Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Dimension: px
Commencer à balayer dès la page:

Download "Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7"

Transcription

1 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1

2 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception? Quelques algorithmes d optimisation Qu en est-il par rapport au projet? 2

3 Qu est-ce l optimisation? Dans le milieu de la conception, l optimisation est le fait d optimiser une fonction. Formulation générale d une fonction à optimiser : f x n : R R : x f avec n x R possibilité de contraintes Formulation mathématique del optimisation : g x 0 h x 0 min f x tel que x C avec C, l ensemble des paramètres respectant les contraintes 3

4 Qu est-ce l optimisation? Les problèmes d optimisation sont définis selon plusieurs caractéristique Mono-objectif ou multi-objectif Linéaire ou non-linéaire Contraint ou non-contraint Stochastique ou non stochastique Etc. Cela implique qu un outil d optimisation peut être développé pour résoudre un/des type(s) de problème ou être indépendant du problème. 4

5 Qu est-ce l optimisation? Multi-objectif? Un problème peut être défini par plusieurs fonctions objectifs concurrents Il existe deux solutions pour traiter ces cas : Assembler les fonction en une seule : x Risque : il faut trouver des valeurs cohérentes aux poids f ' a i f i x a i Travailler sur une fonction objectif à la fois et créer un front de Pareto 5

6 0.2 cm 3.8 cm Force Comment l optimisation s intègre dans la conception? Démarche classique Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix de la topologie L 2 L 1 e Modélisation L2, e, fixés 2.2 cm Analyse et décision Calcul paramétrique L1 6

7 0.2 cm 3.8 cm Comment l optimisation s intègre dans Optimisation paramétrique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix de la topologie L 2 L 1 e Modélisation 2.2 cm oui non Optimisation La solution répond-elle aux spécifications? Automatique 7

8 Comment l optimisation s intègre dans Optimisation géométrique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Choix d une géométrie initiale Modélisation oui non Optimisation La solution répond-elle aux spécifications? Automatique 8

9 Comment l optimisation s intègre dans Optimisation topologique la conception? Actionneur linéaire Force : 10N Course : 1 cm Dim < 10x10x10 cm Matériau A Matériau B Matériau C Modélisation Optimisation Automatique 9

10 Méthodes déterministes ou exactes Permettent de résoudre les problèmes de manière exactes en un temps fini Supposent généralement que la fonction objectif est Strictement convexe Continue Dérivable Sont inadaptés si ces conditions ne sont pas respectées, ou alors lorsque Le nombre de variables et/ou de contraintes devient important Les fonctions définissant la fonction objectif et les contraintes sont fortement non linéaires Il existe plusieurs optimums locaux On parle alors de problèmes «difficiles» 10

11 Méthodes heuristiques ou approchées (1) Recherchent, à moindre coût, une solution dont il n est pas possible de garantir la qualité Une méthode heuristique est dite «robuste» si elle converge le plus souvent vers la même solution Une méthode heuristique est dite «efficace» si, à temps de calcul donné, elle donne une solution proche de l optimum Parmi ces méthodes, on distingue Les méthodes développées pour des problèmes spécifiques Les méthodes adaptables à un grand nombre de problèmes différents sans changements majeurs dans l'algorithme On parle alors de méthodes «méta-heuristiques» 11

12 Méthodes heuristiques ou approchées (2) La plupart de ces méthodes Utilisent des processus aléatoires Raison pour laquelle on parle parfois de méthodes «stochastiques» Sont caractérisées par une série de paramètres de contrôles Dont le choix peut être déterminant pour la qualité de la solution Sont itératives Car elles reproduisent un même schéma de recherche durant l optimisation Sont directes Car elles n utilisent pas l information du gradient de la fonction objectif 12

13 Méthodes heuristiques ou approchées (3) Ces méthodes se prêtent facilement à des extensions pour L optimisation multi-objectifs L optimisation multimodale L'optimisation de problèmes bruités L'optimisation dynamique La parallélisation L'hybridation 13

14 Liste exhaustive Monte Carlo Algorithme génétique Essaim particulaire Descente de gradient Nelder-Mead method Méta-heuristique Déterministe avec gradient Déterministe sans gradient 14

15 Déterministe avec gradient INMA1702 : Modèles et méthodes d'optimisation I INMA2471 : Modèles et méthodes d'optimisation II 15

16 Déterministe sans gradient : Nelder-Mead method (1/2) Cette méthode est une généralisation de la méthode du simplexe pour des milieux non-linéaire. Fonctionnement 1) On choisit N+1 points (solutions initiales) avec N la dimension du problème x1 S1 Polytope à 3 cotés S3 S2 x2 16

17 Déterministe sans gradient : Nelder-Mead method (2/2) 2) On calcul la fonction d évaluation en ces points 3) On réindexe les points de manière à avoir : f S f S f S 4) On calcul le centre de gravité de tous les points sauf du dernier (le plus faible) Si i S 1 0 N 5) Calcul de S r = S 0 + (S 0 S N + 1 ) (réflexion de S N + 1 par rapport à x 0 ) 6) Si f(s r ) < f(s 1 ), calcul de S e = S 0 + 2(S 0 S N + 1 ) (étirement du simplexe). Si f(s e ) < f(s r ), remplacement de S N + 1 par S e, sinon, remplacement de S N + 1 par S r. Retour à l'étape 2 N 1 2 N 1 7) Si f(s n ) < f(s r ), calcul de S c = S N / 2(S 0 S N + 1 ) (contraction du simplexe). Si, remplacement de S N + 1 par S c et retour à l'étape 2 8) Similitude de rapport 1/2 et de centre S 1 : remplacement de S i par S / 2(S i S 1 ). Retour à l'étape 2. 17

18 Méta-heuristique : Monte Carlo La méthode se base sur un tirage aléatoire de solutions. L algorithme a d autant plus de chance de trouver la solution optimale globale que le tirage est élevé Créer et évaluer une solution initiale Générer une nouvelle solution Evaluer et comparer la nouvelle solution Mettre à jour la base de donnée Non Fin Oui? Arrêt 18

19 Méta-heuristique : Algorithme génétique (1/7) La méthode se base sur les principes d évolution de Darwin Une population (ensemble de solutions) est confronté à un environnement hostile et sélectif (fonctions d évaluations). Les individus de la population (les solutions) les plus adaptés (fonctions évaluées optimales) se reproduisent (transmettent leurs paramètres) plus facilement et survivent aux sélections. Trois outils à implémenter : Sélection des parents reproducteur, reproduction et sélection des descendants. Création et évaluation d une population initiale Sélection d une population de parents Création d une population d enfants par reproduction Sélection des solutions les plus prometteuses Non Fin? Oui Arrêt 19

20 Méta-heuristique : Algorithme génétique (2/7) Codage des individus Soit un problème dont la solution est caractérisée par On peut le coder de deux manière différentes : Codage en réel : Avantages Plus précis Espace de codage correspondant à l espace du problème Evaluation plus rapide de la fonction coût Inconvénients Alphabet infini Nécessite une implémentation spécifique des opérateurs génétiques x 1 x2,, x 3 20

21 Méta-heuristique : Algorithme génétique (3/7) Codage binaire : Avantages Alphabet minimum Opérateurs génétiques (croisement et mutation) faciles à implémenter Inconvénients Performances conditionnées par longueur de la chaîne Certains nombre décimaux voisins sont très éloignés dans le code naturel (problème du à l implémentation informatique) 21

22 Méta-heuristique : Algorithme génétique (4/7) Sélection des parents Sélection par tournoi On sélectionne aléatoirement deux individus, on compare leurs fonctions d évaluation et on prend le meilleur des deux. Si aucun ne se démarque de l autre, un choisit aléatoirement le futur parent. Sélection proportionnelle La probabilité P i qu un individu i soit sélectionné comme parent est directement proportionnelle au score de sa fonction objectif f i fi Pi 1, avec f 0 N i f j Sélection par rang j 1 La probabilité P i qu un individu i soit sélectionné comme parent est directement proportionnelle à son rang R i au sein de la population 22

23 Méta-heuristique : Algorithme génétique (5/7) Reproduction des parents Il existe de nombreuses méthodes de reproduction. Celles-ci dépendent fortement du type de paramètres utilisés (binaire ou réel). La reproduction classique se subdivise en deux étapes Les croisements : cette méthode permet de brasser un patrimoine génétique au sein de la population Parent 1 : [ ] Parent 2 : [ ] Enfant 1 : [ ] Enfant 2 : [ ] Les mutations : cette méthode permet de créer une diversité dans la population. Au plus le taux de mutation est élevé, au plus on se rapproche d une recherche purement heuristique.» Chaque bit a une probabilité P m (taux de mutation) de muter Parent : [ ] Parent : [ ] 23

24 Méta-heuristique : Algorithme génétique (6/7) Sélection des descendants A la différence de la sélection des parents, ici l individu est sélectionné une seule fois. Il y a tirage sans remise. Les méthodes de sélections sont équivalentes à celles de la sélection de parents 24

25 Méta-heuristique : Algorithme génétique (7/7) Les sélections en multi-objectifs Comment distinguer qu une solution est meilleure qu une autre avec plusieurs fonctions objectifs? Solution possible : travail par rang sur base du front de Pareto f2 Rang 3 Rang 4 Rang 2 Rang 1 f1 25

26 Méta-heuristique : Essaim particulaire L algorithme se base sur une étude de comportement de déplacement d un groupe d oiseaux. Chaque individu est influencé par trois éléments : Son inertie et sa vitesse : ωv k Sa mémoire : P i La mémoire de groupe : P g L équation de mouvement de l individu est : V V k 1 X k 1 X k k b 1 V P X b P X k 1 i b 1 et b 2 sont tirés aléatoirement entre 0 et ф 1, et entre 0 et ф 2 k 2 g k 26

27 Qu en est-il par rapport au projet? Intégration de l outil d optimisation dans le projet Problème Algorithme d optimisation x f Fonction d évaluation Solution(s) Les algorithmes d optimisation en méta-heuristique sont des boites noires, ils renvoient un jeu de paramètre x et nécessitent les évaluations f. Seul la fonction d évaluation est à implémenter Dans les algorithmes qui seront fournis, le nom de la fonction est fixé 27

28 Qu en est-il par rapport au projet? Eléments à implémenter Algorithme d optimisation F,C X Function [F,C] = evaluation(x) % Implémentation des fonctions d évaluation F(1) = F(2) = % Implémentation des contraintes C(1) = C(2) = 28

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Métaheuristique. Jérémy CHANUT Charles BALLARINI

Métaheuristique. Jérémy CHANUT Charles BALLARINI Métaheuristique Jérémy CHANUT Charles BALLARINI 15 octobre 2012 CHAPITRE 1 INTRODUCTION Ce projet consiste en la résolution du problème des composants électroniques par deux méthodes : Recuit simulé Algorithme

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1 Les algorithmes évolutionnistes INF6953 Les algorithmes évolutionnistes (1) 1 Métaheuristiques et algorithmes évolutionnistes Les métaheuristiques recherche locale consistent fondamentalement à faire évoluer

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search () Universite de Montreal 6 avril 2010 Plan Motivations 1 Motivations 2 3 skewed variable neighborhood search variable neighborhood decomposition search 4 Le probleme d optimisation.

Plus en détail

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 2 Optimisation Stochastique Gestion des stocks stochastique 2 Incertitudes dans le modèle Le modèle de base : contraintes de satisfaction des demandes Tx h avec Tk T x représentant

Plus en détail

OPTIMISATION MULTICRITERE STOCHASTIQUE

OPTIMISATION MULTICRITERE STOCHASTIQUE OPTIMISATION MULTICRITERE STOCHASTIQUE Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DMS/SFME/LETR michel.dumas@cea.r gilles.arnaud@cea.r abrice.gaudier @cea.r Introduction L optimisation multicritère

Plus en détail

Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels

Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels Sérialisation d un schéma de sous gradient avec des métaheuristiques pour la résolution approchée de problèmes de sacs à dos multidimensionnels Vincent Pinte Deregnaucourt - 5 juillet 2007 Sommaire 1 Le

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Algorithmes de recherche locale

Algorithmes de recherche locale Algorithmes de recherche locale Recherche Opérationnelle et Optimisation Master 1 Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale

Plus en détail

5.1 Les méthodes Métaheuristiques

5.1 Les méthodes Métaheuristiques 5.1 Les méthodes Métaheuristiques Les métaheuristiques constituent une classe de méthodes qui fournissent des solutions de bonne qualité en temps raisonnable à des problèmes combinatoires réputés difficiles

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN Mourad Hadjila Hervé Guyennet RGE Université Franche-Comté femto-st, DISC, Besançon

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Algorithmes génétiques

Algorithmes génétiques Algorithmes génétiques Selvaraj Ramkumar 26 avril 2007 Résumé Les algorithmes génétiques appartiennent à une catégorie d algorithmes appelés métaheuristiques, dont l objectif est de repérer une solution

Plus en détail

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique Décision incertaine et logistique : Grille typologique Animateurs : S. Durieux, P. Genin, C. Thierry durieux@ifma.fr thierry@univ-tlse2.fr patrick.genin@supmeca.fr JD MACS 2009, Angers, 19-20 Novembre

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008 Simulation de la propagation de fissures dans les lentilles du Laser Méga Joule : de la physique des matériaux au calcul haute performance en passant par l'algorithmique, la visualisation et le pilotage

Plus en détail

Recherche heuristique et méta-heuristique. Introduction 3. Heuristique? 4. Matthieu Amiguet

Recherche heuristique et méta-heuristique. Introduction 3. Heuristique? 4. Matthieu Amiguet Recherche heuristique et méta-heuristique Matthieu Amiguet 2008 2009 1 Motivations 2 3 Motivations Introduction 3 Un grand nombre de problèmes d IA sont caractérisés par l absence d algorithmes permettant

Plus en détail

The Current State and Future of Search Based Software Engineering

The Current State and Future of Search Based Software Engineering The Current State and Future of Search Based Software Engineering Mark Harman 1 IEEE International Conference on Software Engineering FoSE 07: Future of Software Engineering 1 King's College, LONDON, UK

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire Un algorithme heuristique permet d identifier au moins une solution réalisable à un problème

Plus en détail

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases)

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Algorithmes à Population Idée principale 'Amélioration' d'un ensemble de solutions Recombiner des solutions Orienté

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

Prototypes et k plus proches voisins (kppv (knn))

Prototypes et k plus proches voisins (kppv (knn)) Prototypes et k plus proches voisins (kppv (knn)) Université Grenoble 1 - Lab. Informatique Grenbole / MRIM Learning Vector Quantization (1) Algorithme en ligne (on-line) dans lequel des prototypes sont

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

MarioUS Plombier génétique. IFT615 Intelligence artificielle. IFT630 Processus concurrents et parallélisme

MarioUS Plombier génétique. IFT615 Intelligence artificielle. IFT630 Processus concurrents et parallélisme MarioUS Plombier génétique IFT615 Intelligence artificielle IFT630 Processus concurrents et parallélisme Présenté par Gabriel P. Girard 07 173 738 Marc-Alexandre Côté 07 166 997 Simon Renaud-Deputter 07

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique

Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique Pourquoi vous pouvez avoir besoin de la CAO 3D directe et paramétrique Cinq domaines où la modélisation paramétrique vient en complément de la modélisation directe Introduction Pendant longtemps les équipes

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études FacultéPolytechnique Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études Stijn Coorevits Promoteurs : Prof. O. Deblecker Ir C.

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Générateur de Nombres Aléatoires

Générateur de Nombres Aléatoires Générateur de Nombres Aléatoires Les générateurs de nombres aléatoires sont des dispositifs capables de produire une séquence de nombres dont on ne peut pas tirer facilement des propriétés déterministes.

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

988 RS - JESA 38/2004. Métaheuristiques pour l optimisation

988 RS - JESA 38/2004. Métaheuristiques pour l optimisation Editorial Les ingénieurs se heurtent quotidiennement à des problèmes technologiques de complexité grandissante, qui surgissent dans des domaines très divers, comme dans les transports, les télécommunications,

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les informations traitées par l ordinateur (nombres, instructions,

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

MÉTHODES DE CLASSIFICATION

MÉTHODES DE CLASSIFICATION MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ MÉTHODES DE CLASSIFICATION Objet Opérer des regroupements en classes homogènes d un ensemble d individus. Données Les données se présentent en général sous

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Arnaud Labourel Université de Provence 12 avril 2012 Arnaud Labourel (Université de Provence) Problèmes et Algorithmes Fondamentaux

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS Formes et Optimisation en Vision par Ordinateur Renaud Keriven Ecole des Ponts / ENS Journées Images et Modélisations Mathématiques Rennes, décembre 2006-1- Contexte (i) Snakes [Kass et al. 88] Contours

Plus en détail

Dispatching économique par une méthode artificielle

Dispatching économique par une méthode artificielle 128 Dispatching économique par une méthode artificielle Mimoun YOUNES, Samir HADJRI et Houari SAYAH Résumé : Dans cet article, nous présentons une solution au problème de Dispatching économique (DE) basée

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

Plan du cours. Intelligence Artificielle et Manipulation Symbolique de l Information. Induction de règles (rappels) L induction logique

Plan du cours. Intelligence Artificielle et Manipulation Symbolique de l Information. Induction de règles (rappels) L induction logique Intelligence Artificielle et Manipulation Symbolique de l Information Cours 0 mercredi 8 avril 205 Plan du cours Raisonner par induction l induction Induction par arbres de décision Christophe Marsala

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION

ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION LABORATOIRE INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS UMR 6070 ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION MULTI-OBJECTIFS EN DATA MINING Dominique Francisci Projet MECOSI Rapport de recherche

Plus en détail