Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Dimension: px
Commencer à balayer dès la page:

Download "Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7"

Transcription

1 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1

2 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception? Quelques algorithmes d optimisation Qu en est-il par rapport au projet? 2

3 Qu est-ce l optimisation? Dans le milieu de la conception, l optimisation est le fait d optimiser une fonction. Formulation générale d une fonction à optimiser : f x n : R R : x f avec n x R possibilité de contraintes Formulation mathématique del optimisation : g x 0 h x 0 min f x tel que x C avec C, l ensemble des paramètres respectant les contraintes 3

4 Qu est-ce l optimisation? Les problèmes d optimisation sont définis selon plusieurs caractéristique Mono-objectif ou multi-objectif Linéaire ou non-linéaire Contraint ou non-contraint Stochastique ou non stochastique Etc. Cela implique qu un outil d optimisation peut être développé pour résoudre un/des type(s) de problème ou être indépendant du problème. 4

5 Qu est-ce l optimisation? Multi-objectif? Un problème peut être défini par plusieurs fonctions objectifs concurrents Il existe deux solutions pour traiter ces cas : Assembler les fonction en une seule : x Risque : il faut trouver des valeurs cohérentes aux poids f ' a i f i x a i Travailler sur une fonction objectif à la fois et créer un front de Pareto 5

6 0.2 cm 3.8 cm Force Comment l optimisation s intègre dans la conception? Démarche classique Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix de la topologie L 2 L 1 e Modélisation L2, e, fixés 2.2 cm Analyse et décision Calcul paramétrique L1 6

7 0.2 cm 3.8 cm Comment l optimisation s intègre dans Optimisation paramétrique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix de la topologie L 2 L 1 e Modélisation 2.2 cm oui non Optimisation La solution répond-elle aux spécifications? Automatique 7

8 Comment l optimisation s intègre dans Optimisation géométrique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix d une géométrie initiale Modélisation oui non Optimisation La solution répond-elle aux spécifications? Automatique 8

9 Comment l optimisation s intègre dans Optimisation topologique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Matériau A Matériau B Matériau C Modélisation Optimisation Automatique 9

10 Méthodes déterministes ou exactes Permettent de résoudre les problèmes de manière exactes en un temps fini Supposent généralement que la fonction objectif est Strictement convexe Continue Dérivable Sont inadaptés si ces conditions ne sont pas respectées, ou alors lorsque Le nombre de variables et/ou de contraintes devient important Les fonctions définissant la fonction objectif et les contraintes sont fortement non linéaires Il existe plusieurs optimums locaux On parle alors de problèmes «difficiles» 10

11 Méthodes heuristiques ou approchées (1) Recherchent, à moindre coût, une solution dont il n est pas possible de garantir la qualité Une méthode heuristique est dite «robuste» si elle converge le plus souvent vers la même solution Une méthode heuristique est dite «efficace» si, à temps de calcul donné, elle donne une solution proche de l optimum Parmi ces méthodes, on distingue Les méthodes développées pour des problèmes spécifiques Les méthodes adaptables à un grand nombre de problèmes différents sans changements majeurs dans l'algorithme On parle alors de méthodes «méta-heuristiques» 11

12 Méthodes heuristiques ou approchées (2) La plupart de ces méthodes Utilisent des processus aléatoires Raison pour laquelle on parle parfois de méthodes «stochastiques» Sont caractérisées par une série de paramètres de contrôles Dont le choix peut être déterminant pour la qualité de la solution Sont itératives Car elles reproduisent un même schéma de recherche durant l optimisation Sont directes Car elles n utilisent pas l information du gradient de la fonction objectif 12

13 Méthodes heuristiques ou approchées (3) Ces méthodes se prêtent facilement à des extensions pour L optimisation multi-objectifs L optimisation multimodale L'optimisation de problèmes bruités L'optimisation dynamique La parallélisation L'hybridation 13

14 Liste exhaustive Monte Carlo Algorithme génétique Essaim particulaire Descente de gradient Nelder-Mead method Méta-heuristique Déterministe avec gradient Déterministe sans gradient 14

15 Déterministe avec gradient INMA1702 : Modèles et méthodes d'optimisation I INMA2471 : Modèles et méthodes d'optimisation II 15

16 Déterministe sans gradient : Nelder-Mead method (1/2) Cette méthode est une généralisation de la méthode du simplexe pour des milieux non-linéaire. Fonctionnement 1) On choisit N+1 points (solutions initiales) avec N la dimension du problème x1 S1 Polytope à 3 cotés S3 S2 x2 16

17 Déterministe sans gradient : Nelder-Mead method (2/2) 2) On calcul la fonction d évaluation en ces points 3) On réindexe les points de manière à avoir : f S f S f S 4) On calcul le centre de gravité de tous les points sauf du dernier (le plus faible) Si i S 1 0 N 5) Calcul de S r = S 0 + (S 0 S N + 1 ) (réflexion de S N + 1 par rapport à x 0 ) 6) Si f(s r ) < f(s 1 ), calcul de S e = S 0 + 2(S 0 S N + 1 ) (étirement du simplexe). Si f(s e ) < f(s r ), remplacement de S N + 1 par S e, sinon, remplacement de S N + 1 par S r. Retour à l'étape 2 N 1 2 N 1 7) Si f(s n ) < f(s r ), calcul de S c = S N / 2(S 0 S N + 1 ) (contraction du simplexe). Si, remplacement de S N + 1 par S c et retour à l'étape 2 8) Similitude de rapport 1/2 et de centre S 1 : remplacement de S i par S / 2(S i S 1 ). Retour à l'étape 2. 17

18 Méta-heuristique : Monte Carlo La méthode se base sur un tirage aléatoire de solutions. L algorithme a d autant plus de chance de trouver la solution optimale globale que le tirage est élevé Créer et évaluer une solution initiale Générer une nouvelle solution Evaluer et comparer la nouvelle solution Mettre à jour la base de donnée Non Fin Oui? Arrêt 18

19 Méta-heuristique : Algorithme génétique (1/7) La méthode se base sur les principes d évolution de Darwin Une population (ensemble de solutions) est confronté à un environnement hostile et sélectif (fonctions d évaluations). Les individus de la population (les solutions) les plus adaptés (fonctions évaluées optimales) se reproduisent (transmettent leurs paramètres) plus facilement et survivent aux sélections. Trois outils à implémenter : Sélection des parents reproducteur, reproduction et sélection des descendants. Création et évaluation d une population initiale Sélection d une population de parents Création d une population d enfants par reproduction Sélection des solutions les plus prometteuses Non Fin? Oui Arrêt 19

20 Méta-heuristique : Algorithme génétique (2/7) Codage des individus Soit un problème dont la solution est caractérisée par On peut le coder de deux manière différentes : Codage en réel : Avantages Plus précis Espace de codage correspondant à l espace du problème Evaluation plus rapide de la fonction coût Inconvénients Alphabet infini Nécessite une implémentation spécifique des opérateurs génétiques x 1 x2,, x 3 20

21 Méta-heuristique : Algorithme génétique (3/7) Codage binaire : Avantages Alphabet minimum Opérateurs génétiques (croisement et mutation) faciles à implémenter Inconvénients Performances conditionnées par longueur de la chaîne Certains nombre décimaux voisins sont très éloignés dans le code naturel (problème du à l implémentation informatique) 21

22 Méta-heuristique : Algorithme génétique (4/7) Sélection des parents Sélection par tournoi On sélectionne aléatoirement deux individus, on compare leurs fonctions d évaluation et on prend le meilleur des deux. Si aucun ne se démarque de l autre, un choisit aléatoirement le futur parent. Sélection proportionnelle La probabilité P i qu un individu i soit sélectionné comme parent est directement proportionnelle au score de sa fonction objectif f i fi Pi 1, avec f 0 N i f j Sélection par rang j 1 La probabilité P i qu un individu i soit sélectionné comme parent est directement proportionnelle à son rang R i au sein de la population 22

23 Méta-heuristique : Algorithme génétique (5/7) Reproduction des parents Il existe de nombreuses méthodes de reproduction. Celles-ci dépendent fortement du type de paramètres utilisés (binaire ou réel). La reproduction classique se subdivise en deux étapes Les croisements : cette méthode permet de brasser un patrimoine génétique au sein de la population Parent 1 : [ ] Parent 2 : [ ] Enfant 1 : [ ] Enfant 2 : [ ] Les mutations : cette méthode permet de créer une diversité dans la population. Au plus le taux de mutation est élevé, au plus on se rapproche d une recherche purement heuristique.» Chaque bit a une probabilité P m (taux de mutation) de muter Parent : [ ] Parent : [ ] 23

24 Méta-heuristique : Algorithme génétique (6/7) Sélection des descendants A la différence de la sélection des parents, ici l individu est sélectionné une seule fois. Il y a tirage sans remise. Les méthodes de sélections sont équivalentes à celles de la sélection de parents 24

25 Méta-heuristique : Algorithme génétique (7/7) Les sélections en multi-objectifs Comment distinguer qu une solution est meilleure qu une autre avec plusieurs fonctions objectifs? Solution possible : travail par rang sur base du front de Pareto f2 Rang 3 Rang 4 Rang 2 Rang 1 f1 25

26 Méta-heuristique : Essaim particulaire L algorithme se base sur une étude de comportement de déplacement d un groupe d oiseaux. Chaque individu est influencé par trois éléments : Son inertie et sa vitesse : ωv k Sa mémoire : P i La mémoire de groupe : P g L équation de mouvement de l individu est : V V k 1 X k 1 X k k b 1 V P X b P X k 1 i b 1 et b 2 sont tirés aléatoirement entre 0 et ф 1, et entre 0 et ф 2 k 2 g k 26

27 Qu en est-il par rapport au projet? Intégration de l outil d optimisation dans le projet Problème Algorithme d optimisation x f Fonction d évaluation Solution(s) Les algorithmes d optimisation en méta-heuristique sont des boites noires, ils renvoient un jeu de paramètre x et nécessitent les évaluations f. Seul la fonction d évaluation est à implémenter Dans les algorithmes qui seront fournis, le nom de la fonction est fixé 27

28 Qu en est-il par rapport au projet? Eléments à implémenter Algorithme d optimisation F,C X Function [F,C] = evaluation(x) % Implémentation des fonctions d évaluation F(1) = F(2) = % Implémentation des contraintes C(1) = C(2) = 28

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Métaheuristique. Jérémy CHANUT Charles BALLARINI

Métaheuristique. Jérémy CHANUT Charles BALLARINI Métaheuristique Jérémy CHANUT Charles BALLARINI 15 octobre 2012 CHAPITRE 1 INTRODUCTION Ce projet consiste en la résolution du problème des composants électroniques par deux méthodes : Recuit simulé Algorithme

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1 Les algorithmes évolutionnistes INF6953 Les algorithmes évolutionnistes (1) 1 Métaheuristiques et algorithmes évolutionnistes Les métaheuristiques recherche locale consistent fondamentalement à faire évoluer

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search () Universite de Montreal 6 avril 2010 Plan Motivations 1 Motivations 2 3 skewed variable neighborhood search variable neighborhood decomposition search 4 Le probleme d optimisation.

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique Décision incertaine et logistique : Grille typologique Animateurs : S. Durieux, P. Genin, C. Thierry durieux@ifma.fr thierry@univ-tlse2.fr patrick.genin@supmeca.fr JD MACS 2009, Angers, 19-20 Novembre

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Générateur de Nombres Aléatoires

Générateur de Nombres Aléatoires Générateur de Nombres Aléatoires Les générateurs de nombres aléatoires sont des dispositifs capables de produire une séquence de nombres dont on ne peut pas tirer facilement des propriétés déterministes.

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Algorithmes de recherche locale

Algorithmes de recherche locale Algorithmes de recherche locale Recherche Opérationnelle et Optimisation Master 1 Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

OPTIMISATION MULTICRITERE STOCHASTIQUE

OPTIMISATION MULTICRITERE STOCHASTIQUE OPTIMISATION MULTICRITERE STOCHASTIQUE Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DMS/SFME/LETR michel.dumas@cea.r gilles.arnaud@cea.r abrice.gaudier @cea.r Introduction L optimisation multicritère

Plus en détail

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases)

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Algorithmes à Population Idée principale 'Amélioration' d'un ensemble de solutions Recombiner des solutions Orienté

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

MarioUS Plombier génétique. IFT615 Intelligence artificielle. IFT630 Processus concurrents et parallélisme

MarioUS Plombier génétique. IFT615 Intelligence artificielle. IFT630 Processus concurrents et parallélisme MarioUS Plombier génétique IFT615 Intelligence artificielle IFT630 Processus concurrents et parallélisme Présenté par Gabriel P. Girard 07 173 738 Marc-Alexandre Côté 07 166 997 Simon Renaud-Deputter 07

Plus en détail

Algorithmes génétiques

Algorithmes génétiques Algorithmes génétiques Selvaraj Ramkumar 26 avril 2007 Résumé Les algorithmes génétiques appartiennent à une catégorie d algorithmes appelés métaheuristiques, dont l objectif est de repérer une solution

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels

Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels Vincent Pinte Deregnaucourt - 5 juillet 2007 Sommaire 1 Le

Plus en détail

5.1 Les méthodes Métaheuristiques

5.1 Les méthodes Métaheuristiques 5.1 Les méthodes Métaheuristiques Les métaheuristiques constituent une classe de méthodes qui fournissent des solutions de bonne qualité en temps raisonnable à des problèmes combinatoires réputés difficiles

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008 Simulation de la propagation de fissures dans les lentilles du Laser Méga Joule : de la physique des matériaux au calcul haute performance en passant par l'algorithmique, la visualisation et le pilotage

Plus en détail

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 2 Optimisation Stochastique Gestion des stocks stochastique 2 Incertitudes dans le modèle Le modèle de base : contraintes de satisfaction des demandes Tx h avec Tk T x représentant

Plus en détail

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN Mourad Hadjila Hervé Guyennet RGE Université Franche-Comté femto-st, DISC, Besançon

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Prototypes et k plus proches voisins (kppv (knn))

Prototypes et k plus proches voisins (kppv (knn)) Prototypes et k plus proches voisins (kppv (knn)) Université Grenoble 1 - Lab. Informatique Grenbole / MRIM Learning Vector Quantization (1) Algorithme en ligne (on-line) dans lequel des prototypes sont

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Classement et identification des grandes Écoles de pensée

Classement et identification des grandes Écoles de pensée Classement et identification des grandes Écoles de pensée De 1900 à nos jours, de nombreuses écoles de pensée se sont succédées avec des périodes de recouvrement. Si les écoles de pensée sont bien identifiées,

Plus en détail

Recherche heuristique et méta-heuristique. Introduction 3. Heuristique? 4. Matthieu Amiguet

Recherche heuristique et méta-heuristique. Introduction 3. Heuristique? 4. Matthieu Amiguet Recherche heuristique et méta-heuristique Matthieu Amiguet 2008 2009 1 Motivations 2 3 Motivations Introduction 3 Un grand nombre de problèmes d IA sont caractérisés par l absence d algorithmes permettant

Plus en détail

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires Le data mining et l assurance Mai 2004 Charles Dugas Président Marianne Lalonde Directrice, développement des affaires AGENDA Qu est-ce que le data mining? Le projet et les facteurs de réussite Les technologies

Plus en détail

The Current State and Future of Search Based Software Engineering

The Current State and Future of Search Based Software Engineering The Current State and Future of Search Based Software Engineering Mark Harman 1 IEEE International Conference on Software Engineering FoSE 07: Future of Software Engineering 1 King's College, LONDON, UK

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique

Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique Cinq domaines où la modélisation paramétrique vient en complément de la modélisation directe Introduction Pendant longtemps les équipes

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire Un algorithme heuristique permet d identifier au moins une solution réalisable à un problème

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Devoir à la maison en algorithmique (2 nde )

Devoir à la maison en algorithmique (2 nde ) Devoir à la maison en algorithmique (2 nde ) Introduction Quel constat : Les devoirs à la maison permettent de soutenir les apprentissages des élèves et prennent en compte la diversité des aptitudes des

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études FacultéPolytechnique Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études Stijn Coorevits Promoteurs : Prof. O. Deblecker Ir C.

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Modélisation et optimisation combinatoire de la

Modélisation et optimisation combinatoire de la Modélisation et optimisation combinatoire de la gestion d énergie pour un système multi-sources Yacine Gaoua (1)(2)(3) 1.Institut National Polytechnique de Toulou, INPT 2.Laboratoire PLAsma et Conversion

Plus en détail

Développement de méthodes multi-grilles dans le cadre de l intéraction pastille/gaine

Développement de méthodes multi-grilles dans le cadre de l intéraction pastille/gaine Développement de méthodes multi-grilles dans le cadre de l intéraction pastille/gaine January 25, 2011 Ce n est le bon chemin que si la flèche vise le coeur, R.Hauser Intéraction Pastille/Gaine Fonctionnement

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Baccalauréat L Amérique du Nord juin 2002

Baccalauréat L Amérique du Nord juin 2002 Baccalauréat L Amérique du Nord juin 2002 Durée : 3 heures LE CANDIDAT TRAITERA OBLIGATOIREMENT L EXERCICE ET L EXERCICE 2 ET AU CHOIX SOIT L EXERCICE 3 SOIT L EXERCICE 4. Une feuille de papier millimétré

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Arnaud Labourel Université de Provence 12 avril 2012 Arnaud Labourel (Université de Provence) Problèmes et Algorithmes Fondamentaux

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Introduction au Makefile

Introduction au Makefile Introduction au Makefile Nicolas Kielbasiewicz 3 mars 2009 Le développement d un programme et plus généralement d un logiciel demande au(x) programmeur(s) de gérer plusieurs fichiers, voire plusieurs langages.

Plus en détail