APPLICATIONS DU PRODUIT SCALAIRE. I et

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "APPLICATIONS DU PRODUIT SCALAIRE. I et"

Transcription

1 APPLICATIONS DU PRODUIT SCALAIRE Cours Première S 1 Calculs de longueurs 1) Théorème de la médiane Théorème 1 : Soit I le milieu du segment [ BC ] Alors BC AB + AC = AI + Démonstration : On a : AB = AB = AI + I B = AI + I B + AI I B AC = AC = AI + I C = AI I B = AI + I B AI I B De même, En additionnant memres à memres, on otient : BC BC AB + AC = AI + BI = AI + = A + I Remarque : On a aussi : 1 AB AC = A BC 4 I et AB AC = I A BC Exemple : Soit un triangle ABC tel que AB = 4, AC = 6 et BC = 8 On note I le milieu du segment [ AB ] Pour calculer la longueur CI, on applique le théorème de la médiane : AB CA + CB = CI + 16 Par suite, = CI + Donc C I = 46, ce qui permet de conclure que C I = 46 ) Théorème d Al Kashi ou de Pythagore généralisé Théorème : Dans le triangle ABC suivant, on a : a = + c c cos A Démonstration : On a BC = BA + AC = AC AB D où : a = BC = AC AB = AC + AB AC AB = AC + AB AC AB cos BAC ( ) Par conséquent, a = + c c cos A 1 C Lainé

2 Remarques : De la même façon, on montre que : = a + c ac cosb et c = a + a cosc Si le triangle est rectangle en A, alors A = π et cos A = 0 ; d où : On retrouve le théorème de Pythagore a = + c Al-Kashi est un mathématicien, astronome, né en Iran en 1380 et mort en 1430 On lui doit le calcul du nomre π avec une précision de 16 décimales Son ouvrage Miftah al hisa (La clé de l arithmétique) sera un ouvrage de référence durant des siècles Équation cartésienne d une droite i j Dans tout ce paragraphe, le plan est muni d un repère orthonormé ( O ;, ) 1) Caractérisation d une droite Définition 1 : Un vecteur normal à une droite (d) est un vecteur non nul orthogonal à un vecteur directeur de (d) Définition : Soit (d) une droite, A un point de (d) et n un vecteur normal à (d) La droite (d) est l ensemle des points M du plan tels que AM n = 0 C'est-à-dire M ( d ) AM n = 0 (d) Remarque : Pour montrer que deux droites sont perpendiculaires on peut utiliser le produit scalaire et les vecteurs directeurs ) Équation d une droite dont on connaît un point et un vecteur normal Théorème 3 : Soit n ( a ; ) un vecteur non nul Si le vecteur n est normal à une droite (d), alors (d) a une équation de la forme ax + y + c = 0 (où c est un réel) Réciproquement, toute droite ayant une équation de la forme ax + y + c = 0 ; 0 ; 0 n a ; comme vecteur normal (avec ( a ) ) admet le vecteur Démonstration : Soit A( x0 ; y 0 ) un point de (d) et ( ; ) M ( d ) AM n = 0 Or AM ( x x ; y y ) et n( a ; ) M x y un point du plan, alors : C Lainé

3 D où : ( d ) a( x x0 ) ( y y0 ) ax y ( ax y ) M + = = 0 3 ax + y + c = 0 en posant c = ax + y Si la droite (d) a pour équation + + = 0 ax y c, alors le vecteur ( ; ) u a est un vecteur directeur de (d) Or n u = a ( ) + a = 0 D où, les vecteurs n et u sont orthogonaux, et n est normal à (d) Application : Dans un repère orthonormé ( O ;, ) passant par le point ( 5;4) i j du plan, on considère la droite d n 3; 1 A et dont un vecteur normal est le vecteur Déterminer une équation cartésienne de la droite d Comme n ( 3 ; 1) est un vecteur normal de d, une équation cartésienne de d est de la forme 3x y + c = 0 Le point A( 5 ; 4) appartient à la droite d, alors 3 ( 5) 4 + c = 0 Par suite, c = 19 Par conséquent, une équation cartésienne de d est 3x y + 19 = 0 3 Équation cartésienne d un cercle 1) Caractérisation d un cercle de centre et de rayon donnés Définition 3 : Soit A un point du plan et r un réel positif Le cercle (c) de centre A et de rayon r est l ensemle des points M du plan tels que AM = r ) Équation d un cercle de centre et de rayon donnés Propriété 1 : Une équation du cercle de centre ( ; ) x x + y y = r A x y et de rayon r est : i j Démonstration : On se place dans un repère orthonormal ( O ;, ) Soit A un point de coordonnées ( ; ) rayon r x y, un réel positif r et (c) le cercle de centre A et de Pour tout point M ( x ; y ) du plan, AM a pour coordonnées ( 0 ; 0 ) AM = ( x x0 ) + ( y y 0 ) Le cercle (c) est donc l ensemle des points M ( x ; y ) du plan tels que x x + y y = r x x y y et Exemples : Une équation du cercle de centre A( 1 ; ) et de rayon 3 est : x y = 9, qui peut s écrire sous la forme développée, Soit e l ensemle des points M ( x ; ) y tels que x x + y 10y + 17 = 0 équivaut successivement à : ( x x) ( y y ) = 0 ( x ) ( y ) x x + y 10y + 17 = = 0 x + x + y 4y 4 = 0 C Lainé

4 ( x ) ( y ) Donc e est le cercle de centre Ω ( 1 ; 5) et de rayon = 9 3) Caractérisation d un cercle de diamètre donné M Propriété : Soit A et B deux points distincts du plan Le cercle de diamètre [ AB ] est l ensemle des points M tels que : MA MB = 0 B O A Démonstration : Le cercle (c), privé des points A et B, est l ensemle des points M du plan tels que le triangle MAB est rectangle en M, c'est à dire l ensemle des points M tels que MA MB = 0 D autre part, si M = A ou M = B, alors MA = 0 ou MB = 0, et on a encore MA MB = 0 4) Application Dans un repère orthonormal, on donne les points A(1 ; 3), B( ; 5) et C(-1 ; 4) a) Démontrer que le triangle ABC est rectangle et isocèle en A ) Déterminer une équation du cercle circonscrit au triangle ABC c) Déterminer une équation de la médiatrice de [BC] a) AB = AC = 5 et AB AC = 0 ) On cherche l ensemle des points M tels que MB MC = 0 x 0,5 + y 4,5 =,5 On otient : c) La droite cherchée a pour vecteur normal BC et passe par le milieu de [BC] On otient : 3x y + 6 = 0 4 Trigonométrie 1) Formules d addition Propriété 3 : Pour tous réels a et : cos = cos cos + sin sin ( a ) a a ; ( a ) = a a ; sin sin cos cos sin cos a + = cos acos sin asin sin a + = sin acos + cos asin Démonstration : On considère le cercle trigonométrique c de centre O muni du repère orthonormal direct ( O ; i, j ), OA = i, OB = On note A et B les points de c, définis par ( i ) a et Les coordonnées de A et de B sont respectivement ( cos ; sin ) a a et ( cos ; sin ) C 4 C Lainé

5 D après la relation de Chasles, on a : ( OA, OB ) ( OA, ) (, OB = + ) = (, OA ) + (, OB i i i i ) = a + = a Calculons alors de deux manières le produit scalaire OA OB : - en utilisant les coordonnées : OA OB = cos acos + sin asin ; OA OB OA OB = OA OB cos OA, OB = OA OB cos a - en utilisant cos (, ) : On en déduit que : cos a = cos acos + sin asin cos( + ) = cos( ( )) = cos cos( ) + sin sin( ) Or cos( ) = cos et sin ( ) = sin Par conséquent, cos( a + ) = cos acos sin asin a a a a π π π π sin( a + ) = cos ( a + ) = cos = cos cos + sin sin a a a π π Or cos = sin et sin = cos a a a a sin a + = sin acos + cos asin Par conséquent, sin( ) = sin( + ( )) = sin cos( ) + cos sin( ) Or cos( ) = cos et sin ( ) = sin Par conséquent, sin( a ) = sin acos cos asin a a a a ) Application Sachant que π = π π 1 3 4, déterminer les valeurs exactes de π cos et de 1 π π π π π π π cos = cos cos cos sin sin = + = + = π π π π π π π sin = sin sin cos sin cos = = = ) Formules de duplication Propriété 4 : Pour tout réel a : sin a = sin acos a = = = cos a cos a sin a cos a 1 1 sin a π sin 1 Démonstration : Prenons = a dans les formules d addition précédentes, on otient : sin a = sin acos a + cos a sin a = sin acos a = = cos a cos acos a sin asin a cos a sin a De plus, cos a + sin a = 1, d'où sin a = 1 cos a et cos a = 1 sin a cos a = cos a sin a = cos a 1= 1 sin a On en déduit que Remarque : On peut en déduire des formules, appelée formules de linéarisation : 1+ cos ( a) 1 cos ( a) cos a = et sin a = 5 C Lainé

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

I. Produit scalaire de deux vecteurs du plan

I. Produit scalaire de deux vecteurs du plan 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit

Plus en détail

CHAPITRE 12 : Produit scalaire

CHAPITRE 12 : Produit scalaire CHAPITRE 12 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

CHAPITRE 13 : Produit scalaire

CHAPITRE 13 : Produit scalaire CHAPITRE 13 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3 Le produit scalaire Table des matières I) Définitions et propriétés 1 a) Norme d un vecteur............................................ 1 b) de deux vecteurs..................................... 1 c) Autres

Plus en détail

Applications du produit scalaire

Applications du produit scalaire pplications du produit scalaire I Relations métriques dans le triangle Soit un triangle BC. On note B = c, C = b et BC = a. On note BC, B BC et CB c b On note S l'aire du triangle BC 1) Relation d'l KSHI

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

On se place dans un repère orthonormé (O ; i, j ) du plan.

On se place dans un repère orthonormé (O ; i, j ) du plan. Première S Produit scalaire et applications Année scolaire 01/013 I) Produit scalaire et orthogonalité : On se place dans un repère orthonormé (O ; i, j ) du plan. 1) Définition analytique du produit scalaire

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C I Pour bien commencer I.1 Norme d un vecteur Une unité de longueur étant choisie, la norme d un vecteur u = AB est la longueur AB. Si u = 1, le vecteur u est dit unitaire. On note u = AB = AB. Conséquences

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2017/2018 1 Définitions et propriétés Norme d un vecteur de deux vecteurs Autres expressions du produit scalaire 2 Symétrie

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2016/2017 Première S ( Lycée du golfe de Saint Tropez) Produit scalaire Année 2016/2017 1 / 1 Première S ( Lycée du golfe de

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté-angle géométrique.................................. 1.3 Projection orthogonale........................................

Plus en détail

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB.

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB. Produit scalaire. I. et expressions. 1) Norme d'un vecteur Une unité de longueur étant choisie, la norme d un vecteur u u AB AB. AB est la distance AB. On note Conséquences : équivaut à Pour tout nombre

Plus en détail

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition Chapitre 10 Produit scalaire 10.1 Définition et expressions du produit scalaire 10.1.1 Définition Définition 18. u et v sont deux vecteurs du plan. Le produit scalaire de u par v, noté u. v est défini

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

PRODUIT SCALAIRE. , noté u.

PRODUIT SCALAIRE. , noté u. 1 PRODUIT SCLIRE I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u et deux points et B tels que u B. La norme du vecteur u, notée u, est la distance B. ) Définition du produit

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h Première S DEVOIR SURVEILLE N 5 Mardi 5 mars 008 Durée : 1h Exercice 1 : (1,5 pts) Associer à chaque figure le bon calcul du produit scalaire de a) AB b) -AB c) 0 d) AB e) - AB AC (on ne demande pas ici

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire Module 1 : Découverte du produit scalaire 1 ) Norme d un vecteur Définition : soit u un vecteur du plan et soient A et B deux points tels que : AB u La norme du vecteur u, notée u, est la distance AB Exemple

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE I. Calculs d'angles et de longueurs 1) Calculs d'angles Méthode : Déterminer un angle à l'aide du produit scalaire Vidéo https://youtu.be/ca_pw79ik9a. " Calculer la mesure

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

Produit dans le plan

Produit dans le plan Exercice ABC est un triangle isocèle de somme principal A et I le milieu du segment [BC]. H est le projeté orthogonal de I sur [AC] et J le milieu de [IH]. On cherche à établir que : AJ et BH sont orthogonales..

Plus en détail

Chapitre VII. Produit scalaire. Activité introductive

Chapitre VII. Produit scalaire. Activité introductive Chapitre VII Produit scalaire VII1 VII11 Introduction Activité introductive EXERCICE I A, B, C sont trois points et a, b, c désignent respectivement les distances : BC ; CA ; AB Partie A Extension du théorème

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Correction 1 1. En remarquant l égalité suivante : AC AB + BC On obtient les coordonnées du vecteur : AC Ä x + x ; y + y ä. On a : AB» x + y BC» x + y AC» (x + x ) + (y + y ) 3. Le théorème de Pythagore

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

Chapitre 3 GEO 2. Produit scalaire

Chapitre 3 GEO 2. Produit scalaire Chapitre 3 GEO Produit scalaire À la fin de ce td, vous devez être capale de : Calculer le produit scalaire de deux vecteurs : à l aide des normes et d un angle ; à l aide d une projection orthogonale

Plus en détail

Correction de la composition de mathématiques

Correction de la composition de mathématiques Page1 Prénom :. Mercredi 11 mai 016 Correction de la composition de mathématiques Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour

Plus en détail

Produit scalaire. v =

Produit scalaire. v = Produit scalaire Le produit scalaire est un outils très puissant utilisé sur des vecteurs. Il permet notamment de montrer que deux vecteurs sont perpendiculaire. Il est très souvent utilisé en physique.

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Applications du Produit Scalaire ( En première S )

Applications du Produit Scalaire ( En première S ) Applications du Produit Scalaire ( En première S ) Dernière mise à jour : Mercredi 1 Décembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 010-011) 1 J aimais et j aime encore les

Plus en détail

1. Définition du produit scalaire et orthogonalité

1. Définition du produit scalaire et orthogonalité Dans tout ce chapitre #» u, #» v et #» w désignent des vecteurs du plan. 1. Définition du produit scalaire et orthogonalité DÉFINITION Le produit scalaire de #» u et #» v,noté #» u #» v qui se lit «#»

Plus en détail

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Cité scolaire Claude Monet - 1S6 Année scolaire 016-017 Mathématiques CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Exercice 4 : Soit H le projeté orthogonal de O sur. La droite OH est alors une hauteur

Plus en détail

Chapitre 8 Produit scalaire.

Chapitre 8 Produit scalaire. Chapitre 8 Produit scalaire I - Définitions équivalentes Origine du produit scalaire (Physique) Le travail d une force : W AB ( = Calculer le travail de la force F 1 d intensité 3 et le travail de la force

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

5. Trigonométrie, produit scalaire, produit vectoriel, exercices

5. Trigonométrie, produit scalaire, produit vectoriel, exercices 5. Trigonométrie, produit scalaire, produit vectoriel, exercices 1. Soit un triangle ABC tel que AB =, BC = 4 et ÂBC = π 3. Déterminer AC.. Soit un triangle ABC tel que AB = 4, AC = 3. L angle BAC vaut

Plus en détail

PRODUIT SCALAIRE DANS V 2

PRODUIT SCALAIRE DANS V 2 I) RAPPELLE 1) Définition du produit scalaire. 1.1 Mesure algébrique : PRODUIT SCALAIRE DANS V Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs x M et x N

Plus en détail

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire Lycée Louise Michel Gisors) 1S Corrigé QCM d auto-évaluation sur le produit scalaire Exercice 67 D après la formule du cours, u v = 1 u + v u v ). On applique avec u = AB et v = BC. 1 On obtient : AB BC

Plus en détail

CHAPITRE 9 : Produit scalaire

CHAPITRE 9 : Produit scalaire CHAPITRE 9 : Produit scalaire 1 Produit scalaire, propriétés de calcul et orthogonalité... 2 1.1 Notion de produit scalaire de deux vecteurs... 2 1.2 Un cas simple : les deux vecteurs sont colinéaires...

Plus en détail

Exercices proposés : semaine n o 7

Exercices proposés : semaine n o 7 Prépa ATS Exercices proposés : semaine n o 7 I. Géométrie dans le plan 1 Soit ABC un triangle rectangle en A et H le pied de la hauteur issue de A. Montrer que : 1. BA 2 = BH BC 2. CA 2 = CH CB 3. AH 2

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Produit scalaire. VECTEURS POINTS ( u = AC = AB. avec H le projeté orthogonal de C sur (AB). [= ± AB AH car AB sont colinéaires] AC = AB AC cos BAC

Produit scalaire. VECTEURS POINTS ( u = AC = AB. avec H le projeté orthogonal de C sur (AB). [= ± AB AH car AB sont colinéaires] AC = AB AC cos BAC Produit scalaire I. Produit scalaire dans le plan (rappels de 1 ère S). def : 4 définitions équivalentes du produit scalaire : 1 u. v = u. v avec v le projeté orthogonal de v sur u. [= ± u v car u et v

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

Ch.8 : Produit scalaire

Ch.8 : Produit scalaire 1 e - programme 011 - mathématiques ch8 - cours Page 1 sur 7 (D après Hachte - Déclic 011 ch9) 1 PRODUIT SCALAIRE DE DEUX VECTEURS 11 Deux définitions géométriques équivalentes DÉFINITION 1 Ch8 : Produit

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI2D I - Expressions et propriétés du produit scalaire 1 Définitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u

Plus en détail

H. DERFOUL Janvier _-

H. DERFOUL Janvier _- H DERFOUL Janvier 018 -_- wwwformacourscom - Pré requis & Mise à niveau - Mathématiques du Secondaire - Page 1 Sommaire Chapitre 0 3 Pré-requis et mise à niveau 3 Partie VI 3 Exercices 3 Contrôle des connaissances

Plus en détail

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition :

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition : LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES 1) La mesure algébrique 1.1 Définition et propriétés Définition : Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs

Plus en détail

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire Un peu d'histoire Le produit scalaire est une notion de géométrie euclidienne découverte tardivement par Camille Jordan (1838 1922). Né à Lyon, cet élève de l'école polytechnique entre major avec la note

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - formules de trigonométrie, produit scalaire dans le plan : toutes sections - produit scalaire dans l espace : ST2A, S - vecteur normal : S Pré-requis : Vecteurs

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Révisions de géométrie

Révisions de géométrie A Révisions de géométrie Les notions de produit scalaire, produit vectoriel et produit mixte ne seront pas redéfinies dans ce chapitre. Par la suite, le plan ou l espace seront rapportés implicitement

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

@ Dans l espace personne ne vous entend crier *

@ Dans l espace personne ne vous entend crier * @ Dans l espace personne ne vous entend crier * A/ Droites et plans de l espace : incidence et parallélisme. I/ Positions relatives de droites et de plans. 1/ Deux droites. d 1 et d 2 sont sécantes d 1

Plus en détail

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors :

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors : 7/05/07 Chapiitre 13 : Géométriie dans ll espace Premiière Partiie :: Produiit Scallaiire I.. Rappels dans le l plan 11)) Difffféérreenntteess eexpprreessssi ioonnss 2)) Eqquuaatti ioonnss drrooi itteess

Plus en détail

Forme algébrique d'un complexe

Forme algébrique d'un complexe On note l'ensemble des nombres complexes. Forme algébrique d'un complexe La forme algébrique d'un nombre complexe s'écrit = x + iy où x et y sont des nombres réels et i vérifie i = 1. x est la partie réelle

Plus en détail

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire 7 Produit scalaire 7. Norme d un vecteur Définition : Pour tout vecteur la norme du vecteur æ u, notée Î æ u Î, est la longueur où et sont deux points tels que æ u = æ. Propriété :Si æ u est un vecteur

Plus en détail

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert Leçon n 17 : Produit scalaire Présentation : Célia Giraudeau Questions : Léon Habert Lundi 5 Mars 2018 Prérequis Géométrie plane et dans l espace Angles Vecteurs Repère orthonormé On note E un espace vectoriel

Plus en détail

Extension du produit scalaire à l espace

Extension du produit scalaire à l espace Extension du produit scalaire à l espace Table des matières 1 Rappel du produit scalaire dans le plan 2 1.1 Définitions.................................................. 2 1.2 Orthogonalité................................................

Plus en détail

Tronc Commun. Série 1 : Produit scalaire Exercice 1 :

Tronc Commun. Série 1 : Produit scalaire Exercice 1 : Série : Produit scalaire Exercice : Soit ABC un triangle, tel que : AB, et BC 3. Calculer cos ( B ) et montrer que : AB.. On considère le point M tel que : AM AB + 3 6 a. Calculer AM. b. Montrer que les

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

I. Définition et propriétés du produit scalaire

I. Définition et propriétés du produit scalaire Leçon 9 : Définition et propriétés du produit scalaire dans le plan ; expression dans une base orthonormale. Application au calcul de distances et d angles. On se place au niveau du secondaire. CADRE :

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

1. Mesure en radians d un angle géométrique 1) Définitions. Cercle trigonométrique :

1. Mesure en radians d un angle géométrique 1) Définitions. Cercle trigonométrique : 1. Mesure en radians d un angle géométrique 1) Définitions Cercle trigonométrique : Le plan est muni d un repère ( O, I, J) orthonormal. On appelle cercle trigonométrique le cercle C de centre O et de

Plus en détail

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur.

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur. I- RAPPELS SUR LES VECTEURS ) Coordonnées ) Equation d une droite 3) Norme d un vecteur 4) Vecteurs colinéaires 5) Vecteurs orthogonaux 6) Angles de deux vecteurs Application : Activité page 94 II- VECTEURS

Plus en détail

Produit scalaire dans l espace.

Produit scalaire dans l espace. Terminale S, Espace Produit scalaire dans l espace. Produit scalaire: Définitions. Définitions du produit scalaire: Soit u et v deux vecteurs de l'espace. On appelle produit scalaire des vecteurs u et

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

,=LESfCOMPLEXESfBACf2004=2007e

,=LESfCOMPLEXESfBACf2004=2007e Amérique du sud novembre 003 5 points Le plan complexe est muni d un repère orthonormal direct (O; u, v) (unité graphique 4 cm) Soit I le point d affixe On note C le cercle de diamètre [OI] et on nomme

Plus en détail

Produit scalaire, cours, première S

Produit scalaire, cours, première S Produit scalaire, cours, première S F.Gaudon 2 mai 2016 Table des matières 1 Norme d'un vecteur 2 2 Produit scalaire 2 3 Orthogonalité de vecteurs 4 4 Produit scalaire et projection orthogonale 4 5 Propriétés

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

Sujets de bac : Droites et plans dans l espace

Sujets de bac : Droites et plans dans l espace Sujet n : Polynésie septembre 003 Sujets de bac : Droites et plans dans l espace L espace est rapporté à un repère ; ; ; orthonormé. Soit un nombre réel. On donne les points 8; 0; 8, 0; 3; 0 ainsi que

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

Dans le plan muni d un repère ( O; ı, j ), on considère les points A ( 2;3) et B (1; 2). sont colinéaires.

Dans le plan muni d un repère ( O; ı, j ), on considère les points A ( 2;3) et B (1; 2). sont colinéaires. 05 février 018 DROITES DANS LE PLAN nde 10 I INTRODUCTION Dans le plan muni d un repère O; ı, j, on cherche à établir une relation entre les coordonnées ; des points du plan appartenant à une droite D.

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Première S EXERCICES DE RÉVISIONS

Première S EXERCICES DE RÉVISIONS FONCTIONS x E1 : Après avoir précisé l ensemble de définition, étudier la parité de f(x) = 2x x² - E2 : Montrer que la fonction f définie sur R par f(x) = -5 cos (πx + 3) est périodique de période 2. E3

Plus en détail

Seconde Repères Quelques démonstrations :... 5

Seconde Repères Quelques démonstrations :... 5 Index I- Sur un axe, droite graduée... 1 I-1- La droite graduée... 1 Exemple... 1 I-- Distance sur un axe gradué, distance entre deux nombres... 1 I-3- Abscisse du milieu sur un axe gradué.... II- Repère

Plus en détail

Produit scalaire. Fiche 11 Produit scalaire Première S. Exercice 1 : On considère le triangle ABC donc on donne les dimensions : AB = 9 AC = 5 CB = 7

Produit scalaire. Fiche 11 Produit scalaire Première S. Exercice 1 : On considère le triangle ABC donc on donne les dimensions : AB = 9 AC = 5 CB = 7 Produit scalaire Exercice 1 : On considère le triangle donc on donne les dimensions : = 9 = 5 = 7 Déterminer les valeurs des produits scalaires suivants : 1. 2. 3. Exercice 2 : 1. Déterminer le produit

Plus en détail