Probabilités 5. Simulation de variables aléatoires

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités 5. Simulation de variables aléatoires"

Transcription

1 Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril / 25

2 Plan 1 Méthodes de Monte-Carlo / 25

3 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Estimation d intégrales Considérons l intégrale I = R g(x) λ 1 (dx) avec g une fonction Lebesgue intégrable. Admettons que nous ne connaissons pas la valeur exacte de I. Comment pouvons nous donner une valeur approchée? Méthodes des rectangles, des trapèzes... Méthodes déterministes. Méthodes de Monte-Carlo : estimation à l aide de v.a. (X i ) 1 i N. Simulation des v.a. X i Méthodes stochastiques. 3 / 25

4 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Qu est-ce qu une méthode de Monte-Carlo? 1 Trouver une v.a. X et une fonction ϕ telle que I = E(ϕ(X)). 2 Appliquer la loi forte des grands nombres (cf. Chapitre 9). Estimation de I Soient (X j ) j N des v.a. indépendantes de même loi que X. Alors pour presque tout ω, Î N (ω) := 1 n n j=1 ϕ(x j (ω)) N + E(ϕ(X)). 3 Estimation de I : simulation d une réalisation de la v.a. ÎN. Simulation de réalisations indépendantes la loi de X. 4 / 25

5 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Méthodes de Monte-Carlo Remarques Toujours possible de trouver X et ϕ ; ϕ(x ) intégrable Extensions aux intégrales sur R d Contrôle de l erreur / Vitesse de convergence Théorème Central Limite Vitesse ne dépendant pas de la dim. d. Î N estimateur de Monte-Carlo 5 / 25

6 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Exemple Supposons I = 2 1 cos (x)e x2 /2 dx = E 2π cos (X) 1 [1,2] (X) } {{ } ϕ(x) avec X de loi gaussienne centrée réduite. Dans ce cas, pour (X j ) j N v.a. indépendantes de même loi que X, lim n + n n ϕ(x j ) = I j=1 presque sûrement / 25

7 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Exemple Nous pouvons aussi écrire I = E cos (Y) e Y2 /2 } {{ } ψ(y) avec Y de loi uniforme sur [1,2]. Alors, pour (Y j ) j N v.a. indépendantes de même loi que Y, lim n + n n ψ(y j ) = I j=1 presque sûrement. Estimation de I Taille n de l échantillon 7 / 25

8 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Exemples Questions «naturelles» : Mieux vaut-il utiliser la loi de X ou celle de Y pour évaluer I? Peut-on trouver un meilleur estimateur? Éléments de réponses : Théorème central limite : largeur des intervalles de confiances Comparaison Var φ(x ) et Var ψ(y ) (si existence). Prise en compte des temps de calcul. Nouveaux estimateurs : techniques de réduction de variance. 8 / 25

9 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Fiabilité d un système Considérons un système (électrique par exemple) composé de p éléments. Supposons que ces éléments ont des durées de vies T 1,...,T p indépendantes. En fonction du montage (série, parallèle, mixte), la durée de vie du système est alors h(t 1,...,T p ) et sa durée de vie moyenne est I = E(h(T 1,...,T p )) Estimation de la durée de vie moyenne Estimation de I par Monte-Carlo ; Simuler des v.a. indépendantes T (j) i, 1 i p, 1 j n. 9 / 25

10 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Files d attente Notons (X n ) n N des v.a. modélisant les délais entre les arrivées des clients à un même guichet. Alors, le nème client arrive au temps T n = X X n. Notons S n le temps mis pour servir le nème client (une fois son tour arrivé). Le nombre moyen de clients dans la file à l instant t est : I t = E[ϕ t ((S n ) n,(t n ) n )] Estimation de I t Méthode de Monte-Carlo ; Simuler de réalisations indépendantes de la suite (S n,t n ) n 10 / 25

11 Estimation d intégrales Fiabilité d un système Files d attente Autres exemples Autres exemples 1 Extinction du nom d une famille (processus de Galton-Watson), 2 Probabilité de ruine d une compagnie, 3 Évaluation de risque et incertitudes : finance/assurance/géologie/catastrophes naturelles... 4 Résolution de certains problèmes différentiels déterministes 5... Problème de Cauchy et Dirichlet Equation de la chaleur Transport de lumière / 25

12 Présentation de la méthode Lois discrètes Lois absolument continues Présentation de la méthode Soit X une v.a.r. de fonction de répartition F X. Notons pour u ]0,1[, F X (u) = inf {t R /F (t) u}. X Méthode de la fonction de répartition inverse F X : fonction de répartition inverse généralisée de F X Si U est de loi uniforme sur [0,1], alors la v.a. F X que X. (U) a même loi Remarques : F X F X (U) définie p.s. (1 U) a aussi même loi que X. 12 / 25

13 Présentation de la méthode Lois discrètes Lois absolument continues Un exemple simple : loi de Bernoulli Une v.a. X suit une loi de Bernoulli de paramètre p [0,1] si P X = (1 p)δ 0 + pδ 1. Alors X a même loi que où U v.a. de loi uniforme sur [0,1]. 1 ]1 p,1] (U) 13 / 25

14 Présentation de la méthode Lois discrètes Lois absolument continues Un autre exemple Soit X une v.a. de loi P X = 1 2 δ δ 1/ δ Fonction de répartition Fonction F X Alors X a même loi que 1 ]0,1/2] (U) ]1/2,3/4](U) ]3/4,1] (U) où U v.a. de loi uniforme sur [0,1]. 14 / 25

15 Présentation de la méthode Lois discrètes Lois absolument continues Lois absolument continues Si X de densité f X et si supp f X = R alors F X bijection de R sur ]0,1[ et F X = F X Densité Fonct. de répartition Fonction F X 15 / 25

16 Présentation de la méthode Lois discrètes Lois absolument continues Lois absolument continues Si X de densité f X, supp f X = [a,b] alors F X bijection de ]a,b[ sur ]0,1[. F X = F 1 X sur ]0,1[ Densité Fonction de répartition 16 / 25

17 Présentation de la méthode Lois discrètes Lois absolument continues Un exemple Soit X une v.a. dont la fonction de répartition est donnée par 1 F X (t) =, t e t Alors, X a même loi que ( U F 1 (U) = ln X 1 U ). 17 / 25

18 Présentation de la méthode Lois discrètes Lois absolument continues Mise en défaut Si F X n est pas calculable! Lois gaussiennes : Algorithme de Box-Muller (cf. polycopié). Lois gammas :. f X (x) = xa 1 e x/b 1 x>0, x R Γ(a)b a 18 / 25

19 Présentation de la méthode But : Simuler une v.a. de densité f à partir de v.a. de densité g. Hypothèses : 1 On sait simuler des v.a. de densité g. 2 c > 0, x R, f (x) cg(x). Méthode : 1 Simuler Y 1 et U 1 deux v.a. indépendantes, U 1 suivant une loi uniforme sur [0,1] et Y 1 ayant pour densité g. 2 Si U 1 f (Y1) cg(y 1), on pose X = Y 1. Dans le cas contraire, on revient à l étape 1 en simulant des variables indépendantes des précédentes. 19 / 25

20 Présentation de la méthode Posons h(x) = f (x) cg(x) Théorème si g(x) 0. Par la méthode du rejet, on construit X = Y 1 1 U1 h(y 1) + + i=1 Y i+1 1 U1>h(Y 1),...,U i >h(y i ),U i+1 h(y i+1 ) avec Y j,u j, j N, indépendantes, Y j de densité g et U j de loi uniforme sur [0,1]. Par ailleurs, X a même loi que X. Nombre moyen d itérations = c. 20 / 25

21 Présentation de la méthode Lois Gammas Soit X de densité f X (x) = xa 1 e x/b 1 x>0, x R Γ(a)b a On peut prendre pour densité g la fonction définie sur R par : g(x) = On peut alors choisir ae a + e (x a x<1 + e x/b 1 x 1 ). c = e + a aeγ(a). 21 / 25

22 Un exemple Cas général : un exemple Considérons une v.a. X de densité donnée par f X (x) = 2 3 e (x 1)2 /2 + 1 e (x 5)2 /4, x R. 2π 3 4π Densité f X f X = Combinaison linéaire de 2 densités gaussiennes. 22 / 25

23 Un exemple Cas général : un exemple Considérons 1 ε variable aléatoire de loi 2 3 δ δ 1, 2 X 1 variable de loi N (1,1) ; X 2 variable de loi N (5,2). 3 Supposons ε, X 1,X 2 indépendantes. Alors X a même loi que X = X 1 1 ε=0 + X 2 1 ε=1. En effet, pour toute fonction ϕ mesurable positive bornée, E(ϕ(X )) = E(ϕ(X 1 )1 ε=0 + ϕ(x 2 )1 ε=1 ) = 2 3 E(ϕ(X 1)) E(ϕ(X 2)) par ind. de ε avec X j = R ( 2 ϕ(x) 3 f X 1 (x) + 1 ) 3 f X 2 (x) dx. } {{ } densité de X 23 / 25

24 Un exemple Cas général Nous simulons 10 5 variables aléatoires indépendantes de même loi que X et représentons l histogramme des données ainsi obtenues Remarque Taille d une population constituée de 2/3 d individus de type A et 1/3 d individus de type B avec Loi de la taille des individus de type A : N (1,1) Loi de la taille des individus de type B : N (5,2). 24 / 25

25 Un exemple Cas général Cadre général Considérons P n, n N des lois sur R et une famille (p n ) n N [0,1] N telle que p n = 1. n N Nous cherchons alors à simuler une variable aléatoire X de loi P X = p n P n. n N Théorème Supposons : X n v.a. de loi P n. ε v.a. de loi P ε = n N p n δ n. ε, X n, n N, indépendantes. Alors, X a même loi que X = n N X n1 ε=n. 25 / 25

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

1 Générateurs pseudo-aléatoires.

1 Générateurs pseudo-aléatoires. Université de Provence. Préparation Agrégation. Épreuve de modélisation, option Probabilité-Statistique... Quelques références. Simulation de variables aléatoires. Fabienne CASTELL N. BOULEAU. Probabilités

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégral I Paul-Eugène Parent Département de mathématiques et de statistique Université d Ottawa le 30 novembre 2015 Au menu aujourd hui 1 2 Problèmes 1) Un homme se trouve sur la rive

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ).

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ). 3-- 4 JFC p JF COSSUTTA jean-francoiscossutta@wanadoofr Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route EDHEC 4 EXERCICE a U est une variable aléatoire réelle sur Ω, A,

Plus en détail

6. Quelques lois continues

6. Quelques lois continues 6. Quelques lois continues MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois continues 1/30 Plan 1. Loi uniforme 2. Loi exponentielle 3. Lois gamma / Weibull / bêta MTH2302D:

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

S. Zozor Information, inégalités et relations d incertitude

S. Zozor Information, inégalités et relations d incertitude Information, inégalités et relations d incertitude Steeve Zozor GIPSA-Lab CNRS Grenoble INP, Grenoble, France 17-21 Mai 2010 Plan du cours 1 Entropie mesure d incertitude Axiomes, entropie de Shannon et

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Analyse numérique Exercices corrigés

Analyse numérique Exercices corrigés Université Sultan Moulay Slimane 9- Module : Analyse numérique par S. Melliani & L. S. Chadli Analyse numérique Exercices corrigés Interpolation polynômiale Exercice Déterminer le polynôme d interpolation

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires COMPLÉMENT III Simulation de variables aléatoires Références : Modélisation stochastique et simulation, B. Bercu et D. Chafaï Pour Scilab, non testé : Introduction à scilab, P. Chancelier, ed. Springer.

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

1 Introduction 1 1.1 Contexte de l étude... 1 1.2 Contributions de ce travail... 3

1 Introduction 1 1.1 Contexte de l étude... 1 1.2 Contributions de ce travail... 3 Table des matières Introduction. Contexte de l étude....................................2 Contributions de ce travail............................... 3 2 Signaux aléatoires à densité de probabilité à queue

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Mathématiques : statistiques et simulation

Mathématiques : statistiques et simulation Université de Picardie - LAMFA CNRS UMR 6140 PAF Amiens - Formation Enseignement des Mathématiques - 20 janvier 2012 (Extrait du document ressource pour la classe de seconde) Dans le sens commun des sondages,

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Description du module GENERATEUR rev.2 1. Rôle du module

Description du module GENERATEUR rev.2 1. Rôle du module Description du module GENERATEUR rev.2 1. Rôle du module Ce module doit implémenter un générateur de «points aléatoires» selon une répartition de densité donnée. Tout d abord, le générateur doit être initialisé

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Mines Maths 2 MP 2012 Énoncé 1/5

Mines Maths 2 MP 2012 Énoncé 1/5 Mines Maths 2 MP 2012 Énoncé 1/5 ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Chapitre 6 : Génération aléatoire

Chapitre 6 : Génération aléatoire Chapitre 6 : Génération aléatoire Alexandre Blondin Massé Laboratoire d informatique formelle Université du Québec à Chicoutimi 12 février 2013 Cours 8STT105 Département d informatique et mathématique

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Rappels de théorie des probabilités

Rappels de théorie des probabilités Rappels de théorie des probabilités 1. modèle probabiliste. 1.1. Univers, événements. Soit un ensemble non vide. Cet ensemble sera appelé l univers des possibles ou l ensemble des états du monde. Dans

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Modélisation du risque de crédit et asymétrie d information

Modélisation du risque de crédit et asymétrie d information Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

1 Générateurs à Congruences Linéaires (GCL)

1 Générateurs à Congruences Linéaires (GCL) TP 4 : Générateurs pseudo-aléatoires et applications Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant

Plus en détail