Dimension: px
Commencer à balayer dès la page:

Download ""

Transcription

1 Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire Formulation d'un problème de programmation linéaire Applications et interprétation économique Applications Interprétation économique générale Propriétés fondamentales Caractérisation des solutions admissibles Caractérisation géométrique des solutions optimales Caractérisation algébrique des sommets de D L'algorithme simplexe Forme équivalente et tableau simplexe Propriétés fondamentales de l'algorithme simplexe Propriétés Interprétation géométrique Changement de base Algorithme simplexe Convergence de l'algorithme simplexe Algorithme simplexe (phase II) Méthode des variables articielles Principe Dénition du problème P a v

2 vi TABLE DES MATIÈRES 2.6 Dégénérescence Cyclage Importance Interprétation géométrique Traitement La forme révisée de l'algorithme simplexe Objectifet principe de l'algorithme révisé Construction du tableau simplexe Forme produit de l'inverse de la base Avantages de la forme révisée Compléments à l'algorithme simplexe Détermination de toutes les solutions optimales Interprétation économique du tableau simplexe Traitement des problèmes à variables bornées Analyse de sensibilité et analyse paramétrique du vecteur c La dualité Dénition du problème dual Propriétés de la dualité Interprétation économique de la dualité Terminologie générale Applications Solution duale associée à une base Dénition d'une solution duale associée à une base Principe de l'algorithme dual L'algorithme dual simplexe La phase II de l'algorithme dual Raisonnement de l'algorithme dual Algorithme dual (phase II) Méthode de la contrainte articielle Compléments à l'algorithme dual Dégénérescence du problème dual Forme révisée Traitement des variables bornées supérieurement

3 TABLE DES MATIÈRES vii Post-optimisation suite à l'ajout d'une contrainte Analyse de sensibilité et analyse paramétrique du vecteur d L'algorithme primal-dual Principe de l'algorithme primal-dual Dénition du problème primal restreint Analyse du problème restreint Le problème d'aectation Dénition L'approche primale-duale appliquée au problème d'aectation Le problème de transport Dénition L'approche primale-duale appliquée au problème de transport L'algorithme de Dantzig et Wolfe Le principe de génération de colonnes Dénition du problème maître Résolution du problème maître Algorithme générateur Application de la forme révisée Synthèse de l'algorithme Mise en uvre Exercices et modélisations Partie I141 II La programmation linéaire en variables entières 157 Présentation Introduction à la P.L. en variables entières Formulation des problèmes Complexité La Dualité

4 viii TABLE DES MATIÈRES 7.4 La théorie polyédrale Matrices totalement unimodulaires Théorie polyédrale et méthodes de coupure Inégalités valides Construction générale d'une inégalité valide Obtention d'inégalités valides Ecacité et redondance d'une inégalité valide La méthode de coupure de Gomory Principe Algorithme de Gomory pour un problème (ILP) Algorithme de Gomory pour un problème (MILP) Branch and Bound Principe Eléments constitutifs La procédure de séparation La procédure d'évaluation La procédure de cheminement B & B pour la P.L. en variables entières Procédure d'évaluation et de sondage Procédure de séparation Procédure de cheminement Mise en uvre d'une méthode B & B Initialisation Branch and Cut La relaxation lagrangienne Branch and Price Exercices et modélisations de la partie II 223

5 TABLE DES MATIÈRES ix III L'optimisation combinatoire 239 Présentation Le problème de chargement Introduction La version de base du problème de chargement Les extensions du problème de chargement (KP) Un algorithme Branch and Bound Bornes supérieures de z Bornes inférieures de z Réduction initiale du problème Structure de l'algorithme Branch and Bound Inégalités valides et problème c ur Inégalités valides pour le problème KP Le problème coeur Un algorithme de programmation dynamique Performance des algorithmes Le problème en variables entières (IKP) Généralisation de l'approche Branch and Bound Programmation dynamique pour le problème (IKP) Le problème du voyageur de commerce Introduction Formulations du problème TSP Branch and Bound pour le problème ATSP Les relaxations de base Un algorithme Branch and Bound Branch and Bound pour le problème STSP Les relaxations de base Un algorithme Branch and Bound pour le STSP Théorie polyédrale pour le STSP et Branch and Cut Propriétés élémentaires M-inégalités (2 matching inequalities) C-inégalités ou inégalités peignes (comb inequalities)

6 x TABLE DES MATIÈRES GC-inégalités ou inégalités peignes généralisées (generalized comb inequalities) Branch and Cut pour le problème STSP Les logiciels TSP Le problème de couverture Introduction Dénition et formulation Applications Réduction d'un problème (SCP) Heuristiques Heuristiques primales Heuristiques duales Méthodes exactes Les problèmes de tournées de véhicules Introduction Une classe de problèmes Dénition des problèmes de base CVRP et DCVRP Une grande variété de situations Des variantes classiques du problème VRP Formulations mathématiques Modèle avec des variables à deux indices Modèle avec des variables à trois indices Modèle avec partitionnement Méthodes exactes de résolution Branch and Bound Branch and Cut Branch and Price Heuristiques Heuristiques de construction Heuristiques de recherche locale Les problèmes de localisation Introduction Modèles et formulations

7 TABLE DES MATIÈRES xi Le problème de localisation sans capacité (UFLP) Le problème de localisation avec capacité (CFLP) Le problème des p médians (p-mp) Le problèmes des p centres (p-cp) Résolution du problème UFLP Heuristiques La méthode DUALOC Une méthode basée sur la relaxation lagrangienne Résolution du problème des p centres Propriétés Algorithme pour le problème (p-acp) Algorithme pour le problème (λ 1 -ACP) Exercices et modélisations Partie III 355 IV Les heuristiques et métaheuristiques 367 Présentation Les heuristiques Adaptation de méthodes exactes Utilisation d'une méthode Branch and Bound Utilisation d'une méthode exacte pour construire une heuristique Les heuristiques gloutonnes Les heuristiques de construction Les heuristiques de recherche locale Garantie de performance d'une heuristique Les métaheuristiques de recherche locale Le recuit simulé (simulated annealing) Le principe de fonctionnement Implémentation La recherche Tabou (Tabu Search) Le principe de fonctionnement Implémentation

8 xii TABLE DES MATIÈRES 16.3 Autres métaheuristiques et hybridation La métaheuristique GRASP La métaheuristique VNS Métaheuristiques hybrides Les métaheuristiques évolutionnaires L'algorithme génétique Le principe d'un AG Mise en oeuvre d'un AG A propos de l'implémentation L'algorithme de la colonie de fourmis Le comportement des fourmis Le principe Implémentation Applications 417 V La programmation dynamique 435 Présentation La programmation dynamique Modèle, notations et hypothèses Principe d'optimalité de Bellman Algorithmes de programmation dynamique Algorithme prospectif Algorithme rétrospectif Programmation dynamique en variables discrètes Fonctions de récurrence discrètes Problèmes d'allocation ou d'investissement La programmation dynamique en avenir aléatoire Le modèle Principe d'optimalité de Bellman et algorithme Exercices et Applications Partie V 459

9 TABLE DES MATIÈRES xiii VI La théorie des graphes 469 Présentation Dénitions, concepts et vocabulaire Concepts de base d'un graphe orienté Concepts de base d'un graphe non orienté Graphes particuliers Représentation d'un graphe Exploration d'un graphe Fermeture transitive ; composantes fortement connexes Parcours d'un graphe Chemins et arbres optimaux Chemins optimaux Chemins optimaux entre un sommet et tous les autres Chemins optimaux entre tout couple de sommets Arbres optimaux Propriétés des arbres Arbre partiel de valeur minimale Arborescence partielle de valeur minimale Flots optimaux dans un réseau de transport Dénitions et propriétés Problème du ot maximum Problème du ot maximum de coût minimum Extension au cas d'un réseau R(X, U, C, B) Compatibilité d'un ot Flot compatible de coût minimum Couplage maximum et transversal minimum Problèmes particuliers Problème de coloration Bornes inférieures de γ(g) Heuristique de résolution Problème de coloration des arêtes d'un graphe

10 xiv TABLE DES MATIÈRES 22.2 Graphes planaires Graphes parfaits Parcours eulériens et hamiltoniens Cycles et chaînes eulériens Chemins et circuits hamiltoniens Exercices et modélisations Partie VI 541 A Rappels d'algèbre linéaire 557 A.1 Espace vectoriel A.2 Rang d'une matrice A.3 Systèmes d'équations A.4 Polyèdres convexes B La théorie de la complexité des algorithmes 563 B.1 Introduction B.2 Problèmes de décision B.2.1 Dénition B.2.2 Langage associé à un problème de décision B.3 Algorithme déterministe et classe P B.3.1 Dénition d'un algorithme déterministe B.3.2 Temps d'exécution d'un algorithme déterministe B.3.3 La classe P des problèmes de décision B.4 Algorithme non déterministe et classe NP B.4.1 Dénition d'un algorithme non déterministe B.4.2 Temps d'exécution d'un algorithme non déterministe B.4.3 La classe NP B.5 La classe des problèmes NP -complets B.5.1 Dénitions B.5.2 La grande conjecture de la complexité des algorithmes B.5.3 Algorithme en temps pseudo-polynomial et problème NP-complet au sens fort B.6 Extension aux problèmes d'optimisation

11 TABLE DES MATIÈRES xv Bibliographie 577 Liste des gures 585 Liste des dénitions 591 Liste des théorèmes 595 Liste des illustrations 597 Index 599

^ Springer. Optimisation combinatoire. Théorie et algorithmes. Bernhard Korte Jens Vygen. Traduit de l'anglais par Jean Fonlupt et Alexandre Skoda

^ Springer. Optimisation combinatoire. Théorie et algorithmes. Bernhard Korte Jens Vygen. Traduit de l'anglais par Jean Fonlupt et Alexandre Skoda Bernhard Korte Jens Vygen Optimisation combinatoire Théorie et algorithmes Traduit de l'anglais par Jean Fonlupt et Alexandre Skoda TECHN1SCHE INFORMATIONSBIBLIOTHEK UNIVERSITÂTSBIBLIOTHEK HANKOVER/ ^

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Le problème du flot maximal avec contraintes sur le nombre de chemins

Le problème du flot maximal avec contraintes sur le nombre de chemins Le problème du flot maximal avec contraintes sur le nombre de chemins Jérôme Truffot, Christophe Duhamel, Philippe Mahey jerome.truffot@isima.fr, christophe.duhamel@isima.fr, philippe.mahey@isima.fr LIMOS,

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

Optimisation combinatoire

Optimisation combinatoire Optimisation combinatoire Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Bernhard Korte Jens Vygen Optimisation combinatoire Théorie et algorithmes Traduit de l anglais par Jean

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Outils d Aide à la Décision. Christophe Duhamel & Philippe Lacomme ZZ2 F2/F3-2014

Outils d Aide à la Décision. Christophe Duhamel & Philippe Lacomme ZZ2 F2/F3-2014 Outils d Aide à la Décision Christophe Duhamel & Philippe Lacomme ZZ2 F2/F3-2014 Plan du cours Complexité algorithmique Conception d'algorithmes Problèmes combinatoires Problèmes d'ordonnancement Problèmes

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Les mathématiques du calcul

Les mathématiques du calcul Les mathématiques du calcul Module Maths Discrètes, INSA, Univ Lyon 1, 2015-2016 Eric Tannier (eric.tannier@univ-lyon1.fr) Les mathématiques du calcul Tradition orientale Al-Khawarizmi Al-Khawarizmi, 783-850

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Modèle dual. Programmation linéaire (dualité et analyse de sensibilité) Dualité : exemple Wyndor Glass. Modèle dual (suite)

Modèle dual. Programmation linéaire (dualité et analyse de sensibilité) Dualité : exemple Wyndor Glass. Modèle dual (suite) Modèle dual Modèles de recherche opérationnelle (RO Programmation linéaire (dualité et analyse de sensibilité Variables de décision : y i = prix ($/h pour louer du temps à l usine i Dual Glass cherche

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Algorithmique des graphes quelques notes de cours. Ioan Todinca, avec le concours de Julien Tesson

Algorithmique des graphes quelques notes de cours. Ioan Todinca, avec le concours de Julien Tesson Algorithmique des graphes quelques notes de cours Ioan Todinca, avec le concours de Julien Tesson 29 avril 2008 2 Table des matières I Algorithmes de base 5 1 Généralités 7 1.1 Dénitions et notations...............................

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

THÈSE DE DOCTORAT. soutenue le 27/09/2013. par. Marc LETOURNEL APPROCHES DUALES DANS LA RESOLUTION DE PROBLEMES STOCHASTIQUES

THÈSE DE DOCTORAT. soutenue le 27/09/2013. par. Marc LETOURNEL APPROCHES DUALES DANS LA RESOLUTION DE PROBLEMES STOCHASTIQUES UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Laboratoire de Recherche en Informatique. DISCIPLINE Graphes Combinatoires. THÈSE DE DOCTORAT soutenue le 27/09/2013 par Marc LETOURNEL APPROCHES DUALES DANS LA RESOLUTION

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

optimisation robuste de réseaux de télécommunications

optimisation robuste de réseaux de télécommunications optimisation robuste de réseaux de télécommunications Orange Labs Laboratoire Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne Olivier Klopfenstein thèse effectuée sous la direction de

Plus en détail

CONTEXTE ET OBJECTIFS. Algorithmique et ComplexiTé Présentation du cours CELA POSE DE NOMBREUSES QUESTIONS ET DEMANDE UN CERTAIN SAVOIR-FAIRE.

CONTEXTE ET OBJECTIFS. Algorithmique et ComplexiTé Présentation du cours CELA POSE DE NOMBREUSES QUESTIONS ET DEMANDE UN CERTAIN SAVOIR-FAIRE. CONTEXTE ET OBJECTIFS Algorithmique et ComplexiTé Présentation du cours ACT - Master1 Informatique Sophie Tison -Lille1- sophie.tison@lifl.fr Les algorithmes sont au coeur de l informatique: tris, recherche,

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Préambule.................................... xv Bibliographie... xxi I L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Introduction...................................

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Programmation mathématique pour l Optimisation Combinatoire

Programmation mathématique pour l Optimisation Combinatoire Master d Informatique - Spécialité Androide Module MAOA Programmation mathématique pour l Optimisation Combinatoire Pierre Fouilhoux Université Pierre et Marie Curie 2015-2016 2/104 Avant-propos Avant-propos

Plus en détail

Design patterns par la pratique

Design patterns par la pratique Alan SHALLOWAY James TROTT Design patterns par la pratique Groupe Eyrolles, 2002 ISBN : 2-212-11139 Table des matières Préface.................................................... XV SECTION I Introduction

Plus en détail

Recherche Opérationnelle Troisième Partie

Recherche Opérationnelle Troisième Partie Recherche Opérationnelle Troisième Partie Paul Feautrier ENS Lyon 16 novembre 2005 Plan Séparation et évaluation ou Branch-and-Bound Programmation Dynamique Recuit simulé La méthode Tabou Algorithmes génétiques

Plus en détail

ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès

ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès 11/01/2016 DÉFINITION DU GÉNIE INDUSTRIEL Le génie industriel s'intéresse : à l'étude des organisations industrielles et à l'amélioration

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Eléments de NP-Complétude

Eléments de NP-Complétude Module d Algorithmique Avancée Année 2005-2006 Eléments de NP-Complétude Safia Kedad-Sidhoum Safia.Kedad-Sidhoum@lip6.fr Module d Algorithmique AvancéeAnnée 2005-2006 p. 1/15 Introduction Algorithmes efficaces

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

Thèse de doctorat de l'université de Technologie de Troyes LE PROBLÈME DE LOCALISATION-ROUTAGE

Thèse de doctorat de l'université de Technologie de Troyes LE PROBLÈME DE LOCALISATION-ROUTAGE UNIVERSITÉ DE TECHNOLOGIE DE TROYES École Doctorale SCIENCES DES SYSTÈMES TECHNOLOGIQUES ET ORGANISATIONNELS Année: 2006 Thèse de doctorat de l'université de Technologie de Troyes Spécialité: Optimisation

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Arbres couvrants minimaux

Arbres couvrants minimaux Arbres couvrants minimaux Algorithmique L François Laroussinie er décembre 00 Plan Définitions Algorithme de Prim Algorithme de Kruskal Application au voyageur de commerce Plan Définitions Algorithme de

Plus en détail

Le voyageur de commerce, méthode de branch and bound.

Le voyageur de commerce, méthode de branch and bound. Le voyageur de commerce, méthode de branch and bound. Pierre Chatelain, Kevin Quirin ENS Cachan - Antenne de Bretagne 15 août 2010 TSP Le problème du voyageur de commerce ( TSP ) consiste à trouver le

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Modélisation et résolution du problème de transport de gaz: application au réseau principal français

Modélisation et résolution du problème de transport de gaz: application au réseau principal français Modélisation et résolution du problème de transport de gaz: application au réseau principal français Présentation des travaux de thèse GDF SUEZ - INPT - ENSIACET - LGC EMN 24 mars 2011 Le gaz en Europe

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire Arbre d énumération 1 Arbre d énumération 2

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Recherche Opérationnelle - APP 2 Allocating & packing

Recherche Opérationnelle - APP 2 Allocating & packing Recherche Opérationnelle - APP 2 Allocating & packing Sophie Demassey 15 novembre 2011 Résumé Cette seconde série d études s attache aux problématiques classiques du placement (knapsack, binpacking, cutting

Plus en détail

Programmation. linéaire

Programmation. linéaire Programmation linéaire Université Virtuelle Africaine Note Ce document est publié sous une licence Creative Commons. http://en.wikipedia.org/wiki/creative_commons Attribution http://creativecommons.org/licenses/by/2.5/

Plus en détail

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr MTH8442 Ordonnancement de Plan production de cours Automne 2008 (3-0-6) 3 cr Michel Gamache Local A-305.29 340-4711 poste 5920 michel.gamache@polymtl.ca François Soumis Local A-520.15 340-4711 poste 6044

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia)

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) Département d informatique et de génie logiciel Université Laval MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) A. Avant propos... 2 B. Cours de multimédia (4 cours obligatoires)... 3 a. IFT-10558

Plus en détail

Introduction à l optimisation combinatoire

Introduction à l optimisation combinatoire Introduction à l optimisation combinatoire S. Ben Ismail Majeure Informatique INF413 C5 2 e semestre 2012 Objectifs pédagogiques À l'issue de ce cours, vous devriez être capables de : connaitre la diérence

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Master 1 Rentrée 2015/2016

Master 1 Rentrée 2015/2016 Informations générales Semestre 1 Semestre 2 Master 1 Rentrée 2015/2016 Université du Littoral Cote d Opale 4 septembre 2015 (Université du Littoral Cote d Opale) Master 1 4 septembre 2015 1 / 24 Informations

Plus en détail

OPTIMISATION MULTICRITERE STOCHASTIQUE

OPTIMISATION MULTICRITERE STOCHASTIQUE OPTIMISATION MULTICRITERE STOCHASTIQUE Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DMS/SFME/LETR michel.dumas@cea.r gilles.arnaud@cea.r abrice.gaudier @cea.r Introduction L optimisation multicritère

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Titre : «La Méthode de Recherche à Voisinage Variable (RVV)

Titre : «La Méthode de Recherche à Voisinage Variable (RVV) REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE Ministère de l Enseignement Supérieur & de la Recherche Scientifique Université USTO MB Faculté des Sciences Département d Informatique Spécialité : Informatique

Plus en détail

Table des matières. Préface Pascal MAUNY. Avant-propos Introduction... 23

Table des matières. Préface Pascal MAUNY. Avant-propos Introduction... 23 Table des matières Préface... 15 Pascal MAUNY Avant-propos... 19 Introduction... 23 Chapitre 1. La recherche opérationnelle... 29 1.1. Historique... 29 1.2. Champs d application, principes et concepts...

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Master de Mathématiques mention Mathématiques pour l Informatique Graphique, et les Statistiques

Master de Mathématiques mention Mathématiques pour l Informatique Graphique, et les Statistiques UFR Sciences et Techniques Master de Mathématiques mention Mathématiques pour l Informatique Graphique, et les Statistiques Niveau d entrée Première année : BAC + 3 en Mathématiques Seconde année : BAC

Plus en détail

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe Table des Matières Essais Successifs (ES) 1 Rappels : Fonctions et Ordres de grandeurs 2 Diviser pour Régner 3 Approches Gloutonnes 4 Programmation Dynamique 5 Essais Successifs (ES) Le problème des n

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en C#

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en C# Introduction 1. Structure du chapitre 19 2. Définir l intelligence 19 3. L intelligence du vivant 22 4. L intelligence artificielle 23 5. Domaines d application 25 6. Synthèse 27 Systèmes experts 1. Présentation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 INSTITUT NEMO 36-38 AVENUE PIERRE BROSSOLETTE 92240 MALAKOFF 1 Public visé Tout public, titulaire d un

Plus en détail

STAGES INTENSIFS DE REVISION

STAGES INTENSIFS DE REVISION CENTRE SCOLAIRE OZANAM Internat et externat pour lycéens et étudiants Etudes encadrées et soutien scolaire Stages intensifs de révision 60 rue Vauban 69006 LYON 04 78 52 27 99 / Fax : 04 78 52 11 15 www.ozanamlyon.fr

Plus en détail