminaires

MATHÉMATIQUES I. Partie I - Calculs préliminaires MATHÉMATIQUES I Parie I - Calculs préliminaires Dans ou ce problème a e v désignen deux nombres réels, a es sricemen posiif IA - Monrer que la foncion ϕ définie sur IR * par ( sin( x) ) ϕ( x) = adme un

Plus en détail

MATHÉMATIQUES II. Rappels, notations et objectifs du problème

MATHÉMATIQUES II. Rappels, notations et objectifs du problème MATHÉMATIQUES II Rappels, notations et objectifs du problème Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2 et M n ( IC ) l ensemble des matrices carrées complexes d ordre n De

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J es clairemen de rang 1, donc 0 es valeur

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Autour des fonctions vectorielles

Autour des fonctions vectorielles NOTES DE COURS Chap GEO01 Auour des foncions vecorielles Cadre de ravail e/ou noaions uilisées Dans ou ce qui sui, I désignera un inervalle non vide e non rédui à un poin de R, e n désignera un enier naurel

Plus en détail

CENTRALE 2003 TSI MATHEMATIQUES 2 PARTIE

CENTRALE 2003 TSI MATHEMATIQUES 2 PARTIE CENTRALE 2003 TSI MATHEMATIQUES 2 I IA IB IC ID1) A = P B P 1 En utilisant : R = Q 1 Toutes les matrices Q i sont inversibles soit par hypothèse, soit comme conséquence de leur définition Alors si : A

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques Lycée du Parc 2-22 - Concours Blanc Épreuve de mahémaiques Samedi 5 Mai 22-8h-2h Si la vie es complee, c es parce qu elle a une parie réelle e une parie imaginaire. Marius Sophus Lie. Le devoir compore

Plus en détail

Juin 2007 (2 heures et 30 minutes)

Juin 2007 (2 heures et 30 minutes) Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c)

Plus en détail

Espaces préhilbertiens réels et espaces euclidiens

Espaces préhilbertiens réels et espaces euclidiens Espaces préhilberiens réels e espaces euclidiens 0 Rappels de première année 0. Produi scalaire réel, espace euclidien Définiion 0... Produi scalaire réel Ean donné un Respace vecoriel E, on appelle produi

Plus en détail

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes.

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes. Corrigé de l épreuve Mah de CCP, PSI 22 Luc Verschueren, Lycée Daude à Nîmes. Parie I Cas d une marice à coefficiens consans. Quesion I.. La foncion X définie par X : e V es dérivable surre X e V (coefficien

Plus en détail

TD 02 : Applications linéaires

TD 02 : Applications linéaires Ex 1 Ex 2 TD 02 : Applicaions linéaires Les applicaions suivanes son-elles linéaires? x ( ) 1 f : y 2x + 4y z R4 R y 2, x 2 f : y 2x πy z R4 z + 3 R 3, x + y + z + Première approche x 3 f : y z R4 x +

Plus en détail

Notations et définitions

Notations et définitions Les calculatrices sont interdites L objectif du problème est de définir et d étudier la notion de diagonalisabilité d un couple de matrices A, B dans plusieurs situations Les parties I et V traitent chacune

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résolution de systèmes linéaires par la méthode du pivot de Gauss Lycée Pierre de Ferma 7/8 MPSI TD Résoluion de sysèmes linéaires par la méhode du pivo de Gauss Sysèmes linéaires. Conclure à parir d un sysème échelonné e riangularisé Exercice.. Sysèmes linéaires riangularisés

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur.

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur. Corrigé de l éreuve Mah C, Banque PT Nahalie Planche Préambule:. Pour ou réel, car y es soluion de ( ) e a ne s annule as sur. = On a donc bien monré que es soluion du sysème différeniel (S) :. L équaion

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

Solutions Feuille de Travaux Dirigés semaine 12

Solutions Feuille de Travaux Dirigés semaine 12 Universié de Tours Licence de Mahémaiques Soluions Feuille de Travau Dirigés semaine 2 L3, Algèbre Semesre 6 Eercice ) Déerminer oues les marices de R 3 ayan pour polynôme minimal X + Soluion: Soi A une

Plus en détail

Chapitre VIII : Trigonométrie

Chapitre VIII : Trigonométrie hapire V : Trigonomérie Exrai du programme : Dans ce chapire, on muni le plan du repère orhonormé (; ;. Repérage sur le cercle rigonomérique Définiion Le cercle rigonomérique es le cercle de cenre e de

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Différentiabilité. Chapitre 1. Conventions, notations et rappels

Différentiabilité. Chapitre 1. Conventions, notations et rappels Chapire 1 Différeniabilié Le principal obje du calcul différeniel es d évaluer la différence f (x + h) f (x), accroissemen d une applicaion f définie au voisinage d un poin x d un espace normé E, à valeurs

Plus en détail

Mines Math1 PSI Un corrigé

Mines Math1 PSI Un corrigé Mines 26 - Mah PSI Un corrigé Préliminaire Le cours nous apprend que pour ou réel α, on a x ], [, ( + x α + En choisissan α /2 e en subsiuan x à x, on a donc α(α (α + x! x ], [, x + a x avec a 2, : a +

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

e3a PC Mathématiques 3

e3a PC Mathématiques 3 e3a PC Mahémaiques 3 Problème Le exe définissai une norme sur l espace vecoriel des marices réelles à p lignes e q colonnes, p, q e demandai d admere une inégalié sur ces normes. Si dans on considère les

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Exercices de mathématiques

Exercices de mathématiques Universié Paris Didero Année 2007-2008 MI2 Semaine du 3 mars au 4 avril feuille n 6 Exercices de mahémaiques Exercice Déerminer lesquels des ensembles E, E 2, E 3 e E 4 son des sous-espaces vecoriels de

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

Mouvement brownien et calcul stochastique Partiel du 26 novembre 2018

Mouvement brownien et calcul stochastique Partiel du 26 novembre 2018 Mouvemen rownien e calcul sochasique Pariel du 26 novemre 218 2 heures 3, sans documens Barème approximaif. Ex.1 : 6 ps, Ex.2 : 3 ps, Ex.3 : 6 ps, Ex.4 : 5 ps Exercice 1. Soi B un mouvemen rownien réel

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque TD - corrigés Inégraion sur un inervalle quelconque. Jusifier, pour ou réel >, la convergence de l inégrale J) d Énoncés. Soi α un réel sricemen posiif. Pour quelles valeurs de α, l inégrale généralisée

Plus en détail

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques.

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques. MATHÉMATIQUES II Dans tout le problème, M désigne le IR -espace vectoriel des matrices carrées à coefficients réels dont l élément nul est noté 0, et S le sous-espace vectoriel de M formé des matrices

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Partie I - Généralités P(E) et P n

Partie I - Généralités P(E) et P n Centrale 003 PSI Maths page 1 MATHÉMATIQUES II Filière PSI Dans tout le problème, n est un entier naturel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On note x y le produit

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

COURS Espérance mathématique - Variance. Soit X une variable aléatoire de densité f

COURS Espérance mathématique - Variance. Soit X une variable aléatoire de densité f Chapire : Lois de probabiliés à densié COURS Généraliés sur les lois de probabiliés coninues Variable aléaoire coninue Soi X une variable aléaoire définie sur un univers I R X es die variable aléaoire

Plus en détail

Les calculatrices sont autorisées. ****

Les calculatrices sont autorisées. **** Les calcularices son auorisées B Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené à repérer ce qui peu lui sembler êre une erreur

Plus en détail

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Concours d'admission sur classes préparaoires MATHEMATIQUES Opion économique 5 mai 5 de 8h à h La présenaion, la lisibilié, l'orhographe, la qualié de la rédacion,

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Chapitre 14 - Fonctions de plusieurs variables - Corrigés Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 5 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mahémaiques A MP Parie I 1. Les soluions de l équaion différenielle E sur l inervalle I formen un R-espace vecoriel de dimension. Les

Plus en détail

I. Exercice préliminaire

I. Exercice préliminaire SESSION 00 CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES I. Exercice préliaire 1. H = Γ Γ = 1 1 1 1 1 1 1 1 = 5 5 5 5. 1 1 1 1 5 5 H es une marice symérique réelle. D après le héorème specral,

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. Le sujet comporte 6 pages.

EPREUVE SPECIFIQUE - FILIERE PSI MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. Le sujet comporte 6 pages. SESSION 2 PSIM2 C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S EPREUVE SPECIFIQUE - FILIERE PSI MATHEMATIQUES Durée : 4 heures NB : Le candida aachera la plus rande imporance à la claré, à la

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

SÉRIES DE FOURIER JEAN-PAUL CALVI

SÉRIES DE FOURIER JEAN-PAUL CALVI SÉRIES DE FOURIER JEAN-PAUL CALVI. Approximaion des foncions par des séries de Fourier.. Séries de Fourier d une foncion inégrable.... Définiion. Soi f : R C une foncion périodique inégrable sur [,] ie

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Rappels sur les suites.

Rappels sur les suites. UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen

Plus en détail

Corrigé Maths EML 2013 ECS

Corrigé Maths EML 2013 ECS Problème. Corrigé Mas EML 3 ECS Parie I.. Soi ] ; [. Soi g : [ ; [ R, e. g es coninue e posiive sur [ ; [. De plus, g () e donc g () = o ( ). Par la règle de négligeabilié des inégrales de foncions posiives,

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

MATHÉMATIQUES I. Les calculatrices sont autorisées. Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme

MATHÉMATIQUES I. Les calculatrices sont autorisées. Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme MATHÉMATIQUES I Les calculatrices sont autorisées Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme a n --------------------------------------------------------------

Plus en détail

IV Classification des isométries vectorielles en dimension 3 9 IV.A Isométries positives... 9 IV.B Isométries négatives... 9

IV Classification des isométries vectorielles en dimension 3 9 IV.A Isométries positives... 9 IV.B Isométries négatives... 9 Espaces euclidiens I Groupe orthogonal 1 I.A Matrices orthogonales.................................... 1 I.B Groupe des matrices orthogonales.............................. 2 I.C Automorphisme orthogonal.................................

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

Pondichéry mai Partie A

Pondichéry mai Partie A Exercice 6 poins Les paries A e B peuven êre raiées de façon indépendane. Dans une usine, un four cui des céramiques à la empéraure de 000 C. À la fin de la cuisson, il es éein e il refroidi. On s inéresse

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

MATHÉMATIQUES II. Définitions et notations

MATHÉMATIQUES II. Définitions et notations MATHÉMATIQUES II Définitions et notations Dans tout le problème n désigne un entier naturel non nul et E l espace vectoriel euclidien IR n rapporté à sa base canonique et muni du produit scalaire usuel

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

MATHÉMATIQUES I. Partie I - Définition d une suite

MATHÉMATIQUES I. Partie I - Définition d une suite Les parties II, III et IV sont relativement indépendantes Partie I - Définition d une suite ( ) n IN Dans cette partie, n désigne un entier naturel supérieur ou égal à 4 A, A,, A n sont n points tous distincts

Plus en détail

Capès Sujet 2 - Enoncé

Capès Sujet 2 - Enoncé Capès 2001 - Sujet 2 - Enoncé Notations et objectifs du problème Dans tout le problème, on note : N l ensemble des entiers naturels; N l ensemble des entiers naturels différents de 0; Z l ensemble des

Plus en détail

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1 Universié Claude Bernard Lyon- Licence «Sciences e echnologie» Unié d enseignemen Mah. I Algèbre CONTROLE FINAL 8 Janvier 0-durée h L énoncé compore cinq exercices sur deux pages. Documens, calcularices

Plus en détail

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30 NO : Avril 07 Prénom : Recruemen TP FORATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS Session er avril 07 ATHÉATIQUES Temps conseillé : heure 30 Aucun documen auorisé, calcularices

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

C5T4 Angles. Activité 1 Mesurer et reproduire un angle. Activité 2 La Grande Ourse

C5T4 Angles. Activité 1 Mesurer et reproduire un angle. Activité 2 La Grande Ourse Acivié 1 Mesurer e reproduire un angle 1. Reprodui à la règle e au compas chacun des 4 angles ci-dessous. 2. Vérifie l eaciude de la reproducion en mesuran chaque angle e sa copie. Acivié 2 La Grande urse

Plus en détail

MATHÉMATIQUES II. Partie I -

MATHÉMATIQUES II. Partie I - MATHÉMATIQUES II Les calculatrices sont autorisées Notations : IK désigne le corps IR ou le corps IC On fixe un IK -espace vectoriel E de dimension n 1 Partie I - IA - On fixe une application ϕ de E dans

Plus en détail

Mat 805 : Compléments de mathématiques

Mat 805 : Compléments de mathématiques Ma 85 : Complémens de mahémaiques Michel Beaudin michelbeaudin@esmlca Version du -9-7 Résumé Marices e ssèmes d équaions différenielles linéaires Sabilié, ssèmes linéaires e quasi-linéaires Inroducion

Plus en détail

Corrigé TD 12 Fonctions caractéristiques

Corrigé TD 12 Fonctions caractéristiques Corrigé TD Foncions caracérisiques Eercice. Sur un espace de probabilié (Ω, F, P, on se donne (X, Y une variable aléaoire à valeurs dans.. On suppose que la loi de (X, Y es λµe λ µy + (, y d dy. Déerminer

Plus en détail