PROCESSUS ALEATOIRES :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PROCESSUS ALEATOIRES :"

Transcription

1 EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009

2 MOUVEMENTBROWNIEN 1) Montrerl équivalenceentreles2propriétéssuivantespourunprocessusb: a) B est un processus à accroissements indépendants et stationnaires (PAIS), et pourtoutt,btestdeloinormalen(0,t) b) Bestunprocessusgaussiencentré,aveccov(Bs,Bt)=min(s,t) Quefaut ilrajouterpourquebsoitunmouvementbrownien? 2) Soit B = (Bt)0 t 1 un mouvement brownien standard sur [0, 1] (on s arrête à 1). Montrer que le processus X = (B1 t B1)0 t 1 est aussi un mouvement brownien standardsur[0,1].faireundessin. 3) On appelle pont brownien le processus (Pt)0 t 1 obtenu à partir du mouvement brownienstandardenimposantlescontraintesd interpolationp0=p1=0. Formellement,si(Bt)t 0estunmouvementbrownienstandard,ona: Pt=Bt tb1,0 t 1 Montrer que (Pt) est un processus gaussien centré et calculer sa structure de covariance.endéduiredesbandesdeconfianceà95%.interpréter. Pt t Figure1.Quelquestrajectoiresdupontbrownienetlesbandesdeconfianceà95%. 4) SoientB=(B 1,B 2 )unmouvementbrownienbi dimensionnelstandard,c est à dire telqueb 1 etb 2 sontdeuxmouvementsbrowniensstandardindépendants. MontrerqueBestinvariantparrotationenloi,c est à direquepourtoutθ [0,2π],le processus W défini par Wt = R θ Bt est un mouvement brownien bi dimensionnel standard,avecr θ lamatrice(cos(θ)sin(θ); sin(θ)cos(θ)). Processusaléatoires,calculstochastique:exercicesENSM SE2009

3 VARIATIONQUADRATIQUE COVARIATION 1) SoientXetYdeuxprocessusàtrajectoiresdeclassesC 1. a. Montrerque<X>t=<Y>t=0,puisque<X,Y>t=0( t). b. Montrerque<X,Z>t=0,pourtoutprocessusZtelque<Z>t<+ ( t). 2) SoitBunmouvementbrownienstandard.Onrappelleque<B>t=t, t. a. SoitXunprocessusàtrajectoiresdeclassesC 1.Calculer<X,B>t b. SoitWunmouvementbrownienavecdériveWt=µt+Bt.Calculer<W>t 3) Onreprendlesnotationsdel exercice3)delasection«mouvementbrownien». a. Montrerque<B 1,B 2 >t=0. b. Exprimer<B 1,W 1 >tenfonctiondecor(b 1 t,w 1 t). MARTINGALES 1) Soit(Wt)t 0unmouvementbrownienstandard.Montrerque: a. (Wt 2 )t 0estunesous martingale,et(wt 2 t)t 0estunemartingale. b. (exp(wt))t 0 est une sous martingale, et (exp(αwt ½α 2 t))t 0 est une martingalepourtoutréelα. 2) [Gestiondeportefeuilleetmartingale] OnconsidèreKactifsfinanciers,dontlesprixàladatetsontnotés(X 1 t,,x K t).on supposequechaqueprocessus(x k )estunemartingale(1 k K). Notonsθt=(θ 1 t,,θ K t)lenombredepartsdétenudanschaqueactifentretett 1.La valeurduportefeuilleestalorsvt=θ 1 tx 1 t+ +θ K tx K t.onsupposenaturellement (pourquoi?)queθestunprocessusprévisibleborné. Onditqueleportefeuilleestautofinancési: θ 1 tx 1 t+ +θ K tx K t=θ 1 t+1x 1 t+ +θ K t+1x K t a. Interprétercetteégalité(prendreunexemplesimple). b. Montrer que si le portefeuille est autofinancé, alors V est une martingale. Interprétercerésultatentermedegestiondeportefeuille. 3) [Surlaruinedujoueur]. On considère le jeu de pile ou face équilibré (p=1/2), et on se pose la question suivante:quelleestlaprobabilitépourquelejoueurréaliseunepertesupérieureà unequantitéb>0(ruine)avantd avoirréaliséunbénéficesupérieurouégalàa>0? On note X1,, Xn le bénéfice réalisé à chaque partie, éventuellement négatif, et Sn=X1+ +Xn. Soit T = inf{n N, Sn a ou Sn b}, et pruine la probabilité cherchée. Danslasuite,onprendaetbentiers. Processusaléatoires,calculstochastique:exercicesENSM SE2009

4 a. MontrerqueTestuntempsd arrêt,etexprimerpruineenfonctiondet. b. On admet que T est fini, i.e. P(T<+ )=1 (voir par ex. [Williams] pour une démonstration de ce résultat, utilisant aussi le th. d arrêt). En déduire que pruine = a/(a+b), par application du théorème d arrêt de Doob (Indication: utiliserlethéorème3,puislethéorèmedeconvergencedominéedelebesgue). Interpréter.Calculerpruinesiaetbnesontpasentiers. c. Que faut il modifier pour calculer la probabilité de ruine en temps continu, doncsi(st)estlemouvementbrownienstandard? 4) [SurladécompositiondeDoob]. a. Démontrer le théorème de décomposition de Doob. Justifier l interprétation de M comme l erreur de prévision cumulée, et A comme l espérance de gain cumulée. b. DonnerladécompositiondeDoobpourlejeudepileouface. c. DonnerladécompositiondeDoobd unprocessusar(1):xt=φxt 1+εt,avec (εt)unbruitblanccentré. 5) [Loidupremiertempsd atteinted unebarrièreparunmouvementbrownien]. Danscetexercice,onvacalculerde2façonslaloidupremiertempsd atteinted une barrièred unmouvementbrownienstandardb: Ta=inf{t>0,Bt=a},a>0 Pour cela, on va calculer la transformée de Laplace de Ta: E[exp( λta)], qui pourra ensuiteêtreinversée. a. JustifierqueTa=inf{t>0,Bt a}etquetaestuntempsd arrêt. b. On rappelle que les trajectoires du Brownien sont presque sûrement non bornées.qu endéduirepourta? c. Soits 0.PosonsMt s =exp(sbt s 2 t/2).montrerquee[mta t]=1(indication: utiliser l exercice 1). En déduire que E[MTa]=1, puis E[exp( λta)] = exp( a(2λ) 1/2 ). Par inversion de la transformée de Laplace, on montre que Ta admet la densité de probabilité: fa(t)=a(2πt 3 ) 1/2 exp( a 2 /2t) Onpeutretrouvercerésultatgrâceaufameux«principederéflexion». d. JustifiergrâceàunargumentdesymétriequeP(Ta t)=2p(bt a), t,a>0. e. RetrouveralorsladensitédeTa. Processusaléatoires,calculstochastique:exercicesENSM SE2009

5 CALCULSTOCHASTIQUE 1) [Formuled intégrationparparties] Danscetexercice,ons intéresseàlaformuled intégrationparpartiespourdessemimartingales continues: a. Démonstrationélémentaire.Démontrerlaformuledanslecasparticulieroù X=Y, en utilisant simplement une subdivision dyadique. Expliquer comment onpeutendéduirelerésultatdanslecasgénéral. b. Retrouverlaformuled intégrationparpartiesenutilisantlecalculd Itô. c. Soit φ une fonction de classe C 1. Justifier que φ est une semi martingale continue (déterministe). En déduire la formule d intégration par partie valablepourunesemi martingaleetunefonctiondeclassec 1 : Observerl analogieaveclaformuled intégrationparpartiesordinaire. 2) [Processusd Ornstein Uhlenbeck] Leprocessusd Ornstein Uhlenbeckestlasolutionuniquedel équation: avec W un mouvement brownien standard, c > 0, σ 0 deux constantes et x un nombre réel quelconque. Il s agit donc d une équation différentielle avec un terme d erreurmodéliséparunmouvementbrownien.enfinance,ilestutilisépourdécrire ladynamiquedestauxd intérêt. a. Résoudreleproblèmedanslecasdéterministe(σ=0). b. EnutilisantYt=Xte ct,montrerquextvérifie: c. Montrer que pour tout t, Xt est de loi normale. Plus généralement, montrer que X est un processus gaussien et vérifier que cov(xs,xt)= Processusaléatoires,calculstochastique:exercicesENSM SE2009.LestrajectoiresdeXsont ellescontinues? d. Justifier la terminologie de «processus de retour à la moyenne», qui est utiliséepourleprocessusd Ornstein Uhlenbeck.Interpréterleparamètrec.

6 3) [Mouvementbrownienintégré Applicationàl évaluationd uneoptionasiatique] Uneoptionasiatiqueestuneoptiondontlepayoffdépendd unemoyenneduprixde l actifsous jacent.danscetexerciceonconsidèrelecasd unemoyennegéométrique, et on va donner le principe du calcul du prix de l option d achat asiatique sur une action.lepayoffdecetteoptionest: max(g(t) K;0) aveckleprixd exerciceetg(t)= où: t0estladateinitiale,testl échéance(oumaturité). Stleprixàladatetdusous jacent. Vousverrezaumodule2quesousdiverseshypothèses,dontceluidel existenced un tauxsansrisquer,lavaleurdel optionestdonnéeparlaformulesuivante: oùq est une probabilité sous laquelle l espérance actualisée du rendement de tous lesactifsestégaleautauxsansrisque(probabilitérisque neutre). Onsupposequelecoursdusous jacentestdonnéparlemodèledeblacketscholes: avecbunmouvementbrownienstandard.onmontrealors(voirpolycopié, 6)que dansl espacedeprobabilitérisque neutre,lecoursdel actifestdonnépar: où W est un autre mouvement brownien standard. Il en résulte(cf polycopié 5.2) quepourtoutt: Pourobtenirl expressionanalytiqueduprixdel option,laprincipaledifficultéestde vérifierquegestunevariablealéatoiredeloilog normalesouslaprobabilitéq,et d encalculerlesparamètres.lasuiteendécouleimmédiatementcaronpeutcalculer defaçonélémentairedesquantitésdutypee[max(x K;0)]lorsqueXestdeloilognormale. a. JustifierqueGcorrespondbienàunemoyennegéométrique. b. Montrerque: c. Montrerque estunevariablealéatoiredeloin(0,(t t0) 3 /3): Processusaléatoires,calculstochastique:exercicesENSM SE2009

7 i. Directement, en écrivant l intégrale comme une limite de sommes de Riemann. ii. Avec le calcul stochastique, en faisant intervenir une intégrale de Wiener. d. Donner enfin la loi de G. Le prix de l option s en déduit, on trouvera une formuledans(hull,2004). e. Considérons maintenant une option asiatique dont le payoff dépend d une moyenne arithmétique. Expliquer où est la difficulté pour obtenir la loi du payoff. Quelle méthode numérique peut permettre d obtenir une valeur approchée du prix de l option. Comment accélérer (de façon drastique!) la vitessedeconvergencedelaméthode? Processusaléatoires,calculstochastique:exercicesENSM SE2009

8 Bibliographie Doob J.L. (1994), Measure Theory, Springer-Verlag. Karatzas I., Shreve S. E. (1991), Brownian Motion and Stochastic Calculus, 2 nd edition, Springer. Revuz D., Yor M. (1999), Continuous Martingales and Brownian Motion, 3 rd Springer. edition, Roger P. (2004), Probabilités, statistique et processus stochastiques, Collection synthex, Pearson Education. Williams D. (1991), Probability with Martingales, Cambridge Mathematical Textbooks. Processusaléatoires,calculstochastique:exercicesENSM SE2009

M A R T I N G A L E S

M A R T I N G A L E S EcoledesMinesdeSaint Etienne MARTINGALES SupportdeCours Janvier2009 OlivierRoustant 1 1. INTRODUCTION Une martingale est un processus aléatoire qui ne possède pas de partie prévisible relativement à l

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Construction du Mouvement Brownien

Construction du Mouvement Brownien Chapitre 1 Construction du Mouvement Brownien 1 Un peu d histoire (voir [7] et [1]) Le nom de mouvement Brownien vient du botaniste Robert Brown. Brown n a pas découvert le mouvement brownien, car n importe

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002

DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002 Département d économie politique DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS Semestre d hiver 2001-2002 Professeurs Marc Chesney et François Quittard-Pinon Séance

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Economie, finance et mathématiques

Economie, finance et mathématiques Economie, finance et mathématiques de la réalité à la modélisation Conférence de l APMEP Laon 2015 Laurence Carassus URCA Plan de l exposé Les produits financiers Formalisation mathématique et évaluation

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Portefeuille - Probabilité risque neutre

Portefeuille - Probabilité risque neutre Portefeuille - Probabilité risque neutre Marché complet sans opportunité d arbitrage ½/ Actifs risqué et non risqué Constitution du portefeuille On notera F n l information dont on dispose à l instant

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Partiel - 12 mars 2014

Partiel - 12 mars 2014 Licence STS, semestre 4 013 14 Mathématiques pour l Informatique (Info 9) 1 mars 014 http://www.lri.fr/~paulin/mathinfo Partiel - 1 mars 014 L examen dure heures. L énoncé est composé de 5 pages. Toutes

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Evaluation d actifs financier et Arbitrage

Evaluation d actifs financier et Arbitrage TD M1 Evaluation d actifs financier et Arbitrage Université Paris-Dauphine 1 Arbitrage Exercice 1 : Payoffs et stratégies Donner et tracer les payoffs à maturité des stratégies suivantes. Interprétez l

Plus en détail

TD 1 : Taux d intérêt en univers déterministe

TD 1 : Taux d intérêt en univers déterministe Université Paris VI Master 1 : Introduction au calcul stochastique pour la finance 4M065) TD 1 : Taux d intérêt en univers déterministe 1 Interêts simples / Intérêts composés Définition : a) L intérêt

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

TRAVAUX DIRIGÉS NUMÉRO 4

TRAVAUX DIRIGÉS NUMÉRO 4 Université Paris 7 - M Modélisation Aléatoire - Calcul Stochastique TRAVAUX DIRIGÉS NUMÉRO 4 INTÉGRALE DE WIENER ET D ITÔ 1. Retour feuille 3 : Martingales du mouvement brownien. Temps d atteinte Exercice

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

Examen du cours de Mesures de risque en finance

Examen du cours de Mesures de risque en finance Examen du cours de Mesures de risque en finance Mercredi 15 Décembre 21 (9h-11h) Seul document autorisé: une feuille A4 manuscrite recto-verso. Important : rédiger sur une même copie les exercices 1 et

Plus en détail

Appendice A1. Lemme de classe monotone

Appendice A1. Lemme de classe monotone Appendice A1. Lemme de classe monotone Le lemme de classe monotone est un outil de théorie de la mesure très utile dans de nombreux raisonnements de théorie des probabilités. Nous en donnons ici la version

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude.

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Le Cadre Etats de la nature : s = 1,.S,.. p(1),, p(s), Actifs a : m+1 actifs de base {a(0), a(m)} Matrices

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Introduction à la modélisation financière en temps continue & Calcul Stochastique

Introduction à la modélisation financière en temps continue & Calcul Stochastique Introduction à la modélisation financière en temps continue & Calcul Stochastique Mireille Bossy INRIA pour le MASTER IMAFA à Polytech Nice Sophia Antipolis 16 novembre 213 2 Cours de maths financières

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Exercice 1. Soit B un (F t )-mouvement brownien réel issu de 0. On considère le temps d arrêt

Exercice 1. Soit B un (F t )-mouvement brownien réel issu de 0. On considère le temps d arrêt M Probabilités et Statistiques Université Paris-Sud Calcul stochastique et processus de Markov Partiel du 5 novembre 15, heures 3 sans documents Barème approximatif. Ex.1 : 6pts. Ex. : 3pts. Ex.3 : 6pts.

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

THEOREMES D ARRETS POUR LES MARTINGALES

THEOREMES D ARRETS POUR LES MARTINGALES THEOREMES D ARRETS POUR LES MARTINGALES PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2011/2012 1. EQUI-NTEGRABILITE Les propriétés de cette section sont valables

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Calcul stochastique appliqué à la finance. Introduction aux modèles d actifs à sauts

Calcul stochastique appliqué à la finance. Introduction aux modèles d actifs à sauts Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version 1 Introduction aux processus à sauts On énonce ici quelques concepts et résultats sur les processus à sauts. Certaines démonstrations

Plus en détail

Le marché boursier. Tour d horizon sur les thèmes théoriques.

Le marché boursier. Tour d horizon sur les thèmes théoriques. Le marché boursier Tour d horizon sur les thèmes théoriques. 1 Introduction : objectifs Têtes de chapitres : A - Coordination inter-temporelle et valorisation des actions: Aa - Valeur fondamentale : Fluctuations

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Année 2009/2010. Rapport de projet de dernière année ISIMA F4

Année 2009/2010. Rapport de projet de dernière année ISIMA F4 Année 2009/2010 Rapport de projet de dernière année ISIMA F4 «Evaluation d options Européenne Vanille, Américaine Vanille et Asiatique» Elaboré par : Encadré par : Monsieur Mehdi Fhima Résumé Les options

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail