MACHINE SYNCHRONE. COURS 4 Elec 1. INTRODUCTION 2. CONSTITUTION GENERALE. Nom : Prénom : Fiche :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MACHINE SYNCHRONE. COURS 4 Elec 1. INTRODUCTION 2. CONSTITUTION GENERALE. Nom : Prénom : Fiche :"

Transcription

1 Nom : MACHINE SYNCHRONE Prénom : Fiche : COURS 4 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement dans les 2 quadrans d une machine synchrone. Domaine : S0.3, Appareils électromagnétiques, machines à courant alternatif. 1. INTRODUCTION La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif monophasé ou triphasé. Les alternateurs sont utilisés pour produire de l'électricité, on les retrouve dans toutes les centrales EDF (hydraulique, thermique, nucléaire, éolienne etc. ) et aussi dans les groupes électrogènes. En fonctionnement MOTEUR, sa fréquence de rotation est imposée par la fréquence du courant alternatif qui alimente l'induit, dans ce cas, le rotor tourne à la vitesse du champ tournant. Les moteurs synchrones sont utilisés pour la traction comme pour le TGV atlantique et aussi comme redresseur de facteur de puissance appelé compensateur synchrone dans l'industrie. 2. CONSTITUTION GENERALE L'alternateur ou le moteur possède deux parties principales : - L'inducteur porté par le rotor parcouru par un courant continue. - L'induit porté par le stator parcouru par des courants alternatifs. 1

2 a. Inducteur (rotor) : Le champ magnétique est crée par un aimant permanent ou par un électro-aimant alimenté en courant continu. Le rotor tourne à la fréquence (f), et crée un nombre de paires de pôles (p). L'alimentation du rotor se fait soit par l'intermédiaire de balais assurant un contact glissant entre le collecteur (bagues) entraîné en rotation et les conducteurs allant à la plaque à bornes soit par un alternateur auxiliaire monté en bout d'arbre et inversé (inducteur au stator), le courant créé au rotor est redressé par un pont de diode tournant et alimente directement l'inducteur principal. Dans ce cas, il n'y a plus de contacts glissants dans la machine. - Rotor bobiné à pôles saillants : C'est un électro-aimant dont les pôles sont alternativement nord et sud. Les enroulements sont alimentés en courant continu, ils sont placés autour des noyaux polaires. Le nombre de pôles est toujours paire, il varie suivant la machine. Ce type de construction n autorise pas de grandes vitesses de rotation, n<1500 tr/min Production d énergie de 50 à 400 Hz dans les centrales hydrauliques, groupes électrogènes, etc... - Rotor bobiné à pôles lisses ou Turboalternateur : Le rotor est un cylindre plein dans lequel on a usiné des encoches. Il possède le plus souvent deux pôles. Ce mode de construction qui assure une grande robustesse mécanique est systématiquement adopté pour les alternateurs de fortes puissances dont la fréquence de rotation est élevée (3000 et 1500 tr/min). Production d énergie dans les centrales nucléaires. - Le rotor à aimant permanent : Comme son nom l indique, le rotor est constitué d un aimant naturel. Il n est donc pas nécessaire de posséder une autre source d énergie électrique pour créer un champ constant dans le rotor au contraire du rotor bobiné. 2

3 b. Induit (stator) : Le stator d une machine synchrone est identiques à celui d une machine asynchrone, il est constitué d un empilage de tôles magnétiques qui contiennent des encoches dans lesquelles sont insérées les bobines. 3. SYMBOLES En monophasé : En triphasé : 4. LE GENERATEUR SYNCHRONE OU ALTERNATEUR TRIPHASE a. Principe de fonctionnement A partir d une énergie mécanique, l alternateur crée une énergie électrique. Le rotor est constitué d un circuit magnétique qui fourni un champ magnétique constant. Ce rotor tourne à l intérieur d un stator composé de 3 bobines. Lorsque le champ magnétique fixe passe devant une bobine, il induit des courants à l intérieur de celle-ci. Pour chaque bobine, ce courant induit crée une différence de potentiel qui est une des tensions délivrée par l alternateur. Le réglage du courant qui traverse les enroulements de la roue polaire (Ie) permet de faire varier la tension de sortie de l alternateur. Le réglage de la vitesse de rotation de l arbre du générateur permet de faire varier la fréquence du système triphasé que délivre l alternateur. 3

4 b. Modèle équivalent - Représentation du modèle équivalent d'une phase de l'induit: L r I U L U r E V Une phase de l'induit est équivalente à une source de tension sinusoïdale E, de résistance r et de réactance interne Lω appelée réactance synchrone X. En régime sinusoïdal et considérant que la machine n'est pas saturée, l'équation de fonctionnement s'écrit : V = E L. ω. I r. I Soit : X L = L. ω : la réactance synchrone en ohm. Soit : Z = (r² + X L ²), l'impédance synchrone en ohm. La loi des mailles s'écrit : V = E U L Ur Connaissant : ϕ Déphasage courant tension, angle imposé par la charge. X Réactance synchrone I Intensité du courant dans la charge V Tension simple On peut déterminer le diagramme de Fresnel pour une phase. E U L Ur V ϕ I 4

5 c. Fréquence de la Force électromotrice La fréquence de la tension issue de l'alternateur dépend du nombre de paire de pôles de l'inducteur et de sa vitesse de rotation. f = p. n ou n = f / p p Nombre de paires de pôles. n Fréquence de rotation en tr/s. (ns = n) f Fréquence du courant statorique (FEM induite) en Hertz (Hz). d. Force électromotrice induite Un enroulement de l induit (stator) soumis au champ magnétique tournant de l entrefer est le siège d une F.E.M. e(t) de valeur efficace E. E = K. N. f. Φ E F.E.M.ou tension induite mesurée à vide entre une phase et le neutre en volt (V). N Nombre de conducteurs par phase de la machine (1 spire = 2 conducteurs). f Fréquence du courant statorique (FEM induite) en Hertz (Hz). Φ Flux maximum à travers un enroulement en Weber (Wb). K Coefficient de Kapp (caractéristique de la machine). K = 2,22.K D. K F avec K D facteur de distribution et K F facteur de forme. K 2,22 On peut aussi utiliser la version simplifiée de cette formule en regroupant toutes les constantes dans une seule donnée : E = K'. n.φ K' Constante globale (caractéristique de la machine). K' = K. N. p Remarques : Les enroulements sont disposés dans le stator de telle façon que la F.E.M e(t) soit la plus proche possible d'une forme sinusoïdale. En triphasé, le stator comporte trois enroulements ou phases. On obtient trois F.E.M. e1(t), e2(t) et e3(t) de même valeur efficace E1 = E2 = E3 et déphasées de 2π/3. 5

6 e. Bilan des puissances Pfs Pa Pu Pm Pjr Pjs Partie mécanique Partie électrique Bilan des puissances : Pa = Pu + Pjs + Pfs + Pjr + Pm - Puissance mécanique absorbée au rotor : Pa (Watt) Pa = Tm. Ω Tm Couple en Newton mètre (Nm). Ω Vitesse angulaire du rotor en radian par seconde (rad/s). avec Ω = Ωs = 2. π. ns ns = n Si la machine n'est pas auto-excitée, c'est à dire qu'il faut lui ajouter une alimentation continue pour l'inducteur, la puissance absorbée devient : Pa = Tm. Ω + u e. i e i e Intensité du courant d'excitation (A) u e Tension d'excitation (V) 6

7 - Pertes joule statorique (induit) : Pjs (Watt) Pjs = 3/2. R. I² R Résistance mesurée entre phases (Ω) - Pertes joule rotor (inducteur) : Pjr (Watt) Pjr = r e. i e ² = u e. i e r e Résistance de l'inducteur (Ω) i e Intensité du courant d'excitation (A) u e Tension d'excitation (V) - Pertes constantes ou collectives : Pc (Watt) Les pertes collectives sont constantes et indépendante de la charge, elles se mesurent à vide. Elles comprennent : - Les pertes fer au stator (hystérésis et Foucault), Pfs. - Les pertes mécaniques (frottements), Pm. Pc = Pm + Pfs - Puissance électrique utile au stator : Pu (Watt) Pu = U. I. 3. cos ϕ U Tension entre phases en volts (V). I Courant en ligne en ampère (A). cos ϕ Facteur de puissance de la charge. - Rendement η = Pu = Pa Pjs Pjr - Pc = Pu Pa Pa Pu + Pjs + Pjr + Pc 7

8 5. LE MOTEUR SYNCHRONE Le moteur synchrone tourne à la vitesse du champ tournant et celle ci est très régulière dépendant de la précision du fournisseur d'énergie (EDF). On peut régler son facteur de puissance cos ϕ en modifiant le courant d excitation Ie. Un moteur auxiliaire de démarrage est souvent nécessaire car ce moteur a un faible couple au démarrage. Il faut une excitation, c est à dire une deuxième source d énergie. - Ils sont utilisés en forte puissance (1 à 10 MW - compresseur de pompe, concasseur); toutefois pour faire varier la vitesse, il faut faire varier la fréquence des courants statoriques, le couple reste constant. Il a donc fallu attendre le développement de l électronique de puissance pour commander des moteurs auto-synchrones ou synchrones auto-pilotés (T.G.V. Atlantique ). - Dans le domaine des faibles puissances, les rotors sont à aimants permanents. L intérêt de ces moteurs réside dans la régularité de la vitesse de rotation (tourne-disque, appareil enregistreur, programmateur, servomoteur). - Le moteur synchrone peut également être utilisé comme source de puissance réactive Q pour relever le facteur de puissance cos ϕ d une installation électrique. a. Modèle équivalent - Représentation du modèle équivalent d'une phase de l'induit: L r I U L U r E' V Soit : X L = L. ω : la réactance synchrone en ohm. Soit : Z = (r² + X L ²), l'impédance synchrone en ohm. La loi des mailles s'écrit : V = E' + U L + Ur 8

9 b. Bilan des puissances Il est inversé par rapport à un alternateur. Pa = Pu + Pjs + Pjr + Pc - Puissance mécanique utile au rotor : Pu (Watt) Pu = Tu. Ω Tu Couple utile en Newton mètre (Nm). Ω Vitesse angulaire du rotor en radian par seconde (rad/s). avec Ω = Ωs = 2. π. ns ns = n - Puissance électrique absorbée au stator : Pa (Watt) Pa = U. I. 3. cos ϕ + u e. i e U Tension entre phases (V). I Courant en ligne (A). cos ϕ Facteur de puissance du moteur. u e Tension continue d'excitation aux bornes du rotor (V). i e Courant d'excitation dans le rotor (A). 9

COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur.

COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur. PIFFRET JBS ALTERNATEUR COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur. Domaine : S0.3, Appareils électromagnétiques,

Plus en détail

MACHINE SYNCHRONE. COURS 4 Elec 1. INTRODUCTION CONSTITUTION GENERALE. Nom : Prénom : Fiche :

MACHINE SYNCHRONE. COURS 4 Elec 1. INTRODUCTION CONSTITUTION GENERALE. Nom : Prénom : Fiche : Nom : MACHINE SYNCHRONE Prénom : Fiche : COURS 4 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement dans les 2 quadrans

Plus en détail

COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur.

COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur. PIFFRET JBS ALTERNATEUR COURS 9 T CAP E Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques et le fonctionnement d un alternateur. Domaine : S0.3, Appareils électromagnétiques,

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

MACHINES A COURANT CONTINU

MACHINES A COURANT CONTINU Nom : ACHNES A CORANT CONTN Prénom : Fiche : CORS 3 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître et définir les grandeurs caractéristiques et les différentes configurations

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

MACHINES A COURANT CONTINU

MACHINES A COURANT CONTINU Nom : ACHINES A COURANT CONTINU Prénom : Fiche : COURS 3 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître et définir les grandeurs caractéristiques et les différentes configurations

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

MOTEUR ASYNCHRONE. COURS 2 Elec 1. ROLE DU MOTEUR ASYNCHRONE 2. MOTEUR ASYNCHRONE TRIPHASE. a. Symboles. Nom : Prénom : Fiche :

MOTEUR ASYNCHRONE. COURS 2 Elec 1. ROLE DU MOTEUR ASYNCHRONE 2. MOTEUR ASYNCHRONE TRIPHASE. a. Symboles. Nom : Prénom : Fiche : Nom : MOTEUR ASYNCHRONE Prénom : Fiche : COURS 2 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques d'un moteur asynchrone.

Plus en détail

L alternateur synchrone

L alternateur synchrone L alternateur synchrone Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 Web : http://palermo.wordpress.com

Plus en détail

C -T Convertir Transmettre Cours C-2.1 Machine synchrone. Cours C-2.1 TSI1 TSI2. La conversion électromécanique d énergie

C -T Convertir Transmettre Cours C-2.1 Machine synchrone. Cours C-2.1 TSI1 TSI2. La conversion électromécanique d énergie Cours 1 Introduction Cours C-2.1 TSI1 TSI2 La conversion électromécanique d énergie X Période La machine synchrone triphasée 1 2 3 4 5 Cycle 6 : Convertir - Transmettre Durée : 2 semaines X Dans l architecture

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

MOTEUR ASYNCHRONE. COURS 2 Elec 1. ROLE DU MOTEUR ASYNCHRONE 2. MOTEUR ASYNCHRONE TRIPHASE. a. Symboles. Nom : Prénom : Fiche : Date :

MOTEUR ASYNCHRONE. COURS 2 Elec 1. ROLE DU MOTEUR ASYNCHRONE 2. MOTEUR ASYNCHRONE TRIPHASE. a. Symboles. Nom : Prénom : Fiche : Date : Nom : MOTEUR ASYNCHRONE Prénom : Fiche : COURS 2 Elec Date : A classer : B - S0 T ELEEC Gr : Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques d'un moteur asynchrone.

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

NOM: THEME CLASSE: PRENOM: S0.3 Machines électromagnétiques GROUPE: DATE: TITRE DUREE: COURS STI Les machines à courant continu PAGE: 1 / 6

NOM: THEME CLASSE: PRENOM: S0.3 Machines électromagnétiques GROUPE: DATE: TITRE DUREE: COURS STI Les machines à courant continu PAGE: 1 / 6 COURS STI Les machines à courant continu PAGE: 1 / 6 I) ORGANISATION FONCTIONNELLE. La machine à courant continu comporte trois éléments essentiels : 1) L inducteur. C est la partie fixe du moteur, dont

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

COURS : LES MACHINES A COURANT CONTINU

COURS : LES MACHINES A COURANT CONTINU BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MACHINES A COURANT CONTINU Durée du cours : 2 heures Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

COURS 8 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques d'un moteur asynchrone.

COURS 8 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques d'un moteur asynchrone. PIFFRET JBS MOTEUR ASYNCHRONE COURS 8 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques d'un moteur asynchrone. Domaine : S0.3, Appareils électromagnétiques,

Plus en détail

Université Mohammed 1er Ecole Nationale des Sciences Appliquées -Oujda - Département : Génie Industriel Matière : Tech. Electriques.

Université Mohammed 1er Ecole Nationale des Sciences Appliquées -Oujda - Département : Génie Industriel Matière : Tech. Electriques. Université Mohammed 1er Ecole Nationale des Sciences Appliquées -Oujda - Département : Génie Industriel Matière : Tech. Electriques Machine synchrone Année universitaire : 2008 /2009 1 Comme toute machine

Plus en détail

Le moteur à courant continu TGM

Le moteur à courant continu TGM Le moteur à courant continu TGM 1. résentation générale a) Conversion d énergie Le moteur à courant continu effectue une conversion d énergie électrique en énergie mécanique. énergie électrique fournie

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

GEII TD 1/5. Alternateur N 1

GEII TD 1/5. Alternateur N 1 GEII TD 1/5 Alternateur N 1 Un alternateur triphasé dont les enroulements du stator sont couplés en étoile, fournit en charge normale un courant d'intensité I= 200 A sous une tension efficace entre phases

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

8 exercices corrigés d Electrotechnique sur l alternateur

8 exercices corrigés d Electrotechnique sur l alternateur 8 exercices corrigés d Electrotechnique sur l alternateur Exercice G01 : alternateur Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une

Plus en détail

Machine Synchrone. Alternateur synchrone

Machine Synchrone. Alternateur synchrone Machine ynchrone Alternateur synchrone Champ tournant Alternateur : principe de fonctionnement tructure du rotor (induit) tructure du stator (inducteur) Alternateur en charge «Champ tournant» Théorème

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

MOTEURS ELECTRIQUES MOTEURS ELECTRIQUES

MOTEURS ELECTRIQUES MOTEURS ELECTRIQUES Sciences et Technologies de l Industrie et du Développement Durable MOTEURS ELECTRIQUES Energie et Environnement Cours T ale MOTEURS ELECTRIQUES 1. Introduction Les moteurs électriques assure la fonction

Plus en détail

Chapitre 5 : Moteur asynchrone

Chapitre 5 : Moteur asynchrone Chapitre 5 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit 3. Symboles 4. plaque signalétique II / Principe de fonctionnement

Plus en détail

Inducteur. Induit. Energie de commande Energie stockée Partie commande. Carte des sorties Ordres. Ordres Energie distribuée

Inducteur. Induit. Energie de commande Energie stockée Partie commande. Carte des sorties Ordres. Ordres Energie distribuée I. Introduction Les actionneurs sont situés dans la partie opérative d'un système automatisé. Ils font partie de la chaîne d'action de ce système. Les actionneurs transforment l'énergie de puissance fournie

Plus en détail

LA MACHINE À COURANT CONTINU

LA MACHINE À COURANT CONTINU LA MACHINE À COURANT CONTINU Table des matières 1. Présentation... 2 1.1. Généralités... 2 1.2. Description... 3 1.2.1. Vue d'ensemble... 3 1.2.2. L'inducteur... 3 1.2.3. L'induit... 3 1.2.4. Collecteur

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

génie électrique Machine synchrone

génie électrique Machine synchrone MACHINE SYNCHRONE Autrefois utilisés quasi exclusivement en alternateur, le développement de l'électronique de puissance et la généralisation des aimants comme inducteur permettent aujourd'hui d'employer

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

Chapitre 4. La Machine Tournante Ou La Conversion Electromagnétique 04-1

Chapitre 4. La Machine Tournante Ou La Conversion Electromagnétique 04-1 Chapitre 4 La Machine Tournante Ou La Conversion Electromagnétique 04-1 Principes Un convertisseur électromécanique ou "machine tournante" assure une transformation réciproque d'énergie électrique en travail

Plus en détail

Chap. II : La machine asynchrone triphasée

Chap. II : La machine asynchrone triphasée Chap. II : La machine asynchrone triphasée I. Domaines d'utilisation du moteur asynchrone Le moteur asynchrone est le moteur électrique le plus utilisé dans l industrie. Il est peu coûteux, robuste, et

Plus en détail

CHAPITRE 3 MACHINES SYNCHRONES

CHAPITRE 3 MACHINES SYNCHRONES CHAITR 3 MACHINS SYNCHRONS Ce chapitre représente le minimum de ce qui doit être compris pour être capable de mener un projet de machine synchrone ou le maximum de ce qui est tolérable pour comprendre

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

I. Constitution d une machine à courant continu

I. Constitution d une machine à courant continu Page 1 / 7 I. Constitution d une machine à courant continu 1. Vue éclatée d une machine à courant continu Une machine à courant continu (MCC) est constituée de deux parties principales, le stator et le

Plus en détail

Moteur synchrone à pôles lisses non saturé

Moteur synchrone à pôles lisses non saturé Moteur synchrone à pôles lisses non saturé Suite CHAPITRE I DOCUMENT COMPOSÉ À PARTIR DU COURS DU PR.VIAROUGE GEL-3001 Automne 2018 1 I. Rappel GEL-3001 Automne 2018 2 Génération du couple électromagnétique

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt :

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD TD de Machines Asynchrones Exercice N 1 : Un moteur asynchrone tourne à 965 tr/min

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

MACHINE SYNCHRONE CHAPITRE II

MACHINE SYNCHRONE CHAPITRE II MACHINE SYNCHRONE CHAPITRE II DOCUMENT COMPOSÉ À PARTIR DU COURS DU PR.VIAROUGE GEL-3001 Automne 2018 1 I. COMPOSITION DES MACHINES SYNCHRONES GEL-3001 Automne 2018 2 Composition générale des machines

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE 1 Définition La machine asynchrone triphasée est un convertisseur électromagnétique permettant de convertir l énergie électrique en énergie mécanique. Énergie électrique Moteur asynchrone

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE Série: Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée : 4 heures coefficient :7 L'emploi de toutes les calculatrices

Plus en détail

COURS TSI : CI-3 E2 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE page 1 / 6. Puissance mécanique utilisable

COURS TSI : CI-3 E2 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE page 1 / 6. Puissance mécanique utilisable COURS TSI : CI-3 E2 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE page 1 / 6 1 PRÉSENTATION Le Moteur Asynchrone Triphasé (MAS) est l'un des principaux actionneurs électriques utilisés dans l'industrie.

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

Cours 7-8 Partie 1. Circuits magnétiques

Cours 7-8 Partie 1. Circuits magnétiques Électricité du bâtiment Cours 7-8 Partie 1 Circuits magnétiques Chapitres 14 du manuel 13/03/2018 ELE1409-H18-Cours-7-8 1 Transformateurs monophasés et triphasés Electricité et magnétisme Le champ magnétique

Plus en détail

Machine à courant continu

Machine à courant continu http://pagesperso-orange.fr/fabrice.sincere/ 1- Constitution Machine à courant continu La machine à courant continu est constituée de trois parties principales : - l'inducteur - l'induit - le dispositif

Plus en détail

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés dans l'industrie. D'une puissance

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS - ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés dans l'industrie. D'une puissance

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

Le Moteur Asynchrone

Le Moteur Asynchrone Le Moteur Asynchrone Table des matières 1. Introduction...2 2. Principe de fonctionnement...2 2.1. principe du moteur synchrone...2 2.2. Principe du moteur asynchrone...2 2.3. Énonce du principe...3 2.4.

Plus en détail

CH14 : Le moteur synchrone

CH14 : Le moteur synchrone BTS électrotechnique 2 ème année - Sciences physiques appliquées CH14 : Le moteur synchrone Compensation de l énergie réactive Enjeu : Problématique : On souhaite utiliser un moteur synchrone en compensateur

Plus en détail

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses BTS électrotechnique 1 ère année - Sciences physiques appliquées CH25 : modèle équivalent de l alternateur synchrone à pôles lisses Production d énergie électrique Problématique : Enjeu : Comme pour le

Plus en détail

C : Convertir Cours C-1 Moteur asynchrone. Cours C-1. La conversion électromécanique d énergie

C : Convertir Cours C-1 Moteur asynchrone. Cours C-1. La conversion électromécanique d énergie Cours 1 Introduction Cours C-1 La conversion électromécanique d énergie TSI1 TSI2 Période La machine asynchrone triphasée 1 2 3 4 5 Cycle 2 : Convertir - Transmettre Durée : 3 semaines X Les machines asynchrones

Plus en détail

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE PIFFRET JBS COURANT ALTERNATIF SINUSOÏDAL TRIPHASE COURS 6 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques ( U, V, I, J, P, Q, S, cos ϕ ) en régime

Plus en détail

hapitre I CRappels: Les machines asynchrones triphasés

hapitre I CRappels: Les machines asynchrones triphasés hapitre I CRappels: Les machines asynchrones triphasés I. INTRODUCTION Les entraînements électriques pilotés par des machines asynchrones sont très utilisés dans le domaine industriel. Ces machines sont

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

ELEMENTS DE CORRECTION

ELEMENTS DE CORRECTION Elément de correction Machines électriques 1 ère session : JEUDI 7 mai 004. UNIERSITE BORDEAUX I ELEMENTS DE CORRECTION I.U.P. Génie des Systèmes Industriels Aéronautique U - Formation technologique Durée

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE 1. Introduction Un système automatisé domestique ou industriel pouvant être relié au réseau électrique sera donc alimenté par l énergie électrique alternative fournie par EDF. Dans ce cas, l actionneur

Plus en détail

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz.

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice

Plus en détail

1.- Relevé de la plaque signalétique :

1.- Relevé de la plaque signalétique : TP n 3 : ALTERNATEUR SYNCHRONE Selon la salle de TP, B01 ou B11, les machines, les appareils de mesure et les montages seront différents. En raison du nombre de machines disponibles la plupart des tables

Plus en détail

CHAP 2 : Les convertisseurs électromécaniques M 2.2 : Energie électrique 2

CHAP 2 : Les convertisseurs électromécaniques M 2.2 : Energie électrique 2 I. Un champ magnétique tournant I.1. L origine du réseau électrique triphasé Moteur d entrainement CH 2 Expérience : On positionne un aimant entraîné par un moteur auxiliaire au milieu de trois bobines

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

Moteurs synchrones. 6

Moteurs synchrones. 6 Master Mécatronique 1. Cours Moteurs. J Diouri. 2010 Moteurs synchrones. 6 Servomoteurs synchrones à aimants permanents Références : Électrotechnique, Théodore Wildi, Électricité au service des machines,

Plus en détail

Documentation sur les moteurs électriques

Documentation sur les moteurs électriques Documentation sur les moteurs électriques Projet tutoré 2012-2013 De Terris, Sabot, Bedos, Geoffroy-Giralté, Tourneur Sommaire Présentation des types de moteurs page 3 I Généralités page 4 II Constitution

Plus en détail

Chaîne d information. Distribuer Alimenter Distribuer. Chaîne d énergie

Chaîne d information. Distribuer Alimenter Distribuer. Chaîne d énergie Allumer la lampe Changer la lampe défectueuse A2 Analyser le système Chaîne d énergie du phare de l île Noire Date : Nom : Etude de cas 2 h Partie 1 : Analyse fonctionnelle Cette étude à pour objectif

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Baccalauréat Technologique. Session Epreuve : Physique appliquée

Baccalauréat Technologique. Session Epreuve : Physique appliquée Baccalauréat Technologique Session 2003 Epreuve : Physique appliquée Série : Sciences et Technologies Industrielles Spécialité : Génie Electrotechnique Durée de l épreuve : 4 heures coefficients : 7 Ce

Plus en détail

TP Machine Synchrone 1ère année - Option 2009-

TP Machine Synchrone 1ère année - Option 2009- TP n 3 : ALTERNATEUR SYNCHRONE Selon la salle de TP, B01 ou B11, les machines, les appareils de mesure et les montages seront différents. En raison du nombre de machines disponibles la plupart des tables

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

MOTEURS A COURANT CONTINU

MOTEURS A COURANT CONTINU MOTEURS A COURANT CONTINU I- GENERALITES Les moteurs à courant continu à excitation séparée sont encore utilisés assez largement pour l entraînement à vitesse variable des machines. Leur vitesse de rotation

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1- Constitution 1-1- L'inducteur (ou circuit d'excitation) 1-2- L'induit (circuit de puissance) 1-3- Le collecteur et les balais 2- Principe de fonctionnement 2-1- Fonctionnement

Plus en détail

Moteur à courant continu - Hacheur

Moteur à courant continu - Hacheur TGEN Chapitre 7 1 Chapitre 7 Moteur à courant continu - Hacheur 1- MOTEUR A COURANT CONTNU l existe deux grandes familles de moteurs à courant continu, les moteurs à excitation indépendante (ou séparée)

Plus en détail

2.1. Constitution Vitesse de synchronisme

2.1. Constitution Vitesse de synchronisme 2.1. Constitution. 2.2. Vitesse de synchronisme 1 "!! 2 Chapitre 30 Machines asynchrones triphasée STATOR 3 ! 4 Stator avant bobinage 5 Stator après bobinage 6 #! Ω s Le STATOR d une machine TRIPHASEE

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

GÉNÉRALITÉS SUR LES MACHINES ÉLECTRIQUES

GÉNÉRALITÉS SUR LES MACHINES ÉLECTRIQUES GÉNÉRALITÉS SUR LES MACHINES ÉLECTRIQUES CHAPITRE I DOCUMENT COMPOSÉ À PARTIR DU COURS DU PR.VIAROUGE GEL-3001 Automne 2018 1 I. TYPES DE MACHINES ELECTRIQUES GEL-3001 Automne 2018 2 Types de machines

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie I. PRESENTATION MACHINE A COURANT CONTINU Une machine à courant continu est un... d'énergie. Lorsque l'énergie... est transformée en énergie..., la machine fonctionne en... Lorsque l'énergie mécanique

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

Étude de la MACHINE A COURANT CONTINU

Étude de la MACHINE A COURANT CONTINU Étude de la MACHINE A COURANT CONTINU Plan de la présentation Introduction Constitution d une MCC Le Stator Le Collecteur Le Rotor Modèles et caractéristiques d une MCC Caractéristique Couple / Vitesse

Plus en détail