Simulations des Grecques : Malliavin vs Différences finies

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Simulations des Grecques : Malliavin vs Différences finies"

Transcription

1 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le calcul de iavin dispensé dans le cadre du Master MMMEF de l Université Paris 1. Ce n est pas un rappel de cours!!! Nous nous bornerons au cadre très simple (et donc réducteur) de Black et Scholes, le but étant de donner une première approche intuitive des phénomènes. Les simulations proposées ici ont été réalisées en C++ ( vous pouvez aussi utiliser le logiciel gratuit scilab mais le temps de calcul n est vraiment pas le même). Dans le modèle de Black et Scholes, la dynamique de l actif risqué est donnée par l EDS suivante ds t = bs t dt + σs t db t (1) de condition initiale S 0 = x 0 > 0. Cette EDS a une unique solution donnée par le Brownien géométrique S t = x 0 e (b 1 2 σ2 )t+σb t. (2) Concernant l actif sans risque, nous le supposerons associé au taux d intérêt continu et constant r. Dans la suite du document nous nous placerons sous l unique probabilité risque neutre ce qui revient tout simplement à considérer que b = r. 0.1 Les Grecques Définition Les Grecques sont des indicateurs qui mesurent la sensibilité de la prime (i.e du prix) d une option par rapport à un paramètre donné (le cours du sous-jacent, le temps, la volatilité). Leur importance pratique est très grande. Si h est un actif contingent (caractérisé uniquement par son payoff), nous savons que son prix à t est de la forme F (t, S t ). Définition On appelle grecques les quantités suivantes : mesure la sensibilité du prix par rapport au sous jacent t (S t ) = F x (t, S t) (3)

2 2 Γ mesure la sensibilité du delta par rapport au sous jacent Γ t (S t ) = 2 F x 2 (t, S t) (4) Θ mesure la sensibilité du prix par rapport au temps Θ t (S t ) = F t (t, S t) (5) ρ mesure la sensibilité du prix par rapport au taux d intérêt ρ t (S t ) = F r (t, S t) (6) vega (qui n est pas une lettre grecque!!!) mesure la sensibilité du prix par rapport à la volatilité vega t (S t ) = F σ (t, S t). (7) Exemple Dans le cas du call et du put (de strike K et d échéance T ) les valeurs des grecques à t = 0 sont données par le tableau suivant : Call Put où N(d 1 ) > 0 N( d 1 ) < 0 Γ 1 xσ T N (d 1 ) > 0 1 xσ T N (d 1 ) > 0 Θ xσ 2 T N (d 1 ) Kre rt N(d 2 ) < 0 xσ 2 T N (d 1 ) + Kre rt (N(d 2 ) 1)?? ρ T Ke rt N(d 2 ) > 0 T Ke rt (N(d 2 ) 1) < 0 vega x T N (d 1 ) > 0 x T N (d 1 ) > 0 d 1 (x) = log( x σ2 ) + (r + )T K 2 σ T et où N est la fonction de répartition d une N (0, 1). et d 2 (x) = log( x σ2 ) + (r )T K 2 σ T (8) Notons que dans ce cas particulier, une fois que les paramètres du modèle sont calés, pour calculer explicitement les grecques il suffit de pouvoir calculer la fonction de répartition d une gaussienne N. Ceci ne peut se faire de manière exacte, il existe des approximations numériques bien connues pour ce problème. On peut, par ailleurs, utiliser la fonction cdfnor de scilab ou la fonction erf en C++. Nous nous limiterons dans la suite aux cas du delta et du gamma (et donc aussi du véga...).

3 0.2. CALCUL PRATIQUE DES GRECQUES PAR SIMULATION MONTE CARLO3 0.2 Calcul pratique des grecques par simulation Monte Carlo Cas où le payoff est le la forme h = f(s T ) On veut évaluer de manière numérique F (t, x) = e r(t t) E [ f(st x t) ], t (x) = F x (t, x) et Γ t(x) = 2 F (t, x) x2 où (S x t ) est le MB géométrique vérifiant S x 0 = x. Pour le prix F (t, x), on utilise une méthode de Monte Carlo classique car on sait simuler très simplement (il suffit de simuler des gaussiennes indépendantes) un échantillon de (ST x t ). Pour les deux autres quantités qui sont les dérivés de la première, une méthode classique est d utiliser un schéma de différence finie i.e d utiliser les approximations suivantes t (x) F (t, x + h) F (t, x h) 2h F (t, x + h) + F (t, x h) 2F (t, x) Γ t (x) h 2 où h est suffisamment petit et où F (t, x + h), F (t, x h) et F (t, x) sont calculés par méthode de Monte Carlo. Problème pour les grecques (contrairement au prix) : Deux facteurs d approximation (MC + différence finie) et donc d erreur En pratique le choix de h n est pas si évident que cela : le prendre trop grand entraîne une mauvaise approximation des dérivées (i.e un grand biais), le prendre trop petit fait souvent exploser violemment la variance de l estimateur (i.e augmente sa volatilité) et donc la qualité des simulations Monte Carlo (cf remarque ci-dessous). Remarque Pour le cas du delta, deux choix s offrent à nous pour le calcul de l approximation par différence finie. Nous devons en effet évaluer par Monte Carlo les deux espérances F (t, x h) et F (t, x + h). Nous pouvons a) Utiliser deux N échantillons indépendants de ST x t et F (t, x + h), dans ce cas, on montre que pour évaluer F (t, x h)

4 4 V ar ( F (t,x+h) F (t,x h) 2h ) ( = 1 V ar(f(s x+h )) T t 4h 2 N + V ar(f(sx h)) T t N ) 1 2Nh 2 V ar ( f(s x T t )). b) Utiliser un seul N échantillon de ST x t pour simuler à la fois F (t, x h) et F (t, x + h), dans ce cas, on montre que lorsque f est régulière V ar ( F (t,x+h) F (t,x h) 2h ) = 1 N V ar ( f(s x+h T t ) f(sx h T t ) 2h 1 N V ar ( f (S x T t )). Une approche alternative pour le calcul des grecques est la méthode des poids. Sa mise en place technique dans le cadre d un modèle financier général nécessite les techniques du calcul de iavin qui ont été abordées en cours. Cependant, sous la dynamique Black-Scholes, la régularité de la densité gaussienne permet d obtenir ces résultats par une simple et classique IPP. Cette IPP n est plus possible pour les modèles plus complexes, on utilise alors les formules de type IPP induites par la dualité entre l opérateur de dérivation au sens de iavin et l intégrale de Skorohod. Dans Black et Scholes, nous savons que lorsque h = f(s T ), le prix F (t, S t ) est parfaitement déterminé par + F (t, x) = e r(t t) f(xe (r 1 2 σ2 )(T t)+σy T t 1 ) e y2 2 dy. 2π Nous avons alors le résultat suivant : ) Proposition On a [ t (x) = e r(t t) E W T t xσ(t t) f(sx T t) ] (9) et [( Γ t (x) = e r(t t) E WT t x 2 σ(t t) + W ) ] T 2 t (T t) f(s x (σ(t t)x) 2 T t) (10) où (S x t ) est (sous la proba risque neutre P ) le MB géométrique tel que S x 0 = x et (W t ) le MB standard. Preuve : On se limite à la démonstration de (9), la méthode étant identique pour (10). Nous allons supposer que f CK 1 (R, R), le cas général se traitant par approximation.

5 0.2. CALCUL PRATIQUE DES GRECQUES PAR SIMULATION MONTE CARLO5 D après le théorème de dérivation sous le signe somme, on a + t (x) = e r(t t) 1 x f(xe(r 2 σ2 )(T t)+σy T t 1 ) e y2 2 dy. } {{ } 2π g(x,y) Or Ainsi par IPP, t (x) = t) e r(t xσ T t g x (x, y) = 1 xσ T t + g (x, y). y f(xe (r 1 2 σ2 )(T t)+σy T t y ) e y2 2 dy. 2π Sous P, ds x t = rs x t dt + σs x t dw t donc ainsi, S x t = xe (r 1 2 σ2 )t+σw t, [ ] t (x) = e r(t t) E W T t xσ(t t) f(sx T t). Ainsi, dans Black et Scholes les grecques peuvent être calculées sans recours au schéma de différence finie. Avantages : Un seul facteur d approximation (MC) et donc d erreur Technique qui ne dépend pas du Payoff (le poids est indépendant de f) Cas du delta pour les options asiatiques simples Contrairement aux options simples (call, put, digitale, corridor) où des formules fermées sont disponibles et où les procédures numériques servent donc uniquement à contrôler les méthodes, le calcul numérique des grecques pour les options asiatiques est d une nécessité absolue (pas de formulation explicite) même dans Black et Scholes. ( ) T On considère ici que le payoff est donné par f. 0 Sx s ds La proposition suivante (dont le démonstration a été donnée en cours) fait intervenir le calcul de iavin :

6 6 Proposition On a [ ( T 0 (x) = e rt x E f 0 ) ( T [ T Ss x 0 ds Sx s ds W T T 0 ssx s ds σ + 0 s2 S x s ds T 0 ssx s ds ] 1 )] (11) où (S x t ) est (sous la proba risque neutre P ) le MB géométrique tel que S x 0 = x et (W t ) le MB standard. Remarque Pour calculer 0 (x) à partir de la formule précédente, il faut simuler des intégrales du type T 0 sn Ss x ds. Ne connaissant pas la loi de T 0 sn Ss x ds, on peut utiliser pour cela l approximation suivante qui fait intervenir les sommes de Riemann : 1 0 s n S x s ds 1 M M k=1 avec M grand (mais pas trop). Reste à simuler le vecteur (xe (r 1 2 σ2 ) k M +σb km ) ( ) n k S x k M M 0<k<M+1 et donc le vecteur gaussien centré (B k ) dont la matrice de covariance est parfaitement M spécifiée. 0.3 Simulations Cas d un call et d un put européen On prend x = 100, K = 100, σ = 0, 15, r = 0, 05, T = 1.

7 0.3. SIMULATIONS 7 Delta Call 0,67 0,665 0,66 delta 0,655 Valeur Theo:0, ,65 0,645 0,64 Nbre de Simulations (10E4) Gamma Call 0,0255 0,025 0,0245 Gamma 0,024 Valeur theo 0, ,0235 0,023 0,0225 Nbre simulations(10e4)

8 8 Delta Put -0,334-0,337 delta -0,34-0,343 Valeur Theo -0, ,346-0,349 Nbre simulations (10E4) Gamma Put 0,026 0,0255 0,025 gamma 0,0245 0,024 Valeur Theo 0, ,0235 0,023 0,0225 Nbre simulations (10E4)

9 0.3. SIMULATIONS 9 Il n est pas très étonnant de voir que dans le cas du call la méthode des différence finie est sensiblement plus précise que la méthode des poids. Ceci est dû au fait que dans la cas du call le payoff est une fonction régulière. Pour comparer les vitesses de de convergence des estimateurs nous introduisons la définition suivante (penser au TCL...) Définition On dit q un estimateur E 1 converge x fois plus vite que E 2 si la variance empirique de E 2 est égale à x fois celle de E 1 (on se base ici sur simulations). Pour le call et le put on obtient les résultats suivants : Call Ratio des Variances (/ iavin) Γ Put Ratio des Variances (/ iavin) 0.30 Γ 1.32 Les choses se passent un peu mieux pour le put que pour le call. Ceci s explique par le fait que dans le cas du call (et non du put) la taille du poids peut exploser Cas d une option digitale Une option digitale est caractérisée par son payoff 1 S x T >K min irrégulier en K min. Il est facile (exo) de montrer que dans ce cas F (0, x) = e rt KN(d), 0 (x) = e rt xσ T n(d) et Γ 0 (x) = ( e rt x 2 σ 2 T n(d) d + σ ) T où n est la densité d une N (0, 1) et où d = log( x )+(r σ2 K min 2 )(T ) On prend x = 100, K = 100, σ = 0, 15, r = 0, 05, T = 1, K min = 95. σ T.

10 10 Delta Digitale 0,0221 0,0218 0,0215 Delta 0,0212 0,0209 Valeur Theo 0, ,0206 0,0203 0,02 Nbre simulations (10E4) Gamma Digitale -0,0005-0,0006-0,0007-0,0008 Gamma -0,0009-0,001-0,0011 Valeur Theo 0, ,0012-0,0013-0,0014-0,0015 Nbre Simulations (10E4)

11 0.3. SIMULATIONS 11 Digitale Ratio des Variances (/ iavin) 5.31 Γ Cas d une option corridor Une option corridor e est caractérisée par son payoff 1 Kmax>S T x >K min fait la différence de deux digitales). (c est en On prend x = 100, K = 100, σ = 0, 15, r = 0, 05, T = 1, K min = 95, K max = 105. Delta Corridor -0,0032-0,0037 Delta -0,0042 Valeur Théo: -0, ,0047-0,0052 Nbre de simulation (10E4)

12 12 Gamma Corridor -0,0005 Gamma -0,001 Valeur Theo: -0, ,0015-0,002 Nbre de simulations (10E4) Corridor Ratio des Variances (/ iavin) 134 Γ Quelques remarques La méthode des poids donne de bien meilleurs résultats que les lorsque l irrégularité du payoff ou l ordre de dérivation augmente. En pratique les poids que nous trouvons sont des polynômes en W T. Ainsi la méthode des poids sera d autant meilleure que la maturité de l option est petite (petit poids). De plus La méthode des poids sera plus efficace dans le cas d un call que dans celui d un put. La méthode des poids est en fait une technique de réduction de variance. Elle se révélera encore plus efficace couplée aux techniques classiques (contrôle antithétique, variables de contrôle ou fonction d importance...).

13 0.3. SIMULATIONS 13 Technique de localisation : un exemple dans le cas du call Dans le cas du call, la technique des poids est peu efficace car le payoff est trop régulier et le poids trop gros. Une manière de l améliorer est de décomposer en une partie locale irrégulière et une partie régulière : f(s x T ) = Φ loc (S x T ) + Φ reg (S x T ). Pour le calcul des grecques, on appliquera la technique des poids sur la partie locale et sur la partie régullière une simple dérivation sous le signe somme (DSS) (ou la méthode si la DSS n est pas justifiée). Dans la cas du call, une manière de procéder est d écrire : (S x T K) + = (S x T K)1 K<S x T <K+d + (S x T K)1 S x T K+d et donc d obtenir en utilisant la méthode des poids pour le premier terme et une DSS justifiée pour le second la formule suivante [ ] 0 (x) = e rt E WT xσt (Sx T K)1 K<S x T <K+d + 1 [ x E ST x 1 S x T K+d]. On obtient alors les résultas numériques suivants qui ne sont pas spectaculaires car le choix de la fonction de localisation est ici très grossier. (Vous pouvez en exercice trouver d autres fonctions de régularisation et comparer les résultats numériques obtenus). Call Ratio des Variances (/ Loc (d = 2)) 1,79

14 14 Delta Call 0,67 0,665 0,66 delta 0,655 Valeur Theo:0, loc (d=5) Loc (d=2) Loc (d=55) 0,65 0,645 0,64 Nbre de Simulations (10E4) Le générateur de nombre aléatoire utilisé pour les simulations est un générateur congruentiel classique. Vous pouvez en exercice comparer dans un cas simple l impact d un tel choix en comparant les résultats avec ceux obtenus en utilisant la suite à discrépence faible de Van der Corput Cas d une option asiatique simple Le faire en exercice en utilisant la proposition 0.2.2

B&S Pratique et limites

B&S Pratique et limites B&S Pratique et limites Christophe Chorro (christophe.chorro@univ-paris1.fr) Université Paris 1 Décembre 2008 hristophe Chorro (christophe.chorro@univ-paris1.fr) (Université Paris BS 1) Pratique et limites

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Marchés Financiers. Cours appliqué de finance de marché. Options

Marchés Financiers. Cours appliqué de finance de marché. Options Marchés Financiers appliqué de finance de marché Options 1 Options Généralités Instruments permettant de prendre position sur l évolution d un actif. On peut parier à la hausse d une valeur (achat de Call),

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

Manuel utilisateur. Logiciel d évaluation des options exotiques. Manuel utilisateur

Manuel utilisateur. Logiciel d évaluation des options exotiques. Manuel utilisateur Logiciel d évaluation des options exotiques Manuel utilisateur "! $#&% ' () *+,(-./* ((021 33 # 4./*+ $./*-3 ()5 6$798;: $7%47?98;? @$7 =$AAA "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!#

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Modèle de Heston Pricing d options européennes et calibration G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Projet de département IMI En partenariat avec Natexis 21 juin

Plus en détail

Qu'est-ce qu'un fonds à formule? Document non contractuel

Qu'est-ce qu'un fonds à formule? Document non contractuel Qu'est-ce qu'un fonds à formule? THESAURUS 2013 Tous droits de CONFIDENTIEL reproduction réservés Obligation Options 100% Capital garanti Performance 1- Qu est-ce qu un fonds à formule «Un fonds à formule

Plus en détail

3- Valorisation d'options

3- Valorisation d'options 3- Valorisation d'options Valorisation des options classiques : options d'achat (call) options de vente (put) Une pierre angulaire de la finance moderne : décisions d'investissement (options réelles) conditions

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Annexe Simulations de Monte Carlo

Annexe Simulations de Monte Carlo Annexe Simulations de Monte Carlo Cette annexe présente, de façon pratique, les principales techniques opératoires des simulations de Monte Carlo. Le lecteur souhaitant une présentation plus rigoureuse

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

PROCESSUS ALEATOIRES :

PROCESSUS ALEATOIRES : EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009 MOUVEMENTBROWNIEN

Plus en détail

Modèle de Black-Scholes

Modèle de Black-Scholes Modèle de Black-Scholes R. WARLOP Maîtres de stages : Laurent DESVILLETTES et Francesco SALVARANI École Normale Supérieure de Cachan 29 juin 2011 R. WARLOP [1em] Maîtres Modèle de stages de Black-Scholes

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

IFT3245. Simulation et modèles

IFT3245. Simulation et modèles IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques

Plus en détail

Calculating Greeks by Monte Carlo simulation

Calculating Greeks by Monte Carlo simulation Calculating Greeks by Monte Carlo simulation Filière mathématiques financières Projet de spécialité Basile Voisin, Xavier Milhaud Encadré par Mme Ying Jiao ENSIMAG - Mai-Juin 27 able des matières 1 Remerciements

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail